00001 // 00002 // ******************************************************************** 00003 // * License and Disclaimer * 00004 // * * 00005 // * The Geant4 software is copyright of the Copyright Holders of * 00006 // * the Geant4 Collaboration. It is provided under the terms and * 00007 // * conditions of the Geant4 Software License, included in the file * 00008 // * LICENSE and available at http://cern.ch/geant4/license . These * 00009 // * include a list of copyright holders. * 00010 // * * 00011 // * Neither the authors of this software system, nor their employing * 00012 // * institutes,nor the agencies providing financial support for this * 00013 // * work make any representation or warranty, express or implied, * 00014 // * regarding this software system or assume any liability for its * 00015 // * use. Please see the license in the file LICENSE and URL above * 00016 // * for the full disclaimer and the limitation of liability. * 00017 // * * 00018 // * This code implementation is the result of the scientific and * 00019 // * technical work of the GEANT4 collaboration. * 00020 // * By using, copying, modifying or distributing the software (or * 00021 // * any work based on the software) you agree to acknowledge its * 00022 // * use in resulting scientific publications, and indicate your * 00023 // * acceptance of all terms of the Geant4 Software license. * 00024 // ******************************************************************** 00025 // 00026 // 00027 // $Id: G4ExactHelixStepper.cc 69786 2013-05-15 09:38:51Z gcosmo $ 00028 // 00029 // Helix a-la-Explicity Euler: x_1 = x_0 + helix(h) 00030 // with helix(h) being a helix piece of length h 00031 // simplest approach for solving linear differential equations. 00032 // Take the current derivative and add it to the current position. 00033 // 00034 // As the field is assumed constant, an error is not calculated. 00035 // 00036 // Author: J. Apostolakis, 28 Jan 2005 00037 // Implementation adapted from ExplicitEuler of W.Wander 00038 // ------------------------------------------------------------------- 00039 00040 #include "G4ExactHelixStepper.hh" 00041 #include "G4PhysicalConstants.hh" 00042 #include "G4ThreeVector.hh" 00043 #include "G4LineSection.hh" 00044 00045 G4ExactHelixStepper::G4ExactHelixStepper(G4Mag_EqRhs *EqRhs) 00046 : G4MagHelicalStepper(EqRhs), 00047 fBfieldValue(DBL_MAX, DBL_MAX, DBL_MAX), 00048 fPtrMagEqOfMot(EqRhs) 00049 { 00050 ; 00051 } 00052 00053 G4ExactHelixStepper::~G4ExactHelixStepper() {} 00054 00055 void 00056 G4ExactHelixStepper::Stepper( const G4double yInput[], 00057 const G4double*, 00058 G4double hstep, 00059 G4double yOut[], 00060 G4double yErr[] ) 00061 { 00062 const G4int nvar = 6; 00063 00064 G4int i; 00065 G4ThreeVector Bfld_value; 00066 00067 MagFieldEvaluate(yInput, Bfld_value); 00068 AdvanceHelix(yInput, Bfld_value, hstep, yOut); 00069 00070 // We are assuming a constant field: helix is exact 00071 // 00072 for(i=0;i<nvar;i++) 00073 { 00074 yErr[i] = 0.0 ; 00075 } 00076 00077 fBfieldValue=Bfld_value; 00078 } 00079 00080 void 00081 G4ExactHelixStepper::DumbStepper( const G4double yIn[], 00082 G4ThreeVector Bfld, 00083 G4double h, 00084 G4double yOut[]) 00085 { 00086 // Assuming a constant field: solution is a helix 00087 00088 AdvanceHelix(yIn, Bfld, h, yOut); 00089 00090 G4Exception("G4ExactHelixStepper::DumbStepper", 00091 "GeomField0002", FatalException, 00092 "Should not be called. Stepper must do all the work." ); 00093 } 00094 00095 00096 // --------------------------------------------------------------------------- 00097 00098 G4double 00099 G4ExactHelixStepper::DistChord() const 00100 { 00101 // Implementation : must check whether h/R > pi !! 00102 // If( h/R < pi) DistChord=h/2*std::tan(Ang_curve/4) 00103 // Else DistChord=R_helix 00104 00105 G4double distChord; 00106 G4double Ang_curve=GetAngCurve(); 00107 00108 if (Ang_curve<=pi) 00109 { 00110 distChord=GetRadHelix()*(1-std::cos(0.5*Ang_curve)); 00111 } 00112 else if(Ang_curve<twopi) 00113 { 00114 distChord=GetRadHelix()*(1+std::cos(0.5*(twopi-Ang_curve))); 00115 } 00116 else 00117 { 00118 distChord=2.*GetRadHelix(); 00119 } 00120 00121 return distChord; 00122 } 00123 00124 G4int 00125 G4ExactHelixStepper::IntegratorOrder() const 00126 { 00127 return 1; 00128 }