00001 // 00002 // ******************************************************************** 00003 // * License and Disclaimer * 00004 // * * 00005 // * The Geant4 software is copyright of the Copyright Holders of * 00006 // * the Geant4 Collaboration. It is provided under the terms and * 00007 // * conditions of the Geant4 Software License, included in the file * 00008 // * LICENSE and available at http://cern.ch/geant4/license . These * 00009 // * include a list of copyright holders. * 00010 // * * 00011 // * Neither the authors of this software system, nor their employing * 00012 // * institutes,nor the agencies providing financial support for this * 00013 // * work make any representation or warranty, express or implied, * 00014 // * regarding this software system or assume any liability for its * 00015 // * use. Please see the license in the file LICENSE and URL above * 00016 // * for the full disclaimer and the limitation of liability. * 00017 // * * 00018 // * This code implementation is the result of the scientific and * 00019 // * technical work of the GEANT4 collaboration. * 00020 // * By using, copying, modifying or distributing the software (or * 00021 // * any work based on the software) you agree to acknowledge its * 00022 // * use in resulting scientific publications, and indicate your * 00023 // * acceptance of all terms of the Geant4 Software license. * 00024 // ******************************************************************** 00025 // 00026 // $Id: G4AugerData.hh 00027 // GEANT4 tag $Name: not supported by cvs2svn $ 00028 // 00029 // Author: Alfonso Mantero (Alfonso.Mantero@ge.infn.it) 00030 // 00031 // History: 00032 // ----------- 00033 // 2 June 2002 First committed to cvs 00034 // 00035 // ------------------------------------------------------------------- 00036 00037 // Class description: 00038 // Low Energy Electromagnetic Physics 00039 // This Class loads and stores all the information of auger effect (shellIds, 00040 // probabilities and energies of the electrons emitted) 00041 // Further documentation available from http://www.ge.infn.it/geant4/lowE 00042 00043 // ------------------------------------------------------------------- 00044 00045 #ifndef G4AUGERDATA_HH 00046 #define G4AUGERDATA_HH 1 00047 00048 #include "globals.hh" 00049 #include <vector> 00050 #include <map> 00051 #include "G4AugerTransition.hh" 00052 00053 class G4DataVector; 00054 00055 class G4AugerData 00056 { 00057 public: 00058 00059 G4AugerData(); 00060 00061 ~G4AugerData(); 00062 00063 // The method returns the number of shells in wich a 00064 // vacancy can be filled by a NON-radiative transition, given the atomic number 00065 size_t NumberOfVacancies(G4int Z) const; 00066 00067 // Given the index of the vacancy (and the atomic number Z) returns its identity 00068 G4int VacancyId(G4int Z, G4int vacancyIndex) const; 00069 00070 // Given the index of a vacancy in the atom with the atomc number Z, returns the number of 00071 //shells starting from wich an electron can fill the vacancy 00072 size_t NumberOfTransitions(G4int Z, G4int vacancyIndex) const; 00073 00074 // Given the atomic number Z, the Index of the initial vacancy shell 00075 // and the index of the starting shell for the 00076 // transition, returns the identity of the shell originating the electron transition 00077 G4int StartShellId(G4int Z, G4int initialVacancyIndex, G4int transitionShellIndex) const; 00078 00079 // Given the atomic number , the indexes of the starting, the auger originating shell, 00080 // and the transition shell Id, returns the transition energy 00081 G4double StartShellEnergy(G4int Z, G4int vacancyIndex, G4int transitionId, G4int augerIndex) const; 00082 00083 // Given the atomic number, the index of the starting shell, the auger originating shells, 00084 // and the transition shell Id, returns the transition probability 00085 G4double StartShellProb(G4int Z, G4int vacancyIndex,G4int transitionId,G4int augerIndex) const; 00086 00087 // Given the atomic number, the index of the starting vacancy shell and the transition shell Id, 00088 // returns the number of shells wich an auger electron can come from. 00089 size_t NumberOfAuger(G4int Z, G4int initIndex, G4int vacancyId) const; 00090 00091 // Given the atomic number, th index of the starting and the auger originating shell, 00092 // and the transition shell Id, returns the ager originating shell Id 00093 size_t AugerShellId(G4int Z, G4int vacancyIndex, G4int transId, G4int augerIndex) const; 00094 00095 std::vector<G4AugerTransition> LoadData(G4int Z); 00096 00097 void BuildAugerTransitionTable(); 00098 00099 void PrintData(G4int Z); 00100 00101 00102 00103 // Given the atomic number and the vacancy intial shell index returns 00104 // the AugerTransition object related to that shell 00105 00106 G4AugerTransition* GetAugerTransition(G4int Z, G4int vacancyShellIndex); 00107 00108 // Given the atomic number returns a vector of possible AugerTransition objects 00109 std::vector<G4AugerTransition>* GetAugerTransitions(G4int Z); 00110 00111 private: 00112 00113 // std::map<G4int,G4DataVector*,std::less<G4int> > idMap; 00114 00115 typedef std::map<G4int,std::vector<G4AugerTransition>,std::less<G4int> > trans_Table; 00116 trans_Table augerTransitionTable; 00117 00118 /* 00119 std::map<G4int,std::map<G4Int,G4DataVector*,std::less<G4int> >,std::less<G4int> > transProbabilityMap; 00120 std::map<G4int,std::map<G4Int,G4DataVector*,std::less<G4int> >,std::less<G4int> > transAugerIdMap; 00121 */ 00122 00123 std::vector<G4int> nInitShells; 00124 std::vector<G4int> numberOfVacancies; 00125 00126 }; 00127 00128 #endif 00129 00130 00131 00132 00133