00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038 #include "G4EqEMFieldWithSpin.hh"
00039 #include "G4ElectroMagneticField.hh"
00040 #include "G4ThreeVector.hh"
00041 #include "globals.hh"
00042 #include "G4PhysicalConstants.hh"
00043 #include "G4SystemOfUnits.hh"
00044
00045 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4ElectroMagneticField *emField )
00046 : G4EquationOfMotion( emField ), fElectroMagCof(0.), fMassCof(0.),
00047 omegac(0.), anomaly(0.0011659208), pcharge(0.), E(0.), gamma(0.), beta(0.)
00048 {
00049 }
00050
00051 G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin()
00052 {
00053 }
00054
00055 void
00056 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4double particleCharge,
00057 G4double MomentumXc,
00058 G4double particleMass)
00059 {
00060 fElectroMagCof = eplus*particleCharge*c_light ;
00061 fMassCof = particleMass*particleMass ;
00062
00063 omegac = (eplus/particleMass)*c_light;
00064
00065 pcharge = particleCharge;
00066
00067 E = std::sqrt(sqr(MomentumXc)+sqr(particleMass));
00068 beta = MomentumXc/E;
00069 gamma = E/particleMass;
00070
00071 }
00072
00073 void
00074 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G4double y[],
00075 const G4double Field[],
00076 G4double dydx[] ) const
00077 {
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096 G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
00097
00098 G4double Energy = std::sqrt( pSquared + fMassCof );
00099 G4double cof2 = Energy/c_light ;
00100
00101 G4double pModuleInverse = 1.0/std::sqrt(pSquared) ;
00102
00103 G4double inverse_velocity = Energy * pModuleInverse / c_light;
00104
00105 G4double cof1 = fElectroMagCof*pModuleInverse ;
00106
00107 dydx[0] = y[3]*pModuleInverse ;
00108 dydx[1] = y[4]*pModuleInverse ;
00109 dydx[2] = y[5]*pModuleInverse ;
00110
00111 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ;
00112
00113 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ;
00114
00115 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ;
00116
00117 dydx[6] = dydx[8] = 0.;
00118
00119
00120 dydx[7] = inverse_velocity;
00121
00122 G4ThreeVector BField(Field[0],Field[1],Field[2]);
00123 G4ThreeVector EField(Field[3],Field[4],Field[5]);
00124
00125 EField /= c_light;
00126
00127 G4ThreeVector u(y[3], y[4], y[5]);
00128 u *= pModuleInverse;
00129
00130 G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
00131 G4double ucb = (anomaly+1./gamma)/beta;
00132 G4double uce = anomaly + 1./(gamma+1.);
00133
00134 G4ThreeVector Spin(y[9],y[10],y[11]);
00135
00136 G4ThreeVector dSpin
00137 = pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u))
00138
00139
00140
00141 - uce*(u*(Spin*EField) - EField*(Spin*u)) );
00142
00143 dydx[ 9] = dSpin.x();
00144 dydx[10] = dSpin.y();
00145 dydx[11] = dSpin.z();
00146
00147 return ;
00148 }