00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030 #include <string.h>
00031 #include <cmath>
00032 #include <stdio.h>
00033
00034 #include "G4NeutronCaptureAtRest.hh"
00035 #include "G4SystemOfUnits.hh"
00036 #include "G4DynamicParticle.hh"
00037 #include "G4ParticleTypes.hh"
00038 #include "Randomize.hh"
00039 #include "G4HadronicProcessStore.hh"
00040 #include "G4HadronicDeprecate.hh"
00041
00042 #define MAX_SECONDARIES 100
00043
00044
00045
00046 G4NeutronCaptureAtRest::G4NeutronCaptureAtRest(const G4String& processName,
00047 G4ProcessType aType ) :
00048 G4VRestProcess (processName, aType),
00049 massProton(G4Proton::Proton()->GetPDGMass()/GeV),
00050 massNeutron(G4Neutron::Neutron()->GetPDGMass()/GeV),
00051 massElectron(G4Electron::Electron()->GetPDGMass()/GeV),
00052 massDeuteron(G4Deuteron::Deuteron()->GetPDGMass()/GeV),
00053 massAlpha(G4Alpha::Alpha()->GetPDGMass()/GeV),
00054 pdefGamma(G4Gamma::Gamma()),
00055 pdefNeutron(G4Neutron::Neutron())
00056 {
00057 G4HadronicDeprecate("G4NeutronCaptureAtRest");
00058 if (verboseLevel>0) {
00059 G4cout << GetProcessName() << " is created "<< G4endl;
00060 }
00061 SetProcessSubType(fHadronAtRest);
00062 pv = new G4GHEKinematicsVector [MAX_SECONDARIES+1];
00063 eve = new G4GHEKinematicsVector [MAX_SECONDARIES];
00064 gkin = new G4GHEKinematicsVector [MAX_SECONDARIES];
00065
00066 G4HadronicProcessStore::Instance()->RegisterExtraProcess(this);
00067 }
00068
00069
00070
00071 G4NeutronCaptureAtRest::~G4NeutronCaptureAtRest()
00072 {
00073 G4HadronicProcessStore::Instance()->DeRegisterExtraProcess(this);
00074 delete [] pv;
00075 delete [] eve;
00076 delete [] gkin;
00077 }
00078
00079 void G4NeutronCaptureAtRest::PreparePhysicsTable(const G4ParticleDefinition& p)
00080 {
00081 G4HadronicProcessStore::Instance()->RegisterParticleForExtraProcess(this, &p);
00082 }
00083
00084 void G4NeutronCaptureAtRest::BuildPhysicsTable(const G4ParticleDefinition& p)
00085 {
00086 G4HadronicProcessStore::Instance()->PrintInfo(&p);
00087 }
00088
00089
00090
00091 G4bool G4NeutronCaptureAtRest::IsApplicable(
00092 const G4ParticleDefinition& particle
00093 )
00094 {
00095 return ( &particle == pdefNeutron );
00096
00097 }
00098
00099
00100 G4int G4NeutronCaptureAtRest::GetNumberOfSecondaries()
00101 {
00102 return ( ngkine );
00103
00104 }
00105
00106
00107 G4GHEKinematicsVector* G4NeutronCaptureAtRest::GetSecondaryKinematics()
00108 {
00109 return ( &gkin[0] );
00110
00111 }
00112
00113 G4double G4NeutronCaptureAtRest::AtRestGetPhysicalInteractionLength(
00114 const G4Track& track,
00115 G4ForceCondition* condition
00116 )
00117 {
00118
00119 ResetNumberOfInteractionLengthLeft();
00120
00121
00122 *condition = NotForced;
00123
00124
00125 currentInteractionLength = GetMeanLifeTime(track, condition);
00126
00127 if ((currentInteractionLength <0.0) || (verboseLevel>2)){
00128 G4cout << "G4NeutronCaptureAtRestProcess::AtRestGetPhysicalInteractionLength ";
00129 G4cout << "[ " << GetProcessName() << "]" <<G4endl;
00130 track.GetDynamicParticle()->DumpInfo();
00131 G4cout << " in Material " << track.GetMaterial()->GetName() <<G4endl;
00132 G4cout << "MeanLifeTime = " << currentInteractionLength/ns << "[ns]" <<G4endl;
00133 }
00134
00135 return theNumberOfInteractionLengthLeft * currentInteractionLength;
00136
00137 }
00138
00139 G4VParticleChange* G4NeutronCaptureAtRest::AtRestDoIt(
00140 const G4Track& track,
00141 const G4Step&
00142 )
00143
00144
00145
00146
00147
00148 {
00149
00150
00151
00152
00153
00154 aParticleChange.Initialize(track);
00155
00156
00157
00158 globalTime = track.GetGlobalTime()/s;
00159 G4Material * aMaterial = track.GetMaterial();
00160 const G4int numberOfElements = aMaterial->GetNumberOfElements();
00161 const G4ElementVector* theElementVector = aMaterial->GetElementVector();
00162
00163 const G4double* theAtomicNumberDensity = aMaterial->GetAtomicNumDensityVector();
00164 G4double normalization = 0;
00165 for ( G4int i1=0; i1 < numberOfElements; i1++ )
00166 {
00167 normalization += theAtomicNumberDensity[i1] ;
00168
00169 }
00170 G4double runningSum= 0.;
00171 G4double random = G4UniformRand()*normalization;
00172 for ( G4int i2=0; i2 < numberOfElements; i2++ )
00173 {
00174 runningSum += theAtomicNumberDensity[i2];
00175
00176 if (random<=runningSum)
00177 {
00178 targetCharge = G4double((*theElementVector)[i2]->GetZ());
00179 targetAtomicMass = (*theElementVector)[i2]->GetN();
00180 }
00181 }
00182 if (random>runningSum)
00183 {
00184 targetCharge = G4double((*theElementVector)[numberOfElements-1]->GetZ());
00185 targetAtomicMass = (*theElementVector)[numberOfElements-1]->GetN();
00186
00187 }
00188
00189 if (verboseLevel>1) {
00190 G4cout << "G4NeutronCaptureAtRest::AtRestDoIt is invoked " <<G4endl;
00191 }
00192
00193 G4ParticleMomentum momentum;
00194 G4float localtime;
00195
00196 G4ThreeVector position = track.GetPosition();
00197
00198 GenerateSecondaries();
00199
00200 aParticleChange.SetNumberOfSecondaries( ngkine );
00201
00202 for ( G4int isec = 0; isec < ngkine; isec++ ) {
00203 G4DynamicParticle* aNewParticle = new G4DynamicParticle;
00204 aNewParticle->SetDefinition( gkin[isec].GetParticleDef() );
00205 aNewParticle->SetMomentum( gkin[isec].GetMomentum() * GeV );
00206
00207 localtime = globalTime + gkin[isec].GetTOF();
00208
00209 G4Track* aNewTrack = new G4Track( aNewParticle, localtime*s, position );
00210 aNewTrack->SetTouchableHandle(track.GetTouchableHandle());
00211 aParticleChange.AddSecondary( aNewTrack );
00212
00213 }
00214
00215 aParticleChange.ProposeLocalEnergyDeposit( 0.0*GeV );
00216
00217 aParticleChange.ProposeTrackStatus(fStopAndKill);
00218
00219
00220
00221 ResetNumberOfInteractionLengthLeft();
00222
00223 return &aParticleChange;
00224
00225 }
00226
00227
00228 void G4NeutronCaptureAtRest::GenerateSecondaries()
00229 {
00230 static G4int index;
00231 static G4int l;
00232 static G4int nopt;
00233 static G4int i;
00234
00235
00236 for (i = 1; i <= MAX_SECONDARIES; ++i) {
00237 pv[i].SetZero();
00238 }
00239
00240 ngkine = 0;
00241 ntot = 0;
00242 result.SetZero();
00243 result.SetMass( massNeutron );
00244 result.SetKineticEnergyAndUpdate( 0. );
00245 result.SetTOF( 0. );
00246 result.SetParticleDef( pdefNeutron );
00247
00248 NeutronCapture(&nopt);
00249
00250
00251 if (ntot != 0 || result.GetParticleDef() != pdefNeutron) {
00252
00253
00254
00255
00256
00257
00258
00259 gkin[0] = result;
00260 gkin[0].SetTOF( result.GetTOF() * 5e-11 );
00261 ngkine = 1;
00262
00263
00264
00265
00266
00267 for (l = 1; l <= ntot; ++l) {
00268 index = l - 1;
00269
00270
00271
00272 if (ngkine < MAX_SECONDARIES) {
00273 gkin[ngkine] = eve[index];
00274 gkin[ngkine].SetTOF( eve[index].GetTOF() * 5e-11 );
00275 ++ngkine;
00276 }
00277 }
00278 }
00279 else {
00280
00281
00282 ngkine = 0;
00283 ntot = 0;
00284 globalTime += result.GetTOF() * G4float(5e-11);
00285 }
00286
00287
00288 ngkine = G4int(std::min(ngkine,G4int(MAX_SECONDARIES)));
00289
00290 }
00291
00292
00293 void G4NeutronCaptureAtRest::Normal(G4float *ran)
00294 {
00295 static G4int i;
00296
00297
00298
00299
00300 *ran = G4float(-6.);
00301 for (i = 1; i <= 12; ++i) {
00302 *ran += G4UniformRand();
00303 }
00304
00305 }
00306
00307
00308 void G4NeutronCaptureAtRest::NeutronCapture(G4int *nopt)
00309 {
00310 static G4int nt;
00311 static G4float xp, pcm;
00312 static G4float ran;
00313
00314
00315
00316
00317
00318 *nopt = 1;
00319 pv[1] = result;
00320 pv[2].SetZero();
00321 pv[2].SetMass( AtomAs(targetAtomicMass, targetCharge) );
00322 pv[2].SetMomentumAndUpdate( 0., 0., 0. );
00323 pv[2].SetTOF( result.GetTOF() );
00324 pv[2].SetParticleDef( NULL );
00325 pv[MAX_SECONDARIES].Add( pv[1], pv[2] );
00326 pv[MAX_SECONDARIES].SetMomentum( -pv[MAX_SECONDARIES].GetMomentum().x(), -pv[MAX_SECONDARIES].GetMomentum().y(), -pv[MAX_SECONDARIES].GetMomentum().z() );
00327 pv[MAX_SECONDARIES].SetParticleDef( NULL );
00328 Normal(&ran);
00329 pcm = ran * G4float(.001) + G4float(.0065);
00330 ran = G4UniformRand();
00331 result.SetTOF( result.GetTOF() - std::log(ran) * G4float(480.) );
00332 pv[3].SetZero();
00333 pv[3].SetMass( 0. );
00334 pv[3].SetKineticEnergyAndUpdate( pcm );
00335 pv[3].SetTOF( result.GetTOF() );
00336 pv[3].SetParticleDef( pdefGamma );
00337 pv[3].Lor( pv[3], pv[MAX_SECONDARIES] );
00338 nt = 3;
00339 xp = G4float(.008) - pcm;
00340 if (xp >= G4float(0.)) {
00341 nt = 4;
00342 pv[4].SetZero();
00343 pv[4].SetMass( 0. );
00344 pv[4].SetKineticEnergyAndUpdate( xp );
00345 pv[4].SetTOF( result.GetTOF() );
00346 pv[4].SetParticleDef( pdefGamma );
00347 pv[4].Lor( pv[4], pv[MAX_SECONDARIES] );
00348 }
00349 result = pv[3];
00350 if (nt == 4) {
00351 if (ntot < MAX_SECONDARIES-1) {
00352 eve[ntot++] = pv[4];
00353 }
00354 }
00355
00356 }
00357
00358
00359 G4double G4NeutronCaptureAtRest::AtomAs(G4float a, G4float z)
00360 {
00361 G4float ret_val;
00362 G4double d__1, d__2;
00363
00364 static G4double aa;
00365 static G4int ia, iz;
00366 static G4double zz;
00367 static G4float rma, rmd;
00368 static G4int ipp;
00369 static G4float rmn, rmp;
00370 static G4int izz;
00371 static G4float rmel;
00372 static G4double mass;
00373
00374
00375
00376
00377
00378
00379
00380 rmel = massElectron * G4float(1e3);
00381
00382 rmp = massProton * G4float(1e3);
00383
00384 rmn = massNeutron * G4float(1e3);
00385
00386 rmd = massDeuteron * G4float(1e3) + rmel;
00387
00388 rma = massAlpha * G4float(1e3) + rmel * G4float(2.);
00389
00390 ret_val = G4float(0.);
00391 aa = a * 1.;
00392 zz = z * 1.;
00393 ia = G4int(a + G4float(.5));
00394 if (ia < 1) {
00395 return ret_val;
00396 }
00397 iz = G4int(z + G4float(.5));
00398 if (iz < 0 || iz > ia) {
00399 return ret_val;
00400 }
00401 mass = 0.;
00402 if (ia == 1) {
00403 if (iz == 0) {
00404 mass = rmn;
00405 }
00406 else if (iz == 1) {
00407 mass = rmp + rmel;
00408 }
00409 }
00410 else if (ia == 2 && iz == 1) {
00411 mass = rmd;
00412 }
00413 else if (ia == 4 && iz == 2) {
00414 mass = rma;
00415 }
00416 else if ( (ia == 2 && iz != 1) || ia == 3 || (ia == 4 && iz != 2) || ia > 4) {
00417 d__1 = aa / G4float(2.) - zz;
00418 d__2 = zz;
00419 mass = (aa - zz) * rmn + zz * rmp + zz * rmel - aa * G4float(15.67) +
00420 std::pow(aa, .6666667) * G4float(17.23) + d__1 * d__1 * G4float(93.15) / aa +
00421 d__2 * d__2 * G4float(.6984523) / std::pow(aa, .3333333);
00422 ipp = (ia - iz) % 2;
00423 izz = iz % 2;
00424 if (ipp == izz) {
00425 mass += (ipp + izz - 1) * G4float(12.) * std::pow(aa, -.5);
00426 }
00427 }
00428 ret_val = mass * G4float(.001);
00429 return ret_val;
00430
00431 }