G4LESigmaPlusInelastic.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // $Id$
00027 //
00028 // Hadronic Process: SigmaPlus Inelastic Process
00029 // J.L. Chuma, TRIUMF, 19-Feb-1997
00030 // Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
00031  
00032 #include "G4LESigmaPlusInelastic.hh"
00033 #include "G4PhysicalConstants.hh"
00034 #include "G4SystemOfUnits.hh"
00035 #include "Randomize.hh"
00036  
00037 void G4LESigmaPlusInelastic::ModelDescription(std::ostream& outFile) const
00038 {
00039   outFile << "G4LESigmaPlusInelastic is one of the Low Energy Parameterized\n"
00040           << "(LEP) models used to implement inelastic Sigma+ scattering\n"
00041           << "from nuclei.  It is a re-engineered version of the GHEISHA\n"
00042           << "code of H. Fesefeldt.  It divides the initial collision\n"
00043           << "products into backward- and forward-going clusters which are\n"
00044           << "then decayed into final state hadrons.  The model does not\n"
00045           << "conserve energy on an event-by-event basis.  It may be\n"
00046           << "applied to Sigma+ with initial energies between 0 and 25\n"
00047           << "GeV.\n";
00048 }
00049 
00050 G4HadFinalState*
00051 G4LESigmaPlusInelastic::ApplyYourself(const G4HadProjectile& aTrack,
00052                                       G4Nucleus& targetNucleus)
00053 {
00054   const G4HadProjectile *originalIncident = &aTrack;
00055   if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
00056     theParticleChange.SetStatusChange(isAlive);
00057     theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00058     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 
00059     return &theParticleChange;      
00060   }
00061 
00062   // create the target particle
00063   G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
00064     
00065   if (verboseLevel > 1) {
00066     const G4Material* targetMaterial = aTrack.GetMaterial();
00067     G4cout << "G4LESigmaPlusInelastic::ApplyYourself called" << G4endl;
00068     G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
00069     G4cout << "target material = " << targetMaterial->GetName() << ", ";
00070     G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
00071            << G4endl;
00072   }
00073 
00074   // Fermi motion and evaporation
00075   // As of Geant3, the Fermi energy calculation had not been Done
00076   G4double ek = originalIncident->GetKineticEnergy()/MeV;
00077   G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
00078   G4ReactionProduct modifiedOriginal;
00079   modifiedOriginal = *originalIncident;
00080     
00081   G4double tkin = targetNucleus.Cinema(ek);
00082   ek += tkin;
00083   modifiedOriginal.SetKineticEnergy(ek*MeV);
00084   G4double et = ek + amas;
00085   G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00086   G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
00087   if (pp > 0.0) {
00088     G4ThreeVector momentum = modifiedOriginal.GetMomentum();
00089     modifiedOriginal.SetMomentum( momentum * (p/pp) );
00090   }
00091 
00092   // calculate black track energies
00093   tkin = targetNucleus.EvaporationEffects( ek );
00094   ek -= tkin;
00095   modifiedOriginal.SetKineticEnergy( ek*MeV );
00096   et = ek + amas;
00097   p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00098   pp = modifiedOriginal.GetMomentum().mag()/MeV;
00099   if (pp > 0.0) {
00100     G4ThreeVector momentum = modifiedOriginal.GetMomentum();
00101     modifiedOriginal.SetMomentum( momentum * (p/pp) );
00102   }
00103   G4ReactionProduct currentParticle = modifiedOriginal;
00104   G4ReactionProduct targetParticle;
00105   targetParticle = *originalTarget;
00106   currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
00107   targetParticle.SetSide( -1 );  // target always goes in backward hemisphere
00108   G4bool incidentHasChanged = false;
00109   G4bool targetHasChanged = false;
00110   G4bool quasiElastic = false;
00111   G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec;  // vec will contain the secondary particles
00112   G4int vecLen = 0;
00113   vec.Initialize(0);
00114     
00115   const G4double cutOff = 0.1;
00116   if (currentParticle.GetKineticEnergy()/MeV > cutOff)
00117     Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
00118             incidentHasChanged, targetHasChanged, quasiElastic);
00119     
00120   CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
00121                    modifiedOriginal, targetNucleus, currentParticle,
00122                    targetParticle, incidentHasChanged, targetHasChanged,
00123                    quasiElastic);
00124     
00125   SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
00126 
00127   if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
00128 
00129   delete originalTarget;
00130   return &theParticleChange;
00131 }
00132 
00133  
00134 void G4LESigmaPlusInelastic::Cascade(
00135    G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
00136    G4int& vecLen,
00137    const G4HadProjectile *originalIncident,
00138    G4ReactionProduct &currentParticle,
00139    G4ReactionProduct &targetParticle,
00140    G4bool &incidentHasChanged,
00141    G4bool &targetHasChanged,
00142    G4bool &quasiElastic )
00143 {
00144   // derived from original FORTRAN code CASSP by H. Fesefeldt (30-Nov-1987)
00145   //
00146   // SigmaPlus undergoes interaction with nucleon within a nucleus.  Check if it is
00147   // energetically possible to produce pions/kaons.  In not, assume nuclear excitation
00148   // occurs and input particle is degraded in energy. No other particles are produced.
00149   // If reaction is possible, find the correct number of pions/protons/neutrons
00150   // produced using an interpolation to multiplicity data.  Replace some pions or
00151   // protons/neutrons by kaons or strange baryons according to the average
00152   // multiplicity per inelastic reaction.
00153 
00154   const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
00155   const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
00156   const G4double targetMass = targetParticle.GetMass()/MeV;
00157   G4double centerofmassEnergy = std::sqrt(mOriginal*mOriginal +
00158                                           targetMass*targetMass +
00159                                           2.0*targetMass*etOriginal);
00160   G4double availableEnergy = centerofmassEnergy - (targetMass+mOriginal);
00161   if (availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV) {
00162     quasiElastic = true;
00163     return;
00164   }
00165   static G4bool first = true;
00166   const G4int numMul = 1200;
00167   const G4int numSec = 60;
00168   static G4double protmul[numMul], protnorm[numSec]; // proton constants
00169   static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
00170 
00171   // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
00172   G4int counter, nt=0, npos=0, nneg=0, nzero=0;
00173   G4double test;
00174   const G4double c = 1.25;    
00175   const G4double b[] = { 0.7, 0.7 };
00176   if (first) {   // Computation of normalization constants will only be done once
00177     first = false;
00178     G4int i;
00179     for( i=0; i<numMul; ++i )protmul[i] = 0.0;
00180     for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
00181     counter = -1;
00182     for (npos = 0; npos < (numSec/3); ++npos) {
00183       for (nneg = npos; nneg <= (npos+2); ++nneg) {
00184         for (nzero = 0; nzero < numSec/3; ++nzero) {
00185           if (++counter < numMul) {
00186             nt = npos+nneg+nzero;
00187             if (nt > 0 && nt <= numSec) {
00188               protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
00189               protnorm[nt-1] += protmul[counter];
00190             }
00191           }
00192         }
00193       }
00194     }
00195 
00196     for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
00197     for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
00198     counter = -1;
00199       for( npos=0; npos<numSec/3; ++npos )
00200       {
00201         for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg )
00202         {
00203           for( nzero=0; nzero<numSec/3; ++nzero )
00204           {
00205             if( ++counter < numMul )
00206             {
00207               nt = npos+nneg+nzero;
00208               if( nt>0 && nt<=numSec )
00209               {
00210                 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
00211                 neutnorm[nt-1] += neutmul[counter];
00212               }
00213             }
00214           }
00215         }
00216       }
00217     for (i = 0; i < numSec; ++i) {
00218       if (protnorm[i] > 0.0) protnorm[i] = 1.0/protnorm[i];
00219       if (neutnorm[i] > 0.0) neutnorm[i] = 1.0/neutnorm[i];
00220     }
00221   } // end of initialization
00222     
00223   const G4double expxu = 82.;           // upper bound for arg. of exp
00224   const G4double expxl = -expxu;        // lower bound for arg. of exp
00225   G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
00226   G4ParticleDefinition *aProton = G4Proton::Proton();
00227   G4ParticleDefinition *aLambda = G4Lambda::Lambda();
00228   G4ParticleDefinition *aSigmaZero = G4SigmaZero::SigmaZero();
00229 
00230   // energetically possible to produce pion(s)  -->  inelastic scattering
00231   G4double n, anpn;
00232   GetNormalizationConstant(availableEnergy, n, anpn);
00233   G4double ran = G4UniformRand();
00234   G4double dum, excs = 0.0;
00235   if (targetParticle.GetDefinition() == aProton) {
00236     counter = -1;
00237       for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
00238       {
00239         for( nneg=npos; nneg<=(npos+2) && ran>=excs; ++nneg )
00240         {
00241           for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
00242           {
00243             if( ++counter < numMul )
00244             {
00245               nt = npos+nneg+nzero;
00246               if( nt>0 && nt<=numSec )
00247               {
00248                 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00249                 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
00250                 if( std::fabs(dum) < 1.0 )
00251                 {
00252                   if( test >= 1.0e-10 )excs += dum*test;
00253                 }
00254                 else
00255                   excs += dum*test;
00256               }
00257             }
00258           }
00259         }
00260       }
00261       if( ran >= excs )  // 3 previous loops continued to the end
00262       {
00263         quasiElastic = true;
00264         return;
00265       }
00266       npos--; nneg--; nzero--;
00267       switch( std::min( 3, std::max( 1, npos-nneg+3 ) ) )
00268       {
00269        case 1:
00270          if( G4UniformRand() < 0.5 )
00271            currentParticle.SetDefinitionAndUpdateE( aLambda );
00272          else
00273            currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
00274          incidentHasChanged = true;
00275          targetParticle.SetDefinitionAndUpdateE( aNeutron );
00276          targetHasChanged = true;
00277          break;
00278        case 2:
00279          if( G4UniformRand() < 0.5 )
00280          {
00281            targetParticle.SetDefinitionAndUpdateE( aNeutron );
00282            targetHasChanged = true;
00283          }
00284          else
00285          {
00286            if( G4UniformRand() < 0.5 )
00287              currentParticle.SetDefinitionAndUpdateE( aLambda );
00288            else
00289              currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
00290            incidentHasChanged = true;
00291          }             
00292          break;
00293        case 3:
00294          break;
00295       }
00296     }
00297     else  // target must be a neutron
00298     {
00299       counter = -1;
00300       for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
00301       {
00302         for( nneg=std::max(0,npos-1); nneg<=(npos+1) && ran>=excs; ++nneg )
00303         {
00304           for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
00305           {
00306             if( ++counter < numMul )
00307             {
00308               nt = npos+nneg+nzero;
00309               if( nt>0 && nt<=numSec )
00310               {
00311                 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00312                 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
00313                 if( std::fabs(dum) < 1.0 )
00314                 {
00315                   if( test >= 1.0e-10 )excs += dum*test;
00316                 }
00317                 else
00318                   excs += dum*test;
00319               }
00320             }
00321           }
00322         }
00323       }
00324       if( ran >= excs )  // 3 previous loops continued to the end
00325       {
00326         quasiElastic = true;
00327         return;
00328       }
00329       npos--; nneg--; nzero--;
00330       switch( std::min( 3, std::max( 1, npos-nneg+2 ) ) )
00331       {
00332        case 1:
00333          targetParticle.SetDefinitionAndUpdateE( aProton );
00334          targetHasChanged = true;
00335          break;
00336        case 2:
00337          if( G4UniformRand() < 0.5 )
00338          {
00339            if( G4UniformRand() < 0.5 )
00340            {
00341              currentParticle.SetDefinitionAndUpdateE( aLambda );
00342              incidentHasChanged = true;
00343              targetParticle.SetDefinitionAndUpdateE( aProton );
00344              targetHasChanged = true;
00345            }
00346            else
00347            {
00348              targetParticle.SetDefinitionAndUpdateE( aNeutron );
00349              targetHasChanged = true;
00350            }
00351          }
00352          else
00353          {
00354            if( G4UniformRand() < 0.5 )
00355            {
00356              currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
00357              incidentHasChanged = true;
00358              targetParticle.SetDefinitionAndUpdateE( aProton );
00359              targetHasChanged = true;
00360            }
00361          }
00362          break;
00363        case 3:
00364          if( G4UniformRand() < 0.5 )
00365            currentParticle.SetDefinitionAndUpdateE( aLambda );
00366          else
00367            currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
00368          incidentHasChanged = true;
00369          break;
00370       }
00371     }
00372   SetUpPions(npos, nneg, nzero, vec, vecLen);
00373   return;
00374 }
00375 
00376  /* end of file */
00377  

Generated on Mon May 27 17:48:46 2013 for Geant4 by  doxygen 1.4.7