00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030 #include "G4GaussLegendreQ.hh"
00031 #include "G4PhysicalConstants.hh"
00032
00033 G4GaussLegendreQ::G4GaussLegendreQ( function pFunction )
00034 : G4VGaussianQuadrature(pFunction)
00035 {
00036 }
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047 G4GaussLegendreQ::G4GaussLegendreQ( function pFunction,
00048 G4int nLegendre )
00049 : G4VGaussianQuadrature(pFunction)
00050 {
00051 const G4double tolerance = 1.6e-10 ;
00052 G4int k = nLegendre ;
00053 fNumber = (nLegendre + 1)/2 ;
00054 if(2*fNumber != k)
00055 {
00056 G4Exception("G4GaussLegendreQ::G4GaussLegendreQ()", "InvalidCall",
00057 FatalException, "Invalid nLegendre argument !") ;
00058 }
00059 G4double newton0=0.0, newton1=0.0,
00060 temp1=0.0, temp2=0.0, temp3=0.0, temp=0.0 ;
00061
00062 fAbscissa = new G4double[fNumber] ;
00063 fWeight = new G4double[fNumber] ;
00064
00065 for(G4int i=1;i<=fNumber;i++)
00066 {
00067 newton0 = std::cos(pi*(i - 0.25)/(k + 0.5)) ;
00068 do
00069 {
00070 temp1 = 1.0 ;
00071 temp2 = 0.0 ;
00072 for(G4int j=1;j<=k;j++)
00073 {
00074 temp3 = temp2 ;
00075 temp2 = temp1 ;
00076 temp1 = ((2.0*j - 1.0)*newton0*temp2 - (j - 1.0)*temp3)/j ;
00077 }
00078 temp = k*(newton0*temp1 - temp2)/(newton0*newton0 - 1.0) ;
00079 newton1 = newton0 ;
00080 newton0 = newton1 - temp1/temp ;
00081 }
00082 while(std::fabs(newton0 - newton1) > tolerance) ;
00083
00084 fAbscissa[fNumber-i] = newton0 ;
00085 fWeight[fNumber-i] = 2.0/((1.0 - newton0*newton0)*temp*temp) ;
00086 }
00087 }
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098 G4double
00099 G4GaussLegendreQ::Integral(G4double a, G4double b) const
00100 {
00101 G4double xMean = 0.5*(a + b),
00102 xDiff = 0.5*(b - a),
00103 integral = 0.0, dx = 0.0 ;
00104 for(G4int i=0;i<fNumber;i++)
00105 {
00106 dx = xDiff*fAbscissa[i] ;
00107 integral += fWeight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
00108 }
00109 return integral *= xDiff ;
00110 }
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121 G4double
00122 G4GaussLegendreQ::QuickIntegral(G4double a, G4double b) const
00123 {
00124
00125
00126 static G4double abscissa[] = { 0.148874338981631, 0.433395394129247,
00127 0.679409568299024, 0.865063366688985,
00128 0.973906528517172 } ;
00129
00130 static G4double weight[] = { 0.295524224714753, 0.269266719309996,
00131 0.219086362515982, 0.149451349150581,
00132 0.066671344308688 } ;
00133 G4double xMean = 0.5*(a + b),
00134 xDiff = 0.5*(b - a),
00135 integral = 0.0, dx = 0.0 ;
00136 for(G4int i=0;i<5;i++)
00137 {
00138 dx = xDiff*abscissa[i] ;
00139 integral += weight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
00140 }
00141 return integral *= xDiff ;
00142 }
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153 G4double
00154 G4GaussLegendreQ::AccurateIntegral(G4double a, G4double b) const
00155 {
00156
00157
00158 static
00159 G4double abscissa[] = {
00160 0.016276744849602969579, 0.048812985136049731112,
00161 0.081297495464425558994, 0.113695850110665920911,
00162 0.145973714654896941989, 0.178096882367618602759,
00163
00164 0.210031310460567203603, 0.241743156163840012328,
00165 0.273198812591049141487, 0.304364944354496353024,
00166 0.335208522892625422616, 0.365696861472313635031,
00167
00168 0.395797649828908603285, 0.425478988407300545365,
00169 0.454709422167743008636, 0.483457973920596359768,
00170 0.511694177154667673586, 0.539388108324357436227,
00171
00172 0.566510418561397168404, 0.593032364777572080684,
00173 0.618925840125468570386, 0.644163403784967106798,
00174 0.668718310043916153953, 0.692564536642171561344,
00175
00176 0.715676812348967626225, 0.738030643744400132851,
00177 0.759602341176647498703, 0.780369043867433217604,
00178 0.800308744139140817229, 0.819400310737931675539,
00179
00180 0.837623511228187121494, 0.854959033434601455463,
00181 0.871388505909296502874, 0.886894517402420416057,
00182 0.901460635315852341319, 0.915071423120898074206,
00183
00184 0.927712456722308690965, 0.939370339752755216932,
00185 0.950032717784437635756, 0.959688291448742539300,
00186 0.968326828463264212174, 0.975939174585136466453,
00187
00188 0.982517263563014677447, 0.988054126329623799481,
00189 0.992543900323762624572, 0.995981842987209290650,
00190 0.998364375863181677724, 0.999689503883230766828
00191 } ;
00192
00193 static
00194 G4double weight[] = {
00195 0.032550614492363166242, 0.032516118713868835987,
00196 0.032447163714064269364, 0.032343822568575928429,
00197 0.032206204794030250669, 0.032034456231992663218,
00198
00199 0.031828758894411006535, 0.031589330770727168558,
00200 0.031316425596862355813, 0.031010332586313837423,
00201 0.030671376123669149014, 0.030299915420827593794,
00202
00203 0.029896344136328385984, 0.029461089958167905970,
00204 0.028994614150555236543, 0.028497411065085385646,
00205 0.027970007616848334440, 0.027412962726029242823,
00206
00207 0.026826866725591762198, 0.026212340735672413913,
00208 0.025570036005349361499, 0.024900633222483610288,
00209 0.024204841792364691282, 0.023483399085926219842,
00210
00211 0.022737069658329374001, 0.021966644438744349195,
00212 0.021172939892191298988, 0.020356797154333324595,
00213 0.019519081140145022410, 0.018660679627411467385,
00214
00215 0.017782502316045260838, 0.016885479864245172450,
00216 0.015970562902562291381, 0.015038721026994938006,
00217 0.014090941772314860916, 0.013128229566961572637,
00218
00219 0.012151604671088319635, 0.011162102099838498591,
00220 0.010160770535008415758, 0.009148671230783386633,
00221 0.008126876925698759217, 0.007096470791153865269,
00222
00223 0.006058545504235961683, 0.005014202742927517693,
00224 0.003964554338444686674, 0.002910731817934946408,
00225 0.001853960788946921732, 0.000796792065552012429
00226 } ;
00227 G4double xMean = 0.5*(a + b),
00228 xDiff = 0.5*(b - a),
00229 integral = 0.0, dx = 0.0 ;
00230 for(G4int i=0;i<48;i++)
00231 {
00232 dx = xDiff*abscissa[i] ;
00233 integral += weight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
00234 }
00235 return integral *= xDiff ;
00236 }