G4LEKaonMinusInelastic.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // $Id$
00027 //
00028 // Hadronic Process: Low Energy KaonMinus Inelastic Process
00029 // J.L. Chuma, TRIUMF, 12-Feb-1997
00030 // J.P.Wellisch 23-Apr-97: bug-hunting (missing initialization of npos,nneg,nzero
00031 //    fixed)
00032 // Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
00033 
00034 #include <iostream>
00035 
00036 #include "G4LEKaonMinusInelastic.hh"
00037 #include "G4PhysicalConstants.hh"
00038 #include "G4SystemOfUnits.hh"
00039 #include "Randomize.hh"
00040 
00041 G4LEKaonMinusInelastic::G4LEKaonMinusInelastic(const G4String& name)
00042  :G4InelasticInteraction(name)
00043 {
00044   SetMinEnergy(0.0);
00045   SetMaxEnergy(25.*GeV);
00046   G4cout << "WARNING: model G4LEKaonMinusInelastic is being deprecated and will\n"
00047          << "disappear in Geant4 version 10.0"  << G4endl;
00048 }
00049 
00050 
00051 void G4LEKaonMinusInelastic::ModelDescription(std::ostream& outFile) const
00052 {
00053   outFile << "G4LEKaonMinusInelastic is one of the Low Energy Parameterized\n"
00054           << "(LEP) models used to implement inelastic K- scattering\n"
00055           << "from nuclei.  It is a re-engineered version of the GHEISHA\n"
00056           << "code of H. Fesefeldt.  It divides the initial collision\n"
00057           << "products into backward- and forward-going clusters which are\n"
00058           << "then decayed into final state hadrons.  The model does not\n"
00059           << "conserve energy on an event-by-event basis.  It may be\n"
00060           << "applied to kaons with initial energies between 0 and 25\n"
00061           << "GeV.\n";
00062 }
00063 
00064 
00065 G4HadFinalState*
00066 G4LEKaonMinusInelastic::ApplyYourself(const G4HadProjectile& aTrack,
00067                                       G4Nucleus& targetNucleus)
00068 {
00069   const G4HadProjectile *originalIncident = &aTrack;
00070   if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
00071     theParticleChange.SetStatusChange(isAlive);
00072     theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00073     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 
00074     return &theParticleChange;      
00075   }
00076 
00077   // create the target particle
00078   G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
00079   G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
00080     
00081   if (verboseLevel > 1) {
00082     const G4Material *targetMaterial = aTrack.GetMaterial();
00083     G4cout << "G4LEKaonMinusInelastic::ApplyYourself called" << G4endl;
00084     G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
00085     G4cout << "target material = " << targetMaterial->GetName() << ", ";
00086     G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
00087            << G4endl;
00088   }
00089 
00090   G4ReactionProduct currentParticle(const_cast<G4ParticleDefinition*>(originalIncident->GetDefinition()) );
00091   currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
00092   currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
00093     
00094   // Fermi motion and evaporation
00095   // As of Geant3, the Fermi energy calculation had not been done
00096   G4double ek = originalIncident->GetKineticEnergy();
00097   G4double amas = originalIncident->GetDefinition()->GetPDGMass();
00098     
00099   G4double tkin = targetNucleus.Cinema( ek );
00100   ek += tkin;
00101   currentParticle.SetKineticEnergy( ek );
00102   G4double et = ek + amas;
00103   G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00104   G4double pp = currentParticle.GetMomentum().mag();
00105   if (pp > 0.0) {
00106     G4ThreeVector momentum = currentParticle.GetMomentum();
00107     currentParticle.SetMomentum( momentum * (p/pp) );
00108   }
00109     
00110   // calculate black track energies
00111   tkin = targetNucleus.EvaporationEffects( ek );
00112   ek -= tkin;
00113   currentParticle.SetKineticEnergy( ek );
00114   et = ek + amas;
00115   p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00116   pp = currentParticle.GetMomentum().mag();
00117   if (pp > 0.0) {
00118     G4ThreeVector momentum = currentParticle.GetMomentum();
00119     currentParticle.SetMomentum( momentum * (p/pp) );
00120   }
00121 
00122   G4ReactionProduct modifiedOriginal = currentParticle;
00123 
00124   currentParticle.SetSide(1); // incident always goes in forward hemisphere
00125   targetParticle.SetSide(-1);  // target always goes in backward hemisphere
00126   G4bool incidentHasChanged = false;
00127   G4bool targetHasChanged = false;
00128   G4bool quasiElastic = false;
00129   G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec;  // vec will contain the secondary particles
00130   G4int vecLen = 0;
00131   vec.Initialize(0);
00132     
00133   const G4double cutOff = 0.1*MeV;
00134   if (currentParticle.GetKineticEnergy() > cutOff)
00135     Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
00136             incidentHasChanged, targetHasChanged, quasiElastic);
00137     
00138   CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
00139                    modifiedOriginal, targetNucleus, currentParticle,
00140                    targetParticle, incidentHasChanged, targetHasChanged,
00141                    quasiElastic);
00142     
00143   SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
00144 
00145   if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
00146 
00147   delete originalTarget;
00148   return &theParticleChange;    
00149 }
00150 
00151  
00152 void G4LEKaonMinusInelastic::Cascade(
00153    G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
00154    G4int& vecLen,
00155    const G4HadProjectile *originalIncident,
00156    G4ReactionProduct &currentParticle,
00157    G4ReactionProduct &targetParticle,
00158    G4bool &incidentHasChanged,
00159    G4bool &targetHasChanged,
00160    G4bool &quasiElastic )
00161 {
00162     // derived from original FORTRAN code CASKM by H. Fesefeldt (13-Sep-1987)
00163     //
00164     // K- undergoes interaction with nucleon within a nucleus.  Check if it is
00165     // energetically possible to produce pions/kaons.  In not, assume nuclear excitation
00166     // occurs and input particle is degraded in energy. No other particles are produced.
00167     // If reaction is possible, find the correct number of pions/protons/neutrons
00168     // produced using an interpolation to multiplicity data.  Replace some pions or
00169     // protons/neutrons by kaons or strange baryons according to the average
00170     // multiplicity per Inelastic reaction.
00171     //
00172     const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
00173     const G4double etOriginal = originalIncident->GetTotalEnergy();
00174     const G4double pOriginal = originalIncident->GetTotalMomentum();
00175     const G4double targetMass = targetParticle.GetMass();
00176     G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
00177                                         targetMass*targetMass +
00178                                         2.0*targetMass*etOriginal );
00179     G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
00180     
00181     static G4bool first = true;
00182     const G4int numMul = 1200;
00183     const G4int numSec = 60;
00184     static G4double protmul[numMul], protnorm[numSec]; // proton constants
00185     static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
00186     // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
00187     G4int nt(0), npos(0), nneg(0), nzero(0);
00188     const G4double c = 1.25;    
00189     const G4double b[] = { 0.70, 0.70 };
00190     if( first )       // compute normalization constants, this will only be Done once
00191     {
00192       first = false;
00193       G4int i;
00194       for( i=0; i<numMul; ++i )protmul[i] = 0.0;
00195       for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
00196       G4int counter = -1;
00197       for( npos=0; npos<(numSec/3); ++npos )
00198       {
00199         for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg )
00200         {
00201           for( nzero=0; nzero<numSec/3; ++nzero )
00202           {
00203             if( ++counter < numMul )
00204             {
00205               nt = npos+nneg+nzero;
00206               if( (nt>0) && (nt<=numSec) )
00207               {
00208                 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
00209                 protnorm[nt-1] += protmul[counter];
00210               }
00211             }
00212           }
00213         }
00214       }
00215       for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
00216       for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
00217       counter = -1;
00218       for( npos=0; npos<numSec/3; ++npos )
00219       {
00220         for( nneg=npos; nneg<=(npos+2); ++nneg )
00221         {
00222           for( nzero=0; nzero<numSec/3; ++nzero )
00223           {
00224             if( ++counter < numMul )
00225             {
00226               nt = npos+nneg+nzero;
00227               if( (nt>0) && (nt<=numSec) )
00228               {
00229                 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
00230                 neutnorm[nt-1] += neutmul[counter];
00231               }
00232             }
00233           }
00234         }
00235       }
00236       for( i=0; i<numSec; ++i )
00237       {
00238         if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
00239         if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
00240       }
00241     }   // end of initialization
00242     
00243     const G4double expxu = 82.;           // upper bound for arg. of exp
00244     const G4double expxl = -expxu;        // lower bound for arg. of exp
00245     G4ParticleDefinition *aKaonMinus = G4KaonMinus::KaonMinus();
00246     G4ParticleDefinition *aKaonZS = G4KaonZeroShort::KaonZeroShort();
00247     G4ParticleDefinition *aKaonZL = G4KaonZeroLong::KaonZeroLong();
00248     G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
00249     G4ParticleDefinition *aProton = G4Proton::Proton();
00250     G4ParticleDefinition *aPiPlus = G4PionPlus::PionPlus();
00251     G4ParticleDefinition *aPiMinus = G4PionMinus::PionMinus();
00252     G4ParticleDefinition *aPiZero = G4PionZero::PionZero();
00253     G4ParticleDefinition *aLambda = G4Lambda::Lambda();
00254     G4ParticleDefinition *aSigmaPlus = G4SigmaPlus::SigmaPlus();
00255     G4ParticleDefinition *aSigmaMinus = G4SigmaMinus::SigmaMinus();
00256     G4ParticleDefinition *aSigmaZero = G4SigmaZero::SigmaZero();
00257     const G4double cech[] = {1.,1.,1.,0.70,0.60,0.55,0.35,0.25,0.18,0.15};
00258     G4int iplab = G4int(std::min( 9.0, pOriginal/GeV*5.0 ));
00259     if( (pOriginal <= 2.0*GeV) && (G4UniformRand() < cech[iplab]) )
00260     {
00261       npos = nneg = nzero = nt = 0;
00262       iplab = G4int(std::min( 19.0, pOriginal/GeV*10.0 ));
00263       const G4double cnk0[] = {0.17,0.18,0.17,0.24,0.26,0.20,0.22,0.21,0.34,0.45,
00264                                0.58,0.55,0.36,0.29,0.29,0.32,0.32,0.33,0.33,0.33};
00265       if( G4UniformRand() <= cnk0[iplab] )
00266       {
00267         quasiElastic = true;
00268         if( targetParticle.GetDefinition() == aProton )
00269         {
00270           currentParticle.SetDefinitionAndUpdateE( aKaonZL );
00271           incidentHasChanged = true;
00272           targetParticle.SetDefinitionAndUpdateE( aNeutron );
00273           targetHasChanged = true;
00274         }
00275       }
00276       else  // random number > cnk0[iplab]
00277       {
00278         G4double ran = G4UniformRand();
00279         if( ran < 0.25 )         // k- p --> pi- s+
00280         {
00281           if( targetParticle.GetDefinition() == aProton )
00282           {
00283             currentParticle.SetDefinitionAndUpdateE( aPiMinus );
00284             targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
00285             incidentHasChanged = true;
00286             targetHasChanged = true;
00287           }
00288         }
00289         else if( ran < 0.50 )  // k- p --> pi0 s0  or  k- n --> pi- s0
00290         {
00291           if( targetParticle.GetDefinition() == aNeutron )
00292             currentParticle.SetDefinitionAndUpdateE( aPiMinus );
00293           else
00294             currentParticle.SetDefinitionAndUpdateE( aPiZero );
00295           targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
00296           incidentHasChanged = true;
00297           targetHasChanged = true;
00298         }
00299         else if( ran < 0.75 )  // k- p --> pi+ s-  or  k- n --> pi0 s-
00300         {
00301           if( targetParticle.GetDefinition() == aNeutron )
00302             currentParticle.SetDefinitionAndUpdateE( aPiZero );
00303           else
00304             currentParticle.SetDefinitionAndUpdateE( aPiPlus );
00305           targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
00306           incidentHasChanged = true;
00307           targetHasChanged = true;
00308         }
00309         else                   // k- p --> pi0 L  or  k- n --> pi- L
00310         {
00311           if( targetParticle.GetDefinition() == aNeutron )
00312             currentParticle.SetDefinitionAndUpdateE( aPiMinus );
00313           else
00314             currentParticle.SetDefinitionAndUpdateE( aPiZero );
00315           targetParticle.SetDefinitionAndUpdateE( aLambda );
00316           incidentHasChanged = true;
00317           targetHasChanged = true;
00318         }
00319       }
00320     }
00321     else  // (pOriginal > 2.0*GeV) || (random number >= cech[iplab])
00322     {
00323       if( availableEnergy < aPiPlus->GetPDGMass() )
00324       {               // not energetically possible to produce pion(s)
00325         quasiElastic = true;
00326         return;
00327       }
00328       G4double n, anpn;
00329       GetNormalizationConstant( availableEnergy, n, anpn );
00330       G4double ran = G4UniformRand();
00331       G4double dum, test, excs = 0.0;
00332       if( targetParticle.GetDefinition() == aProton )
00333       {
00334         G4int counter = -1;
00335         for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
00336         {
00337           for( nneg=std::max(0,npos-1); nneg<=(npos+1) && ran>=excs; ++nneg )
00338           {
00339             for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
00340             {
00341               if( ++counter < numMul )
00342               {
00343                 nt = npos+nneg+nzero;
00344                 if( nt > 0 )
00345                 {
00346                   test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00347                   dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
00348                   if( std::fabs(dum) < 1.0 )
00349                   {
00350                     if( test >= 1.0e-10 )excs += dum*test;
00351                   }
00352                   else
00353                     excs += dum*test;
00354                 }
00355               }
00356             }
00357           }
00358         }
00359         if( ran >= excs )  // 3 previous loops continued to the end
00360         {
00361           quasiElastic = true;
00362           return;
00363         }
00364         npos--; nneg--; nzero--;
00365         if( npos == nneg )
00366         {
00367           if( G4UniformRand() >= 0.75 )
00368           {
00369             currentParticle.SetDefinitionAndUpdateE( aKaonZL );
00370             targetParticle.SetDefinitionAndUpdateE( aNeutron );
00371             incidentHasChanged = true;
00372             targetHasChanged = true;
00373           }
00374         }
00375         else if( npos == nneg+1 )
00376         {
00377           targetParticle.SetDefinitionAndUpdateE( aNeutron );
00378           targetHasChanged = true;
00379         }
00380         else
00381         {
00382           currentParticle.SetDefinitionAndUpdateE( aKaonZL );
00383           incidentHasChanged = true;
00384         }
00385       }
00386       else   // target must be a neutron
00387       {
00388         G4int counter = -1;
00389         for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
00390         {
00391           for( nneg=npos; nneg<=(npos+2) && ran>=excs; ++nneg )
00392           {
00393             for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
00394             {
00395               if( ++counter < numMul )
00396               {
00397                 nt = npos+nneg+nzero;
00398                 if( (nt>=1) && (nt<=numSec) )
00399                 {
00400                   test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00401                   dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
00402                   if( std::fabs(dum) < 1.0 )
00403                   {
00404                     if( test >= 1.0e-10 )excs += dum*test;
00405                   }
00406                   else
00407                     excs += dum*test;
00408                 }
00409               }
00410             }
00411           }
00412         }
00413         if( ran >= excs )  // 3 previous loops continued to the end
00414         {
00415           quasiElastic = true;
00416           return;
00417         }
00418         npos--; nneg--; nzero--;
00419         if( npos == nneg-1 )
00420         {
00421           if( G4UniformRand() < 0.5 )
00422           {
00423             targetParticle.SetDefinitionAndUpdateE( aProton );
00424             targetHasChanged = true;
00425           }
00426           else
00427           {
00428             currentParticle.SetDefinitionAndUpdateE( aKaonZL );
00429             incidentHasChanged = true;
00430           }
00431         }
00432         else if( npos != nneg )
00433         {
00434           currentParticle.SetDefinitionAndUpdateE( aKaonZL );
00435           incidentHasChanged = true;
00436         }
00437       }
00438       if( G4UniformRand() >= 0.5 )
00439       {
00440         if( (currentParticle.GetDefinition() == aKaonMinus &&
00441              targetParticle.GetDefinition() == aNeutron )     ||
00442             (currentParticle.GetDefinition() == aKaonZL &&
00443              targetParticle.GetDefinition() == aProton ) )
00444         {
00445           ran = G4UniformRand();
00446           if( ran < 0.68 )
00447           {
00448             if( targetParticle.GetDefinition() == aProton )
00449             {
00450               currentParticle.SetDefinitionAndUpdateE( aPiPlus );
00451               targetParticle.SetDefinitionAndUpdateE( aLambda );
00452               incidentHasChanged = true;
00453               targetHasChanged = true;
00454             }
00455             else
00456             {
00457               currentParticle.SetDefinitionAndUpdateE( aPiMinus );
00458               targetParticle.SetDefinitionAndUpdateE( aLambda );
00459               incidentHasChanged = true;
00460               targetHasChanged = true;
00461             }
00462           }
00463           else if( ran < 0.84 )
00464           {
00465             if( targetParticle.GetDefinition() == aProton )
00466             {
00467               currentParticle.SetDefinitionAndUpdateE( aPiZero );
00468               targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
00469               incidentHasChanged = true;
00470               targetHasChanged = true;
00471             }
00472             else
00473             {
00474               currentParticle.SetDefinitionAndUpdateE( aPiMinus );
00475               targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
00476               incidentHasChanged = true;
00477               targetHasChanged = true;
00478             }
00479           }
00480           else
00481           {
00482             if( targetParticle.GetDefinition() == aProton )
00483             {
00484               currentParticle.SetDefinitionAndUpdateE( aPiPlus );
00485               targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
00486               incidentHasChanged = true;
00487               targetHasChanged = true;
00488             }
00489             else
00490             {
00491               currentParticle.SetDefinitionAndUpdateE( aPiZero );
00492               targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
00493               incidentHasChanged = true;
00494               targetHasChanged = true;
00495             }
00496           }
00497         }
00498         else  // ( current != aKaonMinus || target != aNeutron ) &&
00499               // ( current != aKaonZL    || target != aProton  )
00500         {
00501           ran = G4UniformRand();
00502           if( ran < 0.67 )
00503           {
00504             currentParticle.SetDefinitionAndUpdateE( aPiZero );
00505             targetParticle.SetDefinitionAndUpdateE( aLambda );
00506             incidentHasChanged = true;
00507             targetHasChanged = true;
00508           }
00509           else if( ran < 0.78 )
00510           {
00511             currentParticle.SetDefinitionAndUpdateE( aPiMinus );
00512             targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
00513             incidentHasChanged = true;
00514             targetHasChanged = true;
00515           }
00516           else if( ran < 0.89 )
00517           {
00518             currentParticle.SetDefinitionAndUpdateE( aPiZero );
00519             targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
00520             incidentHasChanged = true;
00521             targetHasChanged = true;
00522           }
00523           else
00524           {
00525             currentParticle.SetDefinitionAndUpdateE( aPiPlus );
00526             targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
00527             incidentHasChanged = true;
00528             targetHasChanged = true;
00529           }
00530         }
00531       }
00532     }
00533     if( currentParticle.GetDefinition() == aKaonZL )
00534     {
00535       if( G4UniformRand() >= 0.5 )
00536       {
00537         currentParticle.SetDefinitionAndUpdateE( aKaonZS );
00538         incidentHasChanged = true;
00539       }
00540     }
00541     if( targetParticle.GetDefinition() == aKaonZL )
00542     {
00543       if( G4UniformRand() >= 0.5 )
00544       {
00545         targetParticle.SetDefinitionAndUpdateE( aKaonZS );
00546         targetHasChanged = true;
00547       }
00548     }
00549 
00550   SetUpPions( npos, nneg, nzero, vec, vecLen );
00551   return;
00552 }

Generated on Mon May 27 17:48:45 2013 for Geant4 by  doxygen 1.4.7