Chapitre 4

Application de la reallocation au
probleme de la @tection d’'ondes
gravitationnelles

On s’intéresse dans ce chapitre au pesbé de la dtection de chirps. On reprend ici le travail
effectue dans [27, 25] qui montre comment les distributiczadiouEes gatea leur bonne propeié de
localisation, pesentent un grand ieta ce sujet. Il appartici clairement qu’elles peuvent s'iegrer
a une chaie de traitement du signad, des fins autres que celles de I'analyse. L'applicatida
détection d’ondes gravitationnelles qui conclue ce chapitre nous a cordrainployer des notations
spécifiguesa ce domaine, en particulier I'abandon de la pulsation au profit dedaérice. Certaines
guanti€s seront dfinies une deuxime fois en respect de ces nouvelles conventions.

4.1 Introduction

Géréralement, on fait correspondre au terme “chirp signal” (ou simplement “chirp”) un signal
dont I'expression peut etrire en fonction du temps comme

z(t) = a(t) e, (4.1)

'amplitude «(¢) étant une fonction positive donelolution est lente compee”aux oscillations de
la phasey(t). Définis ainsi, les chirps sont destma servir de modle pour les signaux mono-
composantes modesa la fois en amplitude et endguence. Leur &juence “instanta®” est alors

supposeétre relée aux oscillations “locales” de la phase.

Les chirps sont omnipsents dans la Nature. IIs peuveire”obsergs dans les communications
animales (oiseaux, grenouilles, baleines,) et les sonars animaux (chauve-souris), eoglysique
(sifflements atmosm@riques), en astrophysique (ondes gravitationnelles produites par la coalescence
d’etoiles binaires), acoustique (propagation d’'impulsion dans des milieux dispersifs) ou en biologie
(activité nerveuse dans les dares EEG lors de crise @pilepsie, contractions etines dans les don-
nées EMG,. .. ). lls sont aussi amplement utidis dans les syaes artificiels comme les radars et
sonars, ou dans le conte'non-destructif de matiaux et I'exploration sismique.

Intuitivement, un chirp:(¢) appellea’ une description tempsefuence qui, si elle est faigeaide
d’une repgsentation conjointe,. (¢, f) correctement efinie, devrait exister essentiellement — dans
le plan temps-eguence — dans un voisinag&dit autour d’une ligne caramtistiqueL. Cette ligne
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peut alorsetre, aussi bien interpi&e comme une “&quence instantae” (frequence en fonction du
temps) ou — dans une perspective duale — comme un “retard de groupe” (temps en fonctioe-de la fr’
guence). En supposant que cela seiifié, il devient naturel de proposer un eaha heuristique pour

la détection d’un chirp, basSur la recherche d’une telle ligne dans la distribution temgxpaience de
I'observationr(t), e.g., en utilisant la stragjie de @tection suivante

A0 = [ty 4.2)

et en la comparara un seuil choisa partir d’hypotleses faites sur le bruit.
Qui est plus, dans le casida courbel dépend d’'un vecteur de paratneés inconnué, en intro-
duisant la quantit pararetrée

A0 = [ pttsya (4.3)
£(8)

et en regardant son maximum seron effectue non seulement latéction dex (¢), maiségalement
I'estimation def. Une telle stratgie évoque clairement celle des transformations de Radon ou de
Hough ¢gréraliges.

Au dela de ces cons@tations heuristiques, le raisonnement qui abautittilisation de la strag-
gie propose ci-dessus doilganmoingfre discut’et justifé. Dans ce sens, et pour un chérgétecter
donrg, trois questions principales doivesité traiges:

1. quelle repesentation temps+djuence utiliser pour donner un seniidéee de localisation?

2. comment une@tarche heuristique bessur I'inggration le long de chemin dans le plan temps-
frequence peugtfe rendue optimale selon des erés statistiques pcis ?

3. gu'a-t-on a gagad’une formulation temps-éduence de laatéction optimale de chirp?

Les deux pren@res questions sont traés avec m@caution dans ce chapitre. La tr@sie ne sera
pas considiée en @fail. Les Esultats rappoes ici fourniront @anmoins les indicationenéssaires
pour justifier I'utilité d’une reformulation tempsdguence du probme de la dfection de chirps en
termes de robustesse et de flexikilit'emploi). Une attention ggiale sera poeg au cas gxifique
des chirps en “loi de puissancel’cause de leur importance dans le contexte detkection des ondes
gravitationnelles. Mais avant de nousdrgssesr cela, nous introduirons quelquesfiditions (Sect.
4.2) et commencerons la discussion avec le cas plus simple des loh@aises pour lesquels les
résultats sont connus etablis depuis longtemps (Sect. 4.4). Ceci nous offrira les lignes directrices
pour effectuer la gréralisatiora des situation non legires comme celle des chirps en loi de puissance
(Sect. 4.5). Pour finir, I'exemple spifique de la dtection d’'ondes gravitationnellesnises par une
binaire coalescente sera finalement disattilluste (Sect. 4.6).

Insistons sur le fait que l'igé d'utiliser une stragie temps-kguence pouratéecter les chirps est
une longue histoire. De nombreux exemples d’application de cette approche petngagpertores
dans la litérature, e.g., [8, 9, 37, 38, 42, 64, 81] ou plesemment [55, 56]. Plusieuresultats
nécessaires au traitement du perbk temps-uence ongté obtenus dans les contextes de kot
de la dstection ou de I'analyse temps{fience (voir par exemple, [15, 28, 36]). La plupart d’entre
eux seront aBdnmoins rappek (ou néme @&montesa nouveau). L'objectif principal de ce chapitre est
de rassembler dififents ingedients et de les combiner deém, colerente. On y verra en particulier
comment les distributiongallolges sont ame®sa jouer un ole naturel dans le contexte dediSion
consicré.
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4.2 Chirps

A cause de leur grande importance, les chirgsitant une efinition plus pecise et rigoureuse
gue celle doneé ci-dessus. Un traitement mathatique sophistiqpeutetre troue dans [58], tandis
gu'une discussion sur les possil@ktd’interpetation des efinitions comme celle erd. (4.1) en
termes d’amplitude et dedguence instantae’est don@é dans [83]. Nous n’entrerons cependant pas
dans les subtil#s de chacune de ces deux approches et nous nous restreiadidiisation de la
définition suivante :

Definition 1. Un signalz(¢) est unchirp si il admet la repgsentation propa€ eneqg. (4.1), avec
a(t) ande(t) telles que

a(t) ‘
— | <1 (4.4)
a(t) (t)
et
(1) ‘
- < 1, (4.5)
‘@z(t)
ou“ " "et" " ”sontles drivées premare et seconde respectivement.

Les deux conditions ci-dessus ont pour but de formaliseedid’oscillations rapides sous une
enveloppe aux variations lentes. La premgi condition garantit que, sur une pseuaoigde (locale)
T(t) = 27 /¢(t), 'amplitudea(t) ne subisse aucune variation relative, tandis que la seconde condition
impose qué’(¢) soit elle-n€me une fonction lentement variable, donnant ainsi unaémsotion de
pseudo-pfiode.

Definition 2. Un chirp z(¢) est ditanalytiquesi il est tel queRe{z(¢)} et Im{z(¢)} forment une
paire de Hilbert.

Une caraafisationequivalente des chirps analytiques est de dire que leur spectre est non nul pour
les fréquences positives seulement.

Definition 3. Etant donm’un chirp analytique: (), I’amplitude instantareet lafrequence instan-
tanée f,(¢) deRe{z(t)} sont donees respectivement pay(¢) = |z(¢)| and /. (t) = 5= ().

Definition 4. Etant donr’ un chirp analytique:(t), I'enveloppe spectral®x (f) et le retard de
groupetx (f) deRe{z(¢)} sont dones respectivement pdty (f) = | X (f)| etix (f) = —5=V(/f),
avecX (f) latransfornée de Fourier de:(¢) etV (f) la phase deX (f).

De plus, nous consatérons les chirpstrictement monotongse., les chirps dont la éjuence
instantaeef, () et le retard de groupe ( f) sont des fonctions inversibles.

Diff'erents types de chirps peuvetite’ considfés, selon la forme de(t) et/ouy(t). Nous adop-
terons les conventions suivantes:

Definition 5. Un chirp est unchirp lineaire si il admet une repgSentation comme ezq. (4.1) ou
»(t) est un polyofne quadratique en:

p(t) =27 (%t2 + pt+ ’y) , (4.6)

ou a, 3 ety sont rels, et # 0.
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Remarquons que, par construction, un chirpdiméz (¢) défini de cette mamire n’a aucune raison
d’'etre analytique. La coeguence en est que la quaet.{;f;’gb(t) = ot + [ ne s'identifie pas en
géréral a la vraie fEquence instantae”du signabvaleur €elle Re{z(¢)}. Les conditions selon
lesquelles un chirp ligéire est presque analytique peuvené peciges dans quelques cas quand une
forme explicite est dorgga I'amplitudea(t). En particulier, dans le cas important d’'une amplitude
gaussienne, il devient simple de prouver qu’un chirpdiiné d’amplitude gaussiene”‘”2 devient
presque analytique (i.e., s'annule presque pour kExpuehces egatives) dans la limite banagroite
ou (a? + 62)/63? — 0. Ceci provient d’un calcul direct selon lequel

X (f)| = C e U=, 4.7)

Nous obtenons leesultat que la #uence centrale d’'un chirp &aire d’amplitude gaussienne

estg, tandis que sa largeur de bande est proportionae{hﬁe{—‘ az/é) 1/2, sous la condition de bande
étroite.

La situation de quasi-analytieities chirps lieaires contraste avec celle des chirpoéde puis-
sance qui, eux, sont analytiques par construction. lls corresporalntEfinition suivante :

Definition 6. Un chirp est urchirp en loi de puissancéd’indicer € R etk < 0) si son spectre est
non nul aux fEquences positives seulement et si il admet commegeptation fequentielle

X, h(f) = C f0+D D gy, (4.8)

avecV,(f) = —2x (cfk —I—tof—l—'y) Sik <0,Uy(f)=—-2m(clog f+tof +7),C,c, to,7 € Ret
ou U (-) désigne IEchelon de Heaviside.

Un chirp en loi de puissance est donc caedeg par sa loi de retard de groupge(f) = to +
ck f*=1. Bien que cette efinition puisse stendre pour des valeurs positives du patask, nous
nous restreindrons dans la suite au gas. 0, pour lequel le retard de groupe corresp@des
hyperboles giéraliges dans le plan tempsfjuence.

4.3 Detection

4.3.1 [Detection optimale

La détection d’un signal estegéralement formwé en un proldme de test binaire d’hypatkes
(voir, e.g., [97])

(t) (4.9)
(t) + (1), (4.10)

avec—T1/2 <t < T/2,etal s(t) est le signal deaféerencea’ détecter (supp@sconnu et dhergie
finie sur[-7/2,7/2]), n(t) est un bruit additif et:(¢) est I'observation disponible avec laquelle la
décision doitstre prise.

Dans ce cadre, I'obtention d’'uretEcteur “optimal” @pend non seulement de connaissarces
priori que I'on pourrait avoir sur le signal et le bruit, mais aussi du choix d’uermeit’optimali€.
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Un concept pertinent pour un tel aie est celui de “test du rapport de vraisemblance” (TRV), qui
consiste essentiellememévaluer la stragie suivante

pi(r)
A(r) = 222, (4.11)
(r) o(r)
ou po(r) etp (r) désignent les dengis'de probabilé conditionnelles de I'observation solis et /1,
respectivement. 8s que le TRV est calca)1a dstection est alors effective quand le seuil extaks:
Nous serons imresgs ici au caswle signal suit I'expression

s(t) = x(t;0) e, (4.12)

0u @ est un vecteur de paratmes inconnus que I'on aimerait estimery eine phase aktoire, unifor-
mément distribeé sur0, 27], dont on aimerait seabarrasser. Dans cette situation, la notion de TRV
doit étreétenduea celle du TRV grérali€ (TRVG), dfini par

L Tl dy

Mri6) =5 po(r) 33

A partir de cette stratjie modifée, la @tection reste encore hEssur la comparaison avec un
seuil. L'estimation (au sens du maximum de vraisemblance) des paempeut aloretfe conduite
simultarément selon

6 = argmaxy\(r; 6). (4.14)

Dans le but d’obtenir une forme explicite pour le TRVG, des hypsés supglmentaires sur la
statistique du bruit additif sonecessaires. Pour simplifier, nous supposerdtisde moyenne nulle,
gaussien, et blanc, i.e., tel que

E [n(t) @} = Nob(t — s) (4.15)

pourt ets quelconques dari®, avecE[.] 'opéerateur de I'esprance matérnatique. Ces hypoéises
permettent des simplifications danedtiture du TRVG, puisque nous avons [97]

pi(r]y) 1 /T/2 v |2 2
—exp{ —— r(t) — x(t;0) e — |r(t dt ;. 4.16
e p{ Ty |y, (0= a(t:0) €7 = (o)) (4.16)
Il s’en suit apes quelques manipulations que
- _E(8) ] 2 1 .
.0) — 2Ny _— -ty vy
A(r; ) = e 5 /0 exp { N (F(O) e+ F(0)e )} dvy, (4.17)
avecF,(8) I"energie du signal et
T/2 -
F) = / r(t) z(t; 0) dt. (4.18)
—T/2

En exprimant la quanttpécédente dans sa forme polaif@d) = | F'(9)| 47 (®) et en Eorgani-
sant les termes, nous sommes condalits

- _Emggz 2T
Ar;0) = e 2N S / exp { 21F(6) cos(pr(0) — ’y)} dv, (4.19)
27T 0 NO
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un résultat qui peugtre €écrit comme

A 0) — o= (21E(0)]
A(r; 8) = e I( N, ), (4.20)

ou /y(-) est la fonction de Bessel modié de prengre espce [1].

Le point remarquable est quk,(-) étant une fonction monotone croissante, la sgit de étec-
tion se Eduita la comparaison de’(8)| (ou tout autre fonction monotone croissanted H&9)|) avec
un seuil. Il s’en suit donc que I'ingdient de base pour latEction TRVG consiglée se esumea’

T/2 2
A(r; 0) / r(t) z(t; 0) dt

(4.21)
T/2

Concernant I'estimation, quelquesepautions doivent cependagtté prises puisque la maximi-
sation selor® de la straegie simpliféeA(r; 8) a la place de la forme exaciegr; 0) suppose implici-
tement que Energie du signal’,.(6) ne dEpende pas de.

La straggie de @tection proposé ici est donc excessivement simple, puisqu’elle consiste seule-
ment en la coelation des observations avec umeplique du signal recherehMais, on ne doit pas
oublier qu'il en est ainsa cause des nombreuses hypsts qui onete faites, et particulirement
celle de gaussian@t On peut remarquer que letdcteur TRVG admet une integpation en termes
de “filtre adape’” un concept bassur I'idée d’un filtrage des observations qui maximiserait le rapport
signal sur bruit (i.e., le contraste entre les deux hygs#is'en congtition) en sortie du filtre. En rai-
son du terme de phaseesaloire, le étecteur TRVG optimal se trouve icgider avec un filtre adapt”
suivi par le calcul de son enveloppe: une structure que I'on appelle “filtrageeadept” @tection
d’enveloppe.” [97].

Jusqua maintenant, le bruit additifeté supposblanc. Dans la situation plusaliste a'le bruit,
toujours stationnaire et cemptrest colog; la néme stratgie de @tection s’applique encomutatis
mutandis sous I'hypotlesSe de gaussianeifl condition de blanchir les observations dans un premier
temps. Plus @éigment,etant admis que le support en temps du signedétecter est endrement
contenu dans l'intervalle d’'observatipal’/2, T /2], la relation de Parseval garantit alors que

T/2
/ rtwt@)dt

T/2

2

+o0 2
/0 R()X(T:0) df 4.22)

pour les signaux analytiques. En cegsence, si nous introduisons unegiion de blanchiment

X))
0 V Ly, (f)
et si nous I'appliquons aux observations, le pevhé de la dtection d’un signal doredans un bruit

coloré est (au moins formellement) transf@mans le proldme nouveau de laetEction du signal
original pe-filtré dans un bruit blanc, conduisant alart straggie suivante:

v p(H X750 |
[ R

z(t) — 2" (t) = eIt qf (4.23)

AY(r;0) = (4.24)

C’esta cette quant&’que nous nous proposons de donner une formulation teregsefincequi-
valente.
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4.3.2 [Detection temps-flequence

Ainsi que le met ervidence la structure du TRVG, lattction optimale repose sur une mesure
de corglation — comprise comme un module @ad’un produit scalaire — entre les observations et
une Bférence. Cette cagltation peukire expringe de mardfre€quivalente en temps ou emfjiience.
Ceci suggre naturellement qu’une trogsihe approcheduivalente soit possible: celle selon laquelle
le produit scalaire pourra#tfeécrit conjointement en temps et erdtience par I'utilisation d'une
distribution temps-gquence convenable, que I'on peut penser comme une “signature” bieeedapt”
aux signaux non stationnaires.

Lid'ee est donc d'introduire une distribution tempsgfuencep,. (¢, f) (qui doit étre au moins
quadratique er) telle que nous ayons, pour tous signayxt) etz (t), une relation du type

(s ael® = (X0, Xa) £ * = ((pay pa) iy (4.25)

ou (., )¢, (.,.)set((.,.) )y désignent des produits scalaires convenablement chosiapen temps,
en fréequence ea la fois en temps et endguence, respectivement (lesfiditions explicites de ces
produits scalaires serongtdillées dans la suite pour donner un semrsisrauxegalies pecdentes).

Une telleéquivalence n’a, bien sur, aucune raisogt\erifiee par toutes les distributions temps-
frequence quadratiques. Cela n’est, par exemple, pas le cas pour la plus simple des distabutions °
laguelle on peut penser, noremént lespectrogrammémodule care’de la FCT) et lscalogramme
(module care”de la transformé en ondelettes). Ceci peetré contolé directement, mais cette af-
firmation (et, avec elle, le moyen de trouver une distribution convenableepaisse les limitations
des spectrogrammes et scalogrammes) geeeaflstifée d'une fapn plus in€ressante en congidint
des classesggérales de distributions auxquelles les spectrogrammes et scalogrammes appartiennent.
Nous pouvons par exemple introduire lefidition suivante [28, 36]:

Definition 7. La classe de toutes les distributions quadratiques termgrpaghce qui sont covariantes
aux translations en temps et erdpience est appeclasse de Cohept se @finit par

i, f) = / (€,7) Ag(&,7) e 27 EH) ge dr (4.26)

avec

Au(6,7) = / . (t—l— %) . (t - %) 12EL gy (4.27)

et ad ¢(&, 7) est une fonction de paragtrisation arbitraire telle quep(0,0) = 1.
Avec cette @finition, il est facile d&tablir le Bsultat suivant [59]:

Proposition 1. Une distribution temps-&uence appartenaatla classe de Cohen esnitaire, i.e.,

satisfait
‘/ $2 dt

si et seulement si la fonction de parafri$ationy (€, 7) est de module uret”

//Cl,1 t, f)C x2 (t fydtdf, (4.28)

La congquence de ceesultat est que le spectrogramme deetem/ ne peut pa®tre unitaire
puisqu’il est bien connu [28, 36] qu'il appartieata classe de Cohen ave¢t, 7) = A, (€, 7), une
quanti€ qui ne peut pastfe de module urgtsur le plan£, 7) en entier. Un eSultat similaire peut
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étre établit pour le scalogramme, que I'on satt€ un membre de lelasse affind36]. Il apparaf
donc que ces distributions (spectrogrammes et scalogrammes) ne pepvient servir de basa un
détecteur temps-@uence optimal, bien qu’ils puisseaité mis en avard ce sujet et que leur utiét”

ait été prouvge pour I'obtention deatecteurs sous-optimaux [3, 55, 56]. Des distributions optimales
au sens de lagtéction peuvergtre réanmoins troueés. Nous nous focaliserons sur le casc#jrjue

de la détection de chirp. Nous renvoyons le lecteuenssg par une discussion plugiggrale sur la
détection temps-&Quence optimala [38] oua [89].

4.4 Detecter les chirps lireaires

La détection temps-&quence optimale des chirpsdaifes aeté considrée, la prenete fois,
dans [64]. Dans une perspective tempegfrénce, il apparafue les chirps lipaires sont intimement
assocesa un membre gxifiqgue de la classe de Cohen, la distribution de Wigner-Vigignie par
[28, 36]

Definition 8. La distribution de Wigner-Villedu signalz(¢) est le membre de la classe de Cohen
attache a la paran®trisationy (£, 7) = 1 et son expressiora(valeurs Belles) s&crit explicitement

We(t, f) = /x (t + %) x (t — %) eI dr. (4.29)

La raison pour laquelle les chirps éiaires et la distribution de Wigner-Ville sont fortementeasli”
est donee dans la propei& suivante

Proposition 2. Quand elle est applicee au chirp lirgaire de la BEfinition 5, avea (¢) = 1, la distri-
bution de Wigner-Ville (4.29) est parfaitement locabst s&crit

Wt ) =81 - 5oet0). (4.30)

Puisque la fonction de paratnisation de la distribution de Wigner-Ville egt¢, 7) = 1, elle est
bienévidemment de module uitCe qui garantit son unitagitll s’en suit donc que nous avons

2
= // Wm (tvf) Wx2 (tvf) dt df (431)

‘/xl(t) (1) dt

pour tous signaux (t) etz (t). Dans le caswx (t) = r(t) 11/ 1/9(t) (@vecly(t) la fonction
indicatrice de l'intervallel) et z,(¢) est un chirp ligairez, () = a(t) ¢(*(M=2) nous obtenons
(gracea la proprété de conservation de support de la distribution de Wigner-Vildesat compatibile”
avec les modulations [28, 36])

/2 .
/ r(t) a(t) e FH=2m9) gy
—T/2

2: / " Jweatenys (£ ge0) arar (4.32)

~T/2

_ /_i/; (/ W, (t, %gg(t) —5) W (1, ) dg) it (4.33)
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On en &duit que la @tection optimale au sens du TRVG (dans un bruit blanc gaussieexdiuin’
chirp linéaire de paragtfes inconnué = («, ) peutétre accomplie entilisant comme stra&gie la
quantig suivante, bas sur unecriture temps-gquence:

7/2
Arsa) = [ prltat+5)de, (4.34)
_T/2
avec
pr(tvf) :/Wa(tvf_g) Wr(tvf) dg. (435)

Etant done’le modtle du chirp liaire (5), lénergie du signah détecter ne epend pas des
parangtres inconnus et , ce qui autorise leur estimation au sens du maximum de vraisemblance
parargmax, sA(r; a, 3).

4.5 Detecter les chirps en loi de puissance

Dans le cas des chirps en loi de puissance, la distribution de Wigner-Ville n’est plus un bon can-
didat puisque, bien qu’unitaire, il lui manque la pretéide localisation qui permet d’obtenir une
solution sous forme d'iegrale de chemin. Dans le cas particulier des chirps hyperboliques (i.e.,
k = 0), une solution bien adage”aeté propose dans [81] sur la base d’'une variante de la distribu-
tion de Wigner-Ville (que I'on appelle la distribution de Altes-Marinovic), que I'on obtient par une
anamorphose (“warping operation”). Nous ne suivrons pas cette approehesigse de deux limita-
tions: d’'abord le fait que la stragiie qui en @sulte n’est pas invariante par les translations en temps
(ce qui est un proleime si I'origine temporelle du chirp est inconnue et @it ‘estinee) et ensuite
cette technique @lielop@e pour le cag = 0 ne peuteire directemengétenduea des valeurs dé
guelconques.

Le cadre que nous proposons d'utiliser phuest celui deslistributions temps-&@uence affines
comme I'ont éévelop@ J. et P. Bertrand [14]. Ces distributions forment une classererte distribu-
tions temps-fequence. Mais, en comparaisata pecdente classe de Cohen, son introduction exige
la covariance des distributions qu’elle contient, par rapparthacune des extensioa$ parareires
du groupe affine. Celaesulte en la construction d’'une famille de distributions pataisges pour
lagquelle nous adopterons lafitiition suivante [14]:

Definition 9. La distribution de Bertrand(d’indice & € R) d’un signal analytiqueX ( f) est donee
par

PO, f) = Aot / (1) X (FAe(u)) X (fAg(—u)) e ) gy, (4.36)
avec
Ce(u) = Ap(u) = Ap(—u). (4.37)

Dans cette dfinitionr etq sont des paraetres Bels quelconques, g, («) une fonction arbitraire,
tandis que la forme explicite de la fonction de pagirisation); () est fixée par

Me(u) = (k%) - (4.38)
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sik # 0, 1, les deux cas ggiaux asso€&sa k = 0 etk = 1 étant dfinis par continuig’par

U

Ao(v) = T— = (4.39)
et
A1(u) = exp (1 + ;_Lue__ul) . (4.40)

On peut remarquer qu’une distribution de Bertrandaestleur €elle sous la condition de sytrie
hermitienneu, (v) = pi(—u), une condition que nous supposerons satisfaite dans la suite.

Pour obtenir la formulation tempsefjuence pour leaetécteur de chirp en loi de puissance, nous
aurons besoin de quelquesstiltats sur les distributions de Bertrand. Nous éssimierons dans les
Propositions &6 suivantes, dont les preuves peuetrg froues dans [14] et [13].

Localisation —  Etant entendu que la distribution de Wigner-Ville est naturellement adantx
chirps lindaires, l'agquation entre distributions de Bertrand et chirps en loi de puissancefpeut ~
prouvée par la proposition suivante [14] :

Proposition 3. Quand elle est applicgéa un chirp en loi de puissance (4.8), la distribution de
Bertrand d'indicek (4.36) estparfaitement localigesur la courbe de retard de groupg (f) =
to + ck fF~1 et sécrit

PO ()= C? 0 5 (1= 1x (1) (4.41)
si et seulement si la fonction de pamdtion arbitraire ., (v) est donee par
() = Glw) (Ak () Ap(=u))™*" (4.42)

Ceci prouve que, en termes de localisation temegtfence, la structure des distributions de Ber-
trand est adapga celle des chirps en loi de puissance, ce qui constitue le premiediegt’pour la
détection temps-&Quencevia une inggration de chemin.

Filtrage — Quand on sort de la classe des chirps en loi de puissance, la distribution de Ber-
trand n’est plus parfaitement locais.” Par exemple, quand un signal estdijlta’ proposition suivante
montre que sa distribution de Bertrand estdi#tien consquence. Plus pci€ment, [13]:

Proposition 4. Quand elle est applicge au produitX (f) = M (f) Y (f), la distribution de Bertrand
PO (1, f) s'ecrit

PO = 1 [ P 0. PP 6. 1) ds, (4.43)
ou
M, (f) = 70 M(f). (4.44)
Unitarite — Le troisieme ingedient dont nous aurons besoin est I'unigripour lequel — en

introduisant des produits scalaires convenables sur la demi-droiteedpeefrces positives et sur le
demi-plan temps-&Quence assaei— nous avons lessultat suivant [14]:
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Proposition 5. Une distribution de Bertrand esinitaire, i.e., satisfait

+oo

S 2 +o0
X(HY S df| = / /0 POG PO ) fadiar (445)

0

pour tous signauX (f) etY (f), si et seulement si la fonction de pamdfion arbitraire j; (u) est
donrée par

() = G () () Ap(—u))™+ (4.46)

Unitarite é&tendue — En corollaire aux Propositions 3 and 5, les pref@s requises de localisation

et d'unitarie peuventfre simultaement remplies si et seulementﬁ@(u) = 1, équation dont la
seule solution el estk = 0 (cela peutefre clairemenetabli en notant que nous avons la relation
Ar(u) = e* M\p(—u), quelque soit: [14]). A moins que nous ne voulions coneréf seulement le cas

des chirps hyperboliques, il semble que les deux petdwide localisation et d’'unita€the puissent
pasétre combires directement, de manea imiter ce qui aeté pealablement fait dans le cas des
chirps lindaires. Une&Chappatoire est cependant possible, qui repose sur la proposition suivante [14] :

Proposition 6. Etant donre une distribution de Bertrand IocaéeP)(f) (t, f) aveck < 0, il existe
une distribution auxiliaireP)(f) (t, f) caracerisée par

fir () = (M (u) Ap(=u)™ (4.47)
et telle que

+oo

X(NHY (D) r#+idf

2 o0
- / /0 PO PO rand (448)

0
pour tous signauX (f) etY (f).
Cela nous offre un degrde liber€ supp€mentaire dans la manipulation des distributions de Ber-
trand, en assouplissant la contrainte stricte d'unégaagSo@e a une distribution doreg via I'in-
troduction d’'une paire de distributions et une relation de deigiti les lie. Dans le cas spifique
k = —1, cette duali¢”est identiqua celle€voqlee par A. Unterberger (voir [95]), qui a invenigs
termes d’ “active” et de “passive” pour distinguer les distributions correspondantes. éteualiser,
nous adopterons donc lafifiition suivante:
Definition 10. La distribution auxiliaireP)(f) (t, f) est appede la distributionpassiveassocge a
P)(f) (t, f), cette dernéreétant qualifée dactive
Alors que, par construction, il mangada forme passive d’'une distribution, la pragié de loca-
lisation que posxde la forme active qui lui est asseejla premére peutire explicitement refiéa la
dernere, ce qui est mis ezvidence par la proposition suivante:
Proposition 7. La forme passivd%(f) (t, f) d’'une distribution de Bertrand locales® est rekea la
forme active correspondanfé/(yk) (t, f) par

PO f) = f / Gr(F(t—6)) Y (6. ) db. (4.49)
ou

Gi(s) = /eiszk(“) du. (4.50)

135



Preuve En prenant comme point deplart la @finition de la distribution passive, leesSur la fonction
de poneftationgiy (u), nous pouvonscrire

PP (1, f) = pHr+- / i (w) X (FA(w)) X (FA(=0)) 27760 (4.51)
_ 7 —q ﬂ (u) YN ) 127t fCr(u
= 2+ / ) [ (0) X (fAe(w) X (Pg(=u))| €270 qu (4.52)
(r+1)—q I
[T ) X () T €200 gy, (453
Cr(u)

de telle sorte que cela fasse appaeala fonction de poretationu(«) de la distribution active
assocge. En utilisant alors le fait que, pokir< 0, la fonction(y (u) = Ax(u) — A\x(—u) est bijective
deR versR, on peut faire le changement de variable- (; ' (v) pour exprimerP)(f) (¢, f) comme
une transforreé de Fourier ordinaire. Nous obtenons alors

2rtt)s [l{k(@?l(v))
(G (0) [l

PO ) = / Z X (PGt () X (fAk<—<,;1<v>>)] eI du

k(Ckl(v))

(4.54)

_ 0P (15 1) ds |
= [ p (- 21) a (4.55)
_ f/Gk(f(t— 6)) P (6, f) do, (4.56)

avec
1 .

Gr(s)= | ———— €™ dp 4.57
1= | s “en
_ / ¢i2msCk(u) gy (4.59)

d'ou le résultat.

Etant done’une distribution active, sa contrepartie passive appaias comme une version fil-
trée de celle-ci, lagponse impulsionnellg;, du filtre étant &pendant de laéguence (la “largeur” en
tempsequivalente dé& ;. varie comme l'inverse de ladguence). Dans le casggral (¢ quelconque),
aucune expression analytique n’existe pGyr Remarquonseanmoins que danslecas b= —1
(A_1(u) = ¢*/2, distribution de Unterberger [14]), nous avons explicitement

1 :
G_1(s) = / - €27V dy (4.60)
1+ 5
=4 Ko(47|s|), (4.61)
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ou Ky(-) est la fonction de Bessel modié de deuxdime espce [1], ce qui est en accord avec les
résultats dones dans [95].

Tous les esultats obtenus jusqu’ici peuvent maintenstneé Tombies et ce qui rNe au esultat
central :

Proposition 8. Etant don'le probEme de dfection ar'le signalz(¢; 8,) a détecter est un chirp en
loi de puissance (4.8) de loi de retard de groupé f) = to + cok f¥~! avec les paramires inconnus
0y = (t0,c0), et al le bruit additifn(¢) est gaussien, cerdy’stationnaire et de densiSpectrale de
puissancd’, (f), la stratgie optimale admet la formulation tempgdtience suivante:

+oo

A¥(r;t,¢) = kff=t f) d 4.62
it = [ pn (k1) . (4.62)

avec
putt.£) = C* 1 [ P00 = sy PO s, 1) s (4.63)

et

gy = 252y 4.64
(f)_T(f) (f)- (4.64)

Preuve Supposons d’abord qu& = (to,co) est connu. Dans ce cas,partir des eSultats de la
Proposition 3 (localisation) et 6 (unitagi€tendue), nous obtenons [14] clairement, pour tout signal

Z(f),

+o0
A 200) Ko (1) 124 df

2 o0
://0+ 1) P)@k(tvf) f* didf (4.65)

:Cz/+ PP ax (f), f) oV dr. (4.66)
0

Il s’en suit que le membre de gauche degjiiation ci-dessus s’identifie exactement avec lasstrat”
gie (4.24) siZ(f) = R(f)f~®+D/T,.(f) et X (f;60) = X, 4(f). En congquence, le membre de
droite de la nefne€quation nous donne une formulation tempegttrénce alternative pour le prebie
de cEtection de chirps en loi de puissance et, en utilisantelegdtatsetablis en proposition 4 (filtrage),
cela nous conduit finalement agstiltatenon&, aved® = 8y, i.e.,t = ty etc = ¢g. Dans le caseaél
ou le vecteur de parastresé, est inconnu, la me straggie doitétre utilisfe en rempleanté, par
un ensemble de valeurs teéts- (¢, ¢). La détection est alors effective quand

r(nai( AY(r;t,c) > n, (4.67)
t,c
ou i est un seuil prescrit, tandis que I'estimationddgpeutétre conduite avec

0o = (fo, éo) = argmax A" (r;t,¢). (4.68)

(t.)

Selon ce esultat, les chirps en loi de puissance @®gans un bruit gaussien peuvetre dtects
de manere optimalevia une straégie d'ing€gration de chemin dans le plan tempsginénce. Leur
paranetre peuvenefre estines par une transforee” de Radon ou Hougleggérali€e, appligeea une
distribution bien @finie. Une application potentielle de asstiltat va maintenasetre discute.
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4.6 Lexemple des ondes gravitationnelles

Alors que I'existence des ondes gravitationnelletgpiedite par la tkorie de la relativi'gene-
rale depuis longtemps, aucune preuveesikpéntale n'aeté obtenue jusqu’iciA vrai dire, dstecter
les ondes gravitationnelles sur terreered du @fi a cause des minuscules effets qu’elles induisent
sur les systies physiques. Cela n’est seulement que depuis ua pas¥cent que des projets aux
limites des technologies actuelles, eté [anas. Pour les projets VIRGO et LIGO — les deux plus
importants projets, qui sont toujours en construction —,deecteur prend la forme d’un interf-
metre géant, destiaa convertir le passage d’'une onde gravitationnelle en un mouveratattdble
de franges d’intedfences. Parce que les ondes gravitationnelles sont si faibles, bien que chaque bras
des inter€ronetres mesurent plus de 3 km de long, leetetttion est soumisa 'obtention d’'une
sensibilie de I'ordre del0~—22. Etant donees les limitations dues au bruit, ceci devedi pourtant
possible dans une “fetfe” fréquentielle comprise entre quelques dizaines et quelques centaines de
Hertz.

En ce qui concerne laedéction (du point de vue du traitement du signal), la questierest de
d’obtenir des informationa priori sur les structures possibles des formes d’ondes attendues. En fait,
une grande vaeitt de situations pewtfe considiée [90], chacune correspondantn type de signal,
plus ou moins bien caraatise. Il est anmoins a peu ps universellement acceptjue la source la
plus prometteuse en termes deettion d’'ondes gravitationnelles est celle produite par la coalescence
d’'un syseme binaire massif, la seule situation que nous censidns ici.

4.6.1 Un mockle pour la coalescence de binaires

Une “binaire coalescente” est un sgiste de deux objets astrophysiquestmassifs (e.g., des
étoilesa neutrons, ou des trous noirs), en rotation 'un autour de I'autre. Au cours de ce processus de
rotation, de IEnergie est rayora® sous forme d’ondes gravitationnelles. La egus&nce en est que
les deux objets deviennent de plus en plus proches, ce qeleaedéur rotation, jusga’la coales-
cence. Ceci montre intuitivement que les binaires coalescentes devrait donner nastesioades
gravitationnelles qui se comportent comme des chirps.

En premere approximation (newtonienne), une forme explicite pénat doneea la forme d’onde
esErée.A un terme de phase gs; elle peuetre expringe comme la partieeglle du signah valeurs
complexes [93, 88]

2(tito,d) = A (to — )~ e~ 20— 1740 4), (4.69)

ol a = 1/4 et = 5/8. Dans cette expressioty, est le temps de coalescencededt A sont des
constantes quiependent principalement des masses individuelles des objets et, bien sur, d’autres
guantigs gongtriques comme la distance de la binaréa terre ou bien l'orientation relative des
fronts d’'ondes et duetécteur. Plus gcigment.etant dones deux objets de masse individuelles

et my, on peut introduire la “masse total@! = m; + m, et la “masseeaduite”u telle quep~! =

my! 4+ my'. En utilisant ces deux quargit; on peut efinir [93] la “chirp mass’M = u/5 M?/° et

selon [88], on obtient

d =160 x 3%/3 M"® ~ 241 MJ"®, (4.70)

avecMg = M /Mg et ad Mg désigne la masse solaire. Pour une orientation relative optimale entre
le détecteur et la binaire, nous avons qui plus est [78]

A ek Mo/
A= (W) 1.92x 10720220~ 337 x 1072 -9 (4.71)
r T
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ou r est la distance terre-binaire, expgaesén Mpc.
Selon la Efinition 1, la forme d’onde (4.69) peut alaet€ interpetée comme un chirp, si I'am-
plitudea(t) = (o — t)~° etla phase(t) = 2rd(to — t)” sonttelles que

- (;(;)(t)‘ - 2;; 5(to - <1 (4.72)
et
52(8) = |§ﬂ_dﬂ1| (to— )77 < 1. (4.73)

Comme pecig dans [36], ces deux conditiongrent en faia'une seule condition selon laquelle
le mocEle (4.69) peukfre interpeté en tant que chirp sur un intervalle de temps ceréset par

1/8
max{;%_ 1|}) . (4.74)

Dans le cas sgxifique des ondes gravitationnelles, cela condpgrtir des valeurs des diffentes
constantes dont nous disposoms,

te=3x% (1600 7)"%/° Mg ~ 3.6 x 107% M. (4.75)

to—t>>tc:(

En supposant que l'intereration en tant que chirp est valide, la forme d’onde (4.69) a (approxi-
mativement) pour gquence instantae”

5d
fo(t) = (to - t)=3/8 (4.76)
et la condition (4.74) efinit alors un intervalle de &quence caragtis® par
[ < fo= fulte) =100 x (1600 7)%° MZ! ~ 1.66 x 10T MG (4.77)

La Figure 4.1 illustre la validé de cette condition quand, varie entrel M, et20M, et quand
mo = kmy, avecl < k < 10. On dduit de ce diagramme que, dans le cadafréquence de
coupure haute dualécteur est approximativement 8i@Hz, I'interprétation en tant que chirp peut
étre considfée comme valide pour une grand plage de scenarii qu'il est vraisemblable d’observer.
En consi@rant (4.69) comme un chirp, son spectre petgé Obtenu par une approximation de
phase stationnaire, qui conduit astltat suivant:

Proposition 9. Dans le domainewélle peugtre consigrée comme un chirp, la forme d’onde (4.69)
correspond approximativemeatun chirp en loi de puissanceu sens de la Bfinition 6, avec une
enveloppe d’'indice = (a« — 5/2)/(3 — 1), une phase d'indicé = 3/(5 — 1), un dcalage de phase
v = 7 /4, un taux de modulation

‘= _% (d5) -1/ (4.78)

et une amplitude

C= A (gp)lem1/2/6-), (4.79)

VIg—1]

L'erreur relative de cette approximatioregend de la quence et est boee’par

o =" (ﬂ‘“—f1 T 2)) () =D g0 (4.80)
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masse 2 / masse 1 =1 a 10 (de bas en haut)
7 T T T T T

frequence critique (kHz)

0 2 4 6 8 10 12 14 16 18 20
masse 1 (en masses solaires)

FIG. 4.1 — Mesure quantitative de la validg de l'interprétation en tant que chirp des ondes gravi-
tationnelles Les ondes gravitationnellesriises par une binaire coalescente peuedr Consiérées
comme des chirps tant que leueflience maximale est plus petite que &gfrénce critique quial’
pend des masses; et m, de la binaire. Ce diagramme montre (en lignes continues)dguence
critique quandm; varie entrel M, et 10M, et quandm,; = km,, avecl < k < 10. La ligne
pointillee (pla€e arbitrairemena500Hz) désigne la fEquence de coupure haute detecteur, ce qui
permet d’avoir une borne approek’pour la validi€ de I'approximation.
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Preuve Le calcul du spectre de Fourier de (4.69) revieévaluer l'inggrale
. +oo .
X (fitg,d) = 3/t / a(t) eV dt, (4.812)
0

aveca(t) = At~ ety (t) = —2x(dt’ — ft).

Il est clair quey (t) n'a pas de point stationnaire quayid< 0 et avec le esultat dona’en An-
nexe D, on peut d’'abord conclure que (4.69) est presque analytique, tant que la condition (4.74) est
satisfaite.

Pour les fequences positives,(¢) a un et un seul point stationnaire noggdhéré, nomnegment

B f 1/(6-1)
()" s

avec la condition)(,) > 0.

Quand on appligue sgifiguement leaSultat g@héral (D.6) au modle (4.69), il vient que (4.81)
coincide exactement avec un chirp en loi de puissance dans le sens ddil@id@ 6, avec les
constantes dorma®s en (4.78) et (4.79). Pour chaquegfrénce, Evaluation de phase stationnaire
du spectre revierd consi@ter la contribution du signal au points ¢;, et donc le reste (D.8) en ce
point. Apres avoir retie’minutieusement chaque etérmination lors du calcul d@(¢,), on obtient
finalement le esultat dona’en (4.80), qui permet de borner le domaine equdience sur lequel I'ap-
proximation de phase stationnaire petre"considiée comme validestant doneé une erreur relative
maximale.

Deux remargues peuveetré faitesa’ce point. Prengrement, alors que les “conditions de chirp”
de la Definition 1 sont couramment @seneées comme validant I'approximation de phase stationnaire
(voir, e.g., [36, 88] ou [33]), la valid&de I'approximation de phase stationnaire est en fait otaer”
par (D.8), ce qui est finalement plus compkgqDeuxemement, si on applique legaddent gsultat
(4.80) au cas des ondes gravitationnelles, on obtient que, pour une erreur relative d’approximation au
pluségaleaz pourcents, la #uence doiefre bormee par

f<TA8 % 100235 M3E, (4.83)

ce qui est en accord avec les ciiwhs (de chirp) qualitatives en (4.77). Les eris exact et heuris-
tique sont donc de erhe nature, mais lessultats de la Proposition 9 autorisent un coletguantitatif
de l'approximation.

La Fig. 4.2, qui pesente un exemple typique d’'une forme d’onde, illustre taffie de I'approxi-
mation de phase stationnaire.

4.6.2 Un cetecteur temps-flequence simplife

A strictement parler, leetecteur temps-éguence optimal (4.62)cessite le calcul d’'une version
filtree (en temps) de la distribution de Bertrand de I'observation. Ceci impligue malheureusement
un gros cat de calcul. Pour abouta une solution pratiquement exploitable, il est obligatoire de
considrer une description tempsefflience plus simple, mais toujouregisea la place de la fonction
exactepr(t, f) donrée en (4.63). Alors qu’une simplification ne semble pas possible dans le cas
géréral, il appard’qu’elle peutetre effectee dans le cas spifique des ondes gravitationnellessgg”™
aux valeurs des paratres physiques qui sont impligs.”
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x 102 (a) - onde gravitationnelle (m1 = 10, m2 = 10, r = 200 Mpc)

amplitude
(an) -

temps (seconde)
(b) - frequence instantannee
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1
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temps (seconde)
(c) - spectre d’energie normalisee et approx. de phase stat.
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-40 : :
10 10 10 10

. ~ frequence o
(d) - critere de validite de 'argument de phase stationnaire

L A ek

0 ; e ; L ; i
10° 10" 10° 10°

frequence

FiG. 4.2 — Approximation de phase stationnaire du spectre d’'une onde gravitationnéleesignal
qgue I'on espre étre émis par une binaire coalescente comgmsie deux objets de M, et 10 M,

a une distance de 200 Mpc, est m@nén(a), avec la fEquence instanta® correspondante g).
La densi€ spectrale dehergie est dorgg en(c) (ligne pleine), accompag® de son approximation
de phase stationnaire (ligne poingk). La validi€ de cette approximation est coolieé par I'erreur
relative (qui &gpend de la equence) eld).
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En effet, si nous revenors(4.63), nous pouvoreciire d'une fapnéquivalente,

/ pr(t, f) e~ Etdt = O pr 1= p(y) / P, f) ezt (4.84)

avec

U —u r+1
h(u) = (A () As(—u)) A(fAe(u)) A(fAr(=u) (4.85)
Cr(u)
et
_ (€

u=(; (f) . (4.86)

A cause des limitations aux bassesgfuences (bruit sismique) et aux hautesjéénces (bruit de
photons), la largeur effective d’'observation est@ssairement restreirdeun intervalle en &#quence
passe-band¢g_ < f < f, (avec comme valeurs typiques, que I'on pourrait raisonnablement choisir,
f- = b0Hz et f; ~ 500Hz). Ceci a pour coresjuence que le spectre de Fourier

[P e = P @) R (W) FUMD) (487)

est non nul seulement dans la bande

v

lu| < uy = log (4.88)

ce qui montre que le factewr(«) de la transforreé de Fourier deP](%k) (t, f) peutétre simplement
ignoré dans (4.84) dans la mesuneibést presquedala 1 pour|u| < u.

ATint’erieur de la bande dedfguence dfinie ci-dessus, on peut considf (voir, e.g., [55, 56]) que
la densi€ spectrale de puissantcg( f) du bruit d’observatiom(¢) varie, en moyenne, continuement
et se comportéenl,, (f) = o f~¢, avece ~ 1 . En supposant donc que

A(f) = o072 fBr12) (4.89)
pour f_ < f < fy, nous obtenons de (4.85) que

—t Q) A 7Y
Cr(u)

pour|u| < us. Dans le cas des binaires coalescentes-(—5/3, r = 1/6) et d’un bruit en “1f”
(e = 1), cela seeduit alorsa’

h(u) =0

(4.90)

(Aosyo(n)Asys(=w) ™"
C—5/3(“)

une quanti’qui, dans I'espace congi@ des fonctionsefinies sur un intervalle limitenu, peutétre
consicgérée comme Blément neutre de la convolution, comme illestn Fig. 4.3.

ot h(u) =

, (4.91)

1. Notons que cecin’est qu’une presre approximation et que, dans le cas detedteurseaéls, des raffinements doivent
eétre faits sur la base de melds plus ealistes.
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fmin = 50, fmax = 450
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FIG. 4.3 — Quand la bande passante detdcteur est lim@é, la fonction temps-dguence utiliser,
peutétre bien approcké par une distribution de Bertraradcondition que la fonction*%.(u), définie

en (4.91), agisse commekEment neutre de la convolution dans I'espace de fonetisupport bore”

en u. La validité de cette approximation est illusg’ici en montrant dans le diagramme du haut
a*h(u) (ligne pleine) et la fonction indicatrice de I'intervalle enassocéea la bande de fguence
50Hz — 450Hz (ligne pointillée), et en comparant dans le diagramme du bas leur trangfesrde
Fourier.
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Quand I'approximation ci-dessus est valide, cela conduit @ans ctecteur semblable (4.62),
mais avec la simplification

02
prit, )~ —5 [0 P, ). (4.92)

En partant de cette structure simpdi’le probéme final est de trouver une approximatioegse
et facilea mettre en ceuvre de la distribution de Bertrd?ﬁﬁ) (t, f). Puisque la caraetistique-cf
de cette distribution est sa localisation parfaite (4.41) sur les chirps ‘®&fapd solution que nous
proposons est de la remplacer paspectrogrammegallové[5, 9] 5% (¢, f) qui, lorsqu'il est appliqa”
au méme chirp en loi de puissance, se comporte approximativement en

St ()= C? s (1 —1x())). (4.93)

L'efficacité de cette approximation est illuse&ren Fig. 4.4.
En comparant (4.41) et (4.93), nous sommes conduit®isiry = 2r + 1, ce qui donne la forme
finale du dtecteur optimal approeh”
02 +oo .
AP (rit,e) ~ = / gh (t 4okl f) FAOHD) g, (4.94)
g° Jo
Dans le cas gxifique des binaires coalescentes, noefeperons paraetrer le signah détectera
I'aide de son temps de coalescenet de sa “chirp mass&duite M . Avec les constantes correctes,
nous obtenons finalemera (In facteur d’amplitude pe)

AN Ma) o [ S (4.95)
,C(t,./\/l@)
avec
L{t,Mg) = {(r, f) \t— T =3x 10082 M7 p=803 } . (4.96)

4.6.3 Une illustration

Pour illustrer I'effcaci® de I'approche propeg, nous @sentons en Fig. 4.5 deux exemples dif-
ferents bass sur une des situations typiques disestdans [55, 56]. Dans ces deux exemples, on
suppose que la binaire est consttude deux objets deVl, et 10 M, (temps de coalescencedig’

t = 0). Dans le premier exemple, la binaire est locadia 'une distance de 200 Mpc de la terre, et 1
Gpc dans le deurime exemple. La simulatione#e’faite en aktrant les doneés par un bruit additif
gaussien, avec= 1 eto? = 0.7 x 107*2/Hz sur une plage dedguence dé0Hz —500Hz. La stra-

tégie proposé, baeé sur le spectrogrammeallolg, n’atteint pas la performanceedle pedite par

la théorie du filtre adag,’a cause de la prision limi€e des di#rentes approximations impligas

pour son obtention (en particulier, la natar®ande limige du signal implique que la distribution de
Bertrand ne peuttte localige le long de la ligne de retard de groupe). Cependant, cette figure met
enévidence que cette stegfie permet clairement laetEction du chirp et qu’elle psente des perfor-
mances qui dpassent celles d’une simpledgtation de chemin faite sur le spectrogramme standard.

Dans I'exemple de la Fig. 4.5, la chirp mass;, aété implicitement suppe@se connue, ce qui n’est
en aucun cas vrai en pratique. Si I'on supposefig est inconnue, une stedie plus sophisticee
consiste alora appliquer la pé&dente en parale enevaluant autant d'igrales de chemin que
nécessaire pouechantillonner convenablement les valeurside, sur un intervalle raisonnable de
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FiG. 4.4 — Distributions temps-fequence pour les ondes gravitationnellé&ant don®e une onde
gravitationnelleemise par une binaire coalescente (temps de coalescerc ffix= 0), on attend
d’'une distribution temps-&quence “adapé” qu’elle soit aussi localisé que possible sur la ligne
de fréquence instanta®. Cette figure compare la reggéntation “idale” (a) avec certaines distri-
butions candidates. Du point de vueetrique, il est connu que la distribution que I'oreglfe, est
obtenue en utilisant la distribution de Bertrand adegtf: = —5/3): ceci estillustree en(b), ou
I'algorithme décrit dans [48] a€té utilise. Une bonne approximation, simg@amettre en ceuvre, est
donrée par le spectrogrammeallowg (c). Ces deux situations contrastent avec celles obtenues par
la distribution de Wigner-Vill¢d), le spectrogrammée) et le scalogrammé§).
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FiG. 4.5 — Détection d’'une onde gravitationnelleCette figure illustre I'efficacé’d’'une dstection
temps-fEquence optimale d’une onde gravitationnelle issue d’une binaire (temps de coaleseence
0) compose de deux objets deV/; et 10M, a une distance de 200 Mpc dans le ¢ayet 1 Gpc
dans le cagb). Puisque la distance entre la binaire et la terre change simplement I'amplitude du
signal, le rapport signal sur bruit est le seul paratre qui est modié’entre ces deux exemples.
Chaque graphique compare le module @adé I'enveloppe du signal en sortie du filtre adafirait
mixte) avec une stratjie temps-gquence ba® sur une irggration de chemin sur le spectrogramme
classique (trait pointi) et sa versionegallouge (trait plein). Pour faire appandfe clairement ce

qui est gage’en terme de contraste, le maximum de chacune de ces coudiesaebitrairement
normaliga l'unite.
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FIG. 4.6 — Détection-estimation conjointe d’'une onde gravitationnebiepartir du spectrogramme
reallové. Dans le cas o le paranetre de chirp mass\, est inconnu, di#ifentes inégrations de
chemin (similaires celle faites en Fig. 4.5, mais sur un certain nombre de courbes teragsence)
doiventétreévallges, ici sur le spectrogrammealloué. Ceci Esulte en une surface dont le maximum
permet la étection de I'onde gravitationnelle (quand iepgasse un seuil prescrit) et I'estimatian °
la fois du temps de coalescence et de la chirp mass (les valeeites 'sont indigeés par des lignes

pointillees).

valeurs. Les Figs. 4.6 et 4.7 montrent I'application de cetteegi@tpour le spectrogrammeailog

et le spectrogramme standard, respectivement. Cegarabiie éfection-estimation conjointe permet
doncégalement une estimation de . Il doit &tre no€ que, lorsque I'on parcourt les valeurs test
de M, I"energie du signal deeférence est modég. La sortie de chaquestcteur doit donette
divisée par un facteur proportionnel au module eate 'amplitude du signal deférence (qui varie

5/3 . , ,
en/\/l®/ ) pour pouvoir comparer deesultats coérents.

4.7 Conclusion

L'objectif de ce chapitreefait de combiner desléments empruetsa la tréorie de la dtection
optimale ea’lI'analyse temps-&quence pour traiter le pradhe de la dfection temps-&Quence opti-
male de chirps. Nous en avons extrait un cadrespefit’dans lequel nous montrons que les egjias
intuitives de @tection de chirps par des @grations le long de chemin dans le plan tempstfience
revétent la propeté d’optimali® sous plusieurs conditions, la plus importante d’entre etkast T'uti-
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FIG. 4.7 — Détection-estimation conjointe d’'une onde gravitationneligpartir du spectrogramme

La surface monge ici est la Eponse du efecteur(-estimateur) bagles inggrations de chemin sur le
spectrogramme standard. Celle-ci deité compage avec celle de la Fig. 4.6. Le manque d’aewiti

pic de dtection et le mauvais contraste entre son maximum et le niveau du bruit font queddym®c”
de dEtection est plus difficila réaliser. Les lignes pointi#és indiquent les valeurs vraies du temps de
coalescence et de la chirp mass.

149



lisation d’une distribution temps-dtjuenceinitaire eta lalocalisation parfaitesur la loi de fEquence
intantarge (ou de retard de groupe) du sigaabBtecter. Cette distribution es¢ggralement difficilea”
calculer nunetiquement. Nous suggons la remplacer par uag@proximatiora I'aide d’une distribu-
tion réallolge simplea mettre en ceuvre (comme le spectrogramme ou le scalogramme). On dispose
alors d'un moyen systhatique et simple pour obtenir des stgag's de dfectionquasi-optimalaele
chirp. A ce titre, 'exemple des ondes gravitationnelles (que I'on pensieés par les binaires coales-
centes) est un cas d'importance partietsi et la possibilé de leur @tection temps-&Quence &t
discu€e avec une certaine attention. Les conditions pour qu’'unegieajlasi-optimale destéction
ontéte établies. Cela met donc une nouvelle foiseidence, dans un exempleepis, que la rathode
de réallocation peut prendre partuhe chaie de traitement du signal dans un buteliéit de celui de
I'analyse. La question est maintenant de discuter plus avant ce quéfpewdellement gagmpar une
telle approche en termes de flexiksliét de robustesse.
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Conclusion

Pour conclure, nous ferons un bilan de ce qu’offre &ilmde deeéallocation comme potentiadis”
pour I'analyse du signal et pour sa manipulation. Nous axerons ce bilan en deux points:

¢ Analyse temps-&guence du signal et distributionsaflouges

La méthode deeallocation permet d’obtenir une description temgsrrénce pouvant raisonna-
blementetre comprise par des personnes ne disposant pas de connaissances profondes du contexte de
I'analyse temps-&quence. Les situations typiques pour lesquelles les distribugalsuges donnent
de bons eSultats en terme de lisibéitde la repeSentation, sont celleside rapport signal sur bruit
(RSB) est favorable etwle signal est une modulation ereffience i.e., dont la densit’'énergie
temps-fEquence est essentiellement conan@ttour d’'une courbe dans le plan tempesHience.
La description doneé est alors fortement contrast 'Son intergtation n’est pas complige’ par les
termes intedfrentiels qui apparaissent classiquement dans lessemidtions de la classe de Cohen
ou de la classe affine.

La présence de bruit atiue le contraste de la description offerte par les distributeaiborEes.
Pour renediera ce probéime, nous avons proposine supervision de lzallocation, dont I'objectif
principal est de donner simultament une bonne reggéntation du signal et du bruit. La supervision
présente un ir@fét jusqua des RSB dé dB environ, ordre de grandeur que nous avonsyaiuer sur
guelques exemples.

Les distributionseallowges sontgalement utiles pour des prebies de dfection. Nous avons
mont que, pour le prolkime sgcifique de la dfection temps-&quence de chirp, elles pouvaieire”
a la base de seima de étection temps-&quence quasi-optimaux. La mise en ceuvre de cesgieat”
de dEtection est plus simple et rapide que celle desegiias” optimales. En effet, la plupart des dis-
tributions Eallolges peuventtre évallidesa I'aide d’'algorithmes efficaces (nous les avorespries
dans le cas du spectrogramme et du scalogramme), avec des temps de calcul acceptables sur des ordi-
nateurs aux performances standards (d’aujourd’hui). On ne peut cependant pas parler d’algorithmes
rapides. Il ne serait pas raisonnable dgrér les distributionsegllowges dans un traitemenu de
calt de calcul est un aspect crucial, comme c’est le cas, par exemple, petedtiah “en ligne” des
ondes gravitationnelles.

e Caracerisation du signal et carte tempsefjuence

Nous avons mongrgue la nethode deeallocation peut conduit@ des formes de description du
signal differentes de celle doegpar une distribution diiergie temps-&quence. Plus pcigment, en
utilisant de I'information @duite du champ des vecteurs daltbcation, on peut dessiner une carte qui
découpe le plan tempsequence eregions, chacune asseed une composante du signal. Autrement
dit, cela reviena’ddcomposer le signal en composantes meesiién fequence et/ou amplitude. La
carte temps-gquence peut alors servir de point depdita de nhombreuses applications comme la
classification, le dbruitage, .. Nous en avons dommjuelques illustrations.
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Il estimportant de signaler deux limitations de cette approche:

— la partition du plan tempsdtjuence est sensible au bruit. Nous avons p®pbssieurs al-
gorithmes de fusion de partition pour diminuer cette sengghititais il faudrait en faire une
évaluation plus compte.

— la réallocation difErentielle, et les post-traitements (classification ascendaatarbiiique, en
particulier) récessairea I'obtention de la carte tempsefjuence, sont des algorithmes lourds
en temps de calcul ce qui limite fortement la taille des sigreanceptables.

e Perspectives
Ce travail ouvre des voies de recherclaesxplorer et laisse quelques questions sapsmse.
Parmi elles, en voici quatre que nous estimons importantes :

— les calculs faits au chapitre 2 concernant les dessl€ probabilés des oprateurs deaallo-
cation n’ont de eelle utilitt que s’ils sont explo#ts pour permettre, par exemple, I'obtention de
traitements optimaux au sens d’'un certainergtstatistique.

— En ce qui concerne la supervision, plusieurs questions restent en suspens, en particulier quel
est le bon choixa faire pour la famille de festfe a utiliser, et pour le moyen de combiner
I'information provenant de spectrogrammes et de champs de vectewgslibeation bass sur
des ferires difErentes.

— nous avonseja mentione’plus haut que les algorithmes de fusioerit€nt unesvaluation plus
approfondie. Ajoutons encore qu'il serait@énéssant de conetiser I'idée de la egularisation
du champ de vecteurs deailocation pour la stabilisation de la partition temp=gfrénce.

— L'avantage principal de la formulation tempgdtience du probme de éfection de chirp est
gu’elle permetpartir du étecteur quasi-optimal, d’ajusteregrintuitivement et de magrié tes
flexible, le compromis entre efficaei{fnombre de fausses alarmes, largeur du picatiection)
et robustesse (au bruit @l’ggard d’'unecart du signal au made de eférence) de laetection.
Il restea montrer que cela peut effectivement se mettre en pratique dans des cas concrets (celui
de la &Etection des ondes gravitationnelles par exemple).
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Annexes

A Simplifications des ogerateurs de réallocation du spectrogramme

Cette annexeaunit tous les calculsatessaires pour la simplification defiditions (1.5) et (1.6)
des oprateurs deegallocation du spectrogramme en temps et egience respectivement que nous
rappelons maintenant:

dsd¢
h J—
th(t,w) = Shtw// EWi(s—t,&—w) 5 (A1)
Gl (t,w) = / EW, (s, E)Wh(s — 1,6 — )d;;l_f. (A.2)
Ces simplifications sont utilees en Sect. 1.2 pour diverses intetptions.
A.1 Opérateur de réallocation en temps
Il s’agit remplacer dans le nugnateur de Bg. (A.1)
I _//SW Wils — 1, € — w) BL (A.3)
21
la distribution de Wigner-Ville du signal et de la fetiné par sa éfinition
We(t,w) = /x(t +5/2)x* (t — s/2)e™" ds. (A.4)
On obtient alors une iegrale quadruple
= //// sx(s4u/2)a"(s —u/2)e " h(s —t + v/2)h* (s — t — v/2)6_i”(£_w)dudvd8d£,
(A.5)

gue I'on va simplifier en irggrant selon chacune des variables dans un oetegrdire. On effectue
d’abord la somme selan

/e_i(“‘i'”)g % =6(u+v) (A.6)

de laquelle esulte une distribution de Dirac que I'on fait agir sur le reste de la fonction par une
intégration ey qui donne:

/h(s —t+ /2R (s —t —v/2)e" S (u+v)dv = h(s —t —u/2)h"(s —t +u/2)e” . (A7)
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Aprés un changement de variables = s + u/2, s; = s — u/2} de jacobieregala 1

Iz = // 81;78296(81)96*(82)/1(81 — O (59 — )e~ 1720 g ds,, (A.8)

on reconnd’la FCT du signal que I'on isole, ce quiané au esultat final

//SW W}L s—1 5_ )d;;i-f :Re{F;,L*(t,W)/8$(8)h*(8—t)e_iwsd8€itw/2}.
(A.9)

A.2 Opérateur de réallocation en frequence

On pro@de de la rafne marere pour I'o@rateur deeéllocation en guenceeq. (A.2), dont on
meta part le nurefateur

dsd
= [[emsomis-ne-0 5, (A.10)

dans lequel on irege les expressions des distributions de Wigner-Ville du signal et ded&réen”

= ////£$(8 + U/Q)x*(g — u/Q)e—iufh(g — 14+ U/Q)h*(s 4 U/Q)e_w(g_w)dudvdsdf‘
(A.11)

On integre d’abord en &quence

/ £emiluto)e ;l_f — i (u+ o), (A.12)
T

ce qui nous donne cette fois-ci l@rée de la distribution de Dirac dont I'action sur le reste de la
fonctiona intégrer conduit’

/h(s —t+0/2)h% (s — t — v/2)e” i (u 4 v) dv

(=i) (W' (s —t —u/2)h" (s — t + wf2)e™M 4 h(s — 1 — u/2)h™ (s — t + u/2)e” "+
iwh(s—t—u/2)h*(s —t+ u/2)e_““”) . (A.13)

On effectue le rafne changement de variable qu’en sectioeoguiéente{s; = s + u/2, s, =

s—uf2}:

Jh=wsht, w) - %// (s1)a*(s2) (B (s2 — )R (s1 — 1) — h(sz — )R (s1 — 1)) e 17920905, dsy,

(A.14)
d’ou apes €arrangement des termes, ésultat
/ fW Wh s —1 5_ )d;df Sh(t w) Im {F;L*(t7W)/$(8)h/*(8_t)e_iwsdseitw/2}.
T
(A.15)
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B Simplifications des oferateurs de reallocation du scalogramme

Cette annexeetinit tous les calculsatessaires pour la simplification desfiditions (1.70) et
(1.72) des oprateurs deedllocation du spectrogramme en temps eteelle respectivement que
nous rappelons maintenant:

b Ww(s - a&) Aot ®.1)
o W) S8 ®2)
d?(av b) = wo/d;{j(av b) (B.3)

B.1 Opérateur de réallocation en temps

Il s’agit remplacer dans le nuenateur de Bqg. (B.1)

=] s%(s,&)m(s - a&) dode (B.4)

la distribution de Wigner-Ville du signal et de la fetiné par sa éfinition

We(t,w) = /x(t +8/2)2*(t — 5/2)e”"* ds. (B.5)

On obtient alors une iegrale quadruple

= ////”“ uf2)at(s - u/2>e"'“%(8;—b + v/z)W(S

gue I'on va simplifier en irggrant selon chacune des variables dans un oetegrdire. On effectue
d’abord la somme selan

) —wal 1y dp def

2T

(B.6)

/e H(utav)t 55 o(u+ av) (B.7)

de laquelle esulte une distribution de Dirac que I'on fait agir sur le reste de la fonction par une
intégration ernv qui donne:

/1#(#%—@/2)1&*(# —v/2)6(u—|—(w) dv = 21&(8;1) 22)1&*(8;1)—% ;—a)

(B.8)

Aprés un changement de variables = s + u/2, s; = s — u/2} de jacobieregala 1

w=l “T%@ﬁx*(sz)}b(@a‘ b)w(sla‘ b)dslds% ®.9)

on reconnd’la transfornee en ondelettes du signal que I'on isole, ce genenau esultat final

// SWx(s,ﬁ)W¢(8 - ag) dsdS _ pe {T;/J*(a,b)/sx(s)%w(sgb) ds} (B.10)
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B.2 Opérateur de réallocation enéchelle

On pro@de de la rafne margre pour 'o@rateur degallocation en quenceeq. (B.2), dont on
meta part le nurefateur

r= 5Wx<s,5>w¢(8a a&) b, (B.11)

dans lequel on irexe les expressions des distributions de Wigner-Ville du signal et ded&réen”

Jw_/// Eals+u/2)a%(s —u/2)e _“‘%(—Jrv/?) (Tb—vm) =18 dudy d‘gif

(B.12)

On integre d’abord en &quence

/ge—i(u-l—av)f % _ ii(é(H av)). (B.13)

adv

ce qui nous donne cette fois-ci l@rée de la distribution de Dirac dont I'action sur le reste de la
fonctiona intégrer conduit’

/¢(i + v/z)w(sai - v/2) S (50t av)) do =

1 Ss—b u) . [s—b u s=b u\ ,.fs—-b wu
2—(¢( . ‘%ﬂ( . +z)‘¢( . ‘5)¢ (—+2—)) (814

On effectue le rafme changement de variable qu’en sectioeoguiéente{s; = s + u/2, s, =

s—uf2}:

- o) (o (252 (252) - (2702 i

(B.15)

d’ou apes €arrangement des termes, ésultat

/ 5W1,(5,5)W¢(8 - b,ag) d;if = —élm {T;f’*(a,b) /x(s)%zﬁ’*(#) ds} . (B.16)
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C Densite de probabilité des vecteurs de&allocation du spectrogramme

C.1 Formule des interferences

La formule des intedfences est uresultat classique des sggies liaires. Dans le contexte
de la Sect. 2.3.1, elle enite qu'on s’y attarde un peu, en particulier pouegser la mardre de la
manipuler lorsqu’un bruit blanc gaussien complexe analytiggintervient.

Les partieseelle et imaginaire d’un tel signal sont deux bruits blamreds”

2

B[Re{n(t)}Re{n(s)}] = Ellm{n(0) m{n(s)}] = Ep@b(s)] = 28t —5), (€D

lies par une coefation impoge par la transfore€ de Hilbert

E[Re{n(1)}im{n(s)}] = %Vp/ w dr = —% sit#s0sinon (C.2)

La fonction d’autocorlationy, (t — s) = E[n(t)n*(s)] de n(¢) admet alors une expression
composite entre les deux types de etation (C.1) et (C.2)

Yot — 5) = 2E[Re{n(t) }Re{n(s) }] + i 2E[Re{n(t) }Im{n(s)}] (C.3)

:gz((s(t_s)_ i ) (C.4)

T(t — s)
qui se traduit sur la densispectraléd’,, (w) = ffo‘f 7n(7) d7 par unéchelon de Heaviside
[ (w) = o?(1 +sgn(w)). (C.5)
Soitz; = nxhy etzy = nxhy, deux versions fileés de: (), la cor€lation entre ces deux processus
al'instantt

E[z1(t)z2(1)*] = // E[n(r)n™(m2)]hi(t — 71)ha(t — 72) dmy d7y (C.6)

donne, en utilisant Parseval,
+o0
E[z; (t)x2(1)*] = 202 Hi(w)Hy(w) dw/(27). (C.7)
0

Dans le cas o les supports &quentiels dév, et h, sont approximativement contenus dans le
demi-plan des #Quences positives, on peut alors invoquer Pargenaliveau pour obtenir lesultat
qui nous sera utile

o1 ()2 (1)] ~ 202 / B2 (8)hal(s) ds. (C8)

C.2 Densie de probabilite des vecteurs de &allocation, ferétre gaussienne, signal +
bruit

Le calcul de la densitde probabilié’du vecteur desdllocation du spectrogramme de Gabor dans
le cas “signal+bruit” suit la trame de celugjdfait pour le cas “bruit seul”. C’est ce que nous allons
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maintenant peciser en partant dedd. (2.86), point d’embranchement se diférencie les deux cas,
qui s'écrit

At?

7TO'10'2

flr)y= / |w]? exp{|w — S1|?/o? 4+ | — iAtyrw — S5]?/03} dRe{w} dIm{w}. (C.9)
On doit, cette fois, prendre soin de mettre sous forme canonique la forme quadratique dans I'ex-
ponentielle

|w — 5112 L | — Atprw — 95| _

2 2
01 03

1 At?|r|? S Atpr*S55\ " 511 S5|?
(—24—%) |w|2—2Re{w (U—;—#) }—I—| 12| -I-%- (C.10)

01 2 1 03 01 2

En posant = 1/0} + Aty|r|*/o3, b = S1/0? — Atyr*S2/o3 ete = |51)? /o + |92]* /03, on
reconna une inggrale gaussienne

At
Fr) = [//|w|2 ~alw—b/af? dRe{w}dIm{w}] bl fae (C.11)
7TO'10'2
gu'il est possible ddvaluer par un changement en coordeempolaires [22]
At?
F(r) = —5h— (1 4+ |b]*/a — c)elP/a=e, (C.12)
7r0102a

Il s’agit alors de remplacer dans (C.12) ) etc par leur éfinition, en remarquant auparavant que

|r — ro|?

b?Ja — c = = AL |5y | ———"—
017/ il U%—|—U%At%|7‘|27

(C.13)

pour obtenir

At?
0102(1/U1+At |7|? /‘72)

1512, 92 o |r—rol? 2ie iz T —rol?
1 — AL S )f———o7"rTr— A5 —m————— C.14
( + ‘71 + 02 h| 1] 2+At%0f|7‘|2 exp nl91] U%_I_At%U%MQ . ( )

flr) =

ce qui nous conduit awesultat en ingfant les expressions de et o,

B 1 S 5 |r—rol? S |7‘—7‘0|
f(r)—m |:1+ﬁ(1+|7‘0| _W exp 20_2 1+| |2 5 (Cl5)

que I'on pefere sous la forme (2.96).

C.3 Quotient de variables aéatoires complexes gaussiennes

Le probEme qui nous iresse ici est le suivant: sa@jt = [y ...yn]" un vecteur aatoire
gaussien complexe circulaire de moyenne [s;s; . ..sy]" et de matrice de covarian&inversible,
donc de densitde probabili¢”

fy(y) = exp(—(y — )T (y — 5)), (C.16)

N det(T)
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quelle est la denstConjointe de probabibtdu vecteur = [ryrs . ..7ny_1] dontles coordonees sont
donrées par,, = (1/A.)ynt1/y1, pourn =1...N —10ou{A,,n=1... N — 1} estune famille de
nombres complexes?

La résolution de notre probie passe par I'utilisation du changement de varighte . . . yn] —
[y17172 ... 7n—1]. DU changement de variable invergger,ry...7n] — [y1y2 ... ynN], OO Ypt1 =
AnTry1 pourn € [1..N — 1], on dduit la matrice jacobienne

1 0
AT A
T = | Agry Mot : (C.17)
: 0

La densi€ de probabili’du vecteur s’obtient en marginalisant la dersitonjointe par rapport

i= [/ 1

ol r ) désigne le vecteyi A7y Agra .. .5
La mise en forme canonique de la forme quadratique dans la gausgigfie )

ne 3/1 fy (ray1) dRe{y1 ydlm{y, }, (C.18)

2
_ _ st 1p, sTT=1p, 2 _
(ray1 — S)TI‘ Yy —s) = (T‘J/F\I‘ Yra) (i — | | T | +sr7ts, (C.19)
A A LY T

conduita I'expression ghérale

N-1

2
I~
n=1

1

flr) = NV detT

[ 1o+ 012 exp (el ) dRedun)atm{ya) exp [-[6/a+ ]

(C.20)

ou I'on a d&fini les constantes = rLI“lm, b=s'T 'r, ete = sTT~1's. En outre, nous tiendrons

compte par la suite de la simplification
—1b]2 + ca = —(s17y — &) |gg + 1T 7| (517 — 3), (C.21)

ou les variables introduites ici sont des sous-blocs des vecteurs et magdicesdplus haut
L | g - . ¢
T = 7! s = [s18] A= [Arrg Agrg L] (C.22)
g

Lorsque on se focalise sur le cAs= 3 qui nous importe, Bg. (C.20)

| A1 /\2
7tdet T

f(r) = / s+ b/al* exp (—alys ) dRe{y: }dIm{y,} exp [-b)*fa+c]  (C.23)

devient inEgrable. En utilisant pour > 0, [22]

// 2?4 y?) e (el ) )dwd@/— 5 (2+a(@i+yg) 4o (a5 +y5)%) . (C.24)
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on arrive finalement awesultat

[ A1hz|”
7 detT a3

flr) =

b|2 — b2 — ca\’
2—|—62—|—(1—|—8C)| | - ca_|_4(| | - Ca) ]exp[—|b|2/a‘|‘c]- (C25)

Siy est un vecteur cerdr’i.e., lorsque = 0, nul besoin de se restreindaaine valeur @cise de
N

‘HN—I A 2
n=1 'n
1) = e [ 1 e (<aln ) dRefy)dim{n}.  (€26)

le calcul ggréral (C.20) peuefre conduiti'terme, et condud

2

TN | (v =1y

f N
aVN-1detT (’I"/\I‘_l’r‘/\)

f(r) (C.27)
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D La meéthode de la phase stationnaire

Le principe de phase stationnaire est souvent inedqts de [Evaluation du spectre de Fourier
d’'un chirp. Cette annexe a pour but de coesét’ce prol@me en dfail, et de s'inresser en par-
ticulier au contole quantitatif de I'erreur d’approximation correspondante, ce qui nous sera utile au
Chapitre 4. Une analysetHillée conduitil'introduction d’un criere plus pecis mais plus compligu’
que celui produit par les conditions heuristiques qui semétglement consefées dans ce contexte.
Il est également mis eavidence par I'interradiaire de deux contre-exemples apparteadiinpor-
tante classe des chirps en loi de puissance, que — en oppasities croyances habituelles — les
conditions heuristiqgues ne sont regessaires, ni suffisantes pour la vaédie I'approximation de
phase stationnaire. Le travail fait ici que I'on peut retrouver dans [26] est une entitoi. C'est
la raison pour laquelle cette annexeta écrite de margrea ce qu’elle puissetfe lue et comprise
indépendamment du reste du document.

D.1 Quelquesrappels

Par d&finition, un chirp est un signal de la forme

x(t) = a(t) explip(t)}, (D.1)

ou «(t) est une fonction d’amplitude aux variations douces et dawolltion est lente compee’aux
oscillations du terme de phasep{i¢(t)}.
Rappelons cela se traduit formellement par les deux conditions defiaitivn 1 (du Chapitre 4)

a(t)
a(t) (1)

qui caracgrisentz (¢) en tant que chirp.

Bien que la éfinition d’'un chirp se donneggéralement en temps (comme dans (D.1)), de nom-
breuses applications appellent une descripéiquivalente en &quence [27, 25, 36]. Pour ce faire,
il est habituel de faire appel approximation de phase stationnaire en supposant plus ou moins
explicitement que les conditions (D.2gissent I'efficacé’de I'approche.

¢(t)
#2 (1)

g1 =

‘<<1;52:‘ ‘<<1, (D.2)

D.2 Approximation de phase stationnaire des spectres des chirps
Le principe de phase stationnaire

L'argument de phase stationnaire petre’ formu€ comme suit. Soif une inggrale oscillante de
la forme

I= / b(t) e dt, (D.3)
Q

ou b(t) > 0 ety (t) sontC't, entendu queupp{v(t)} est restreind’un intervalle2 C R sur lequel
b(t) est inggrable. En supposant qug) varie lentement relativement aux oscillations col&es
par(t), les valeurs positives eegatives de I'intgrande tenderat S’annuler eciproquement, avec
la congquence que la contribution principale H@rovient seulement du voisinage des poinida "
dérivée de la phase est nulle.
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Un point stationnaire et spectres de chirps approche

Dans le cas d’un maé (D.3), lesesultats classiques de latirie de la phase stationnaire (voir,
e.g., [92] ne peuvent pasré directement appli@s dans la mesureudés oscillations ne sont pas
contidlées par un paragtre dont on peut faire crivé la valeur librement. En supposant, cependant,
que la phase (¢) a un et seulement un point stationnaire negaéré (i.e., pour quuezl&(ts) =0
etQL(ts) # 0), nous pouvons faire le changement de variable

2 _ ¢(t) — ¢(ts)

u : (D.4)
e(ts)/2
et ainsi eécrire (D.3) sous un forme canonique
I =elts) / g(u) e du, (D.5)

avecg(u) = b(t(u))(du/dt)"" et3 = 4(t,)/2. En utilisant un éveloppement de Taylor de
I'exponentielle du membre de droite de (D.5), hous sommes conduita[jdcomposition de

(D.3)enl =1, + R, avec
o= =25 p(1,) i) gilsembter/a (D.6)
(1)

la qualig de I'utilisation del, comme une approximation dedépendant de I'amplitude du reske
Le prolongement d’approche®Elopges dans [54, 94] nous permet de borner explicitement
I'erreur relativel) = |R/1,| par

_ 5suben .
GO &7

et 'approximation de phase stationnaire est alors valide,sic. 1. Etant done’le mocle (D.3), une
évaluation explicite de cette quastiteénea),, = sup,cq F (1), avec

- a ¢1/2 a1 3 ¢¢ ¢ 2 3 ¢ D"
F(t):5\/2|¢(t5)|‘m7 E$+§Q_¢ (1_ﬁ)+ 3¢ (E) _§ﬁ_ 1L3 ,

(D.8)

ol > est une notation compacte papift) — ().

Ce msultat nous donne un @it suffisant pour justifier (quantitativement) I'efcie de I'ap-
proximation. Il peuktre applige’tel quel au prol@me de IEvaluation du spectre d’'un chirp (D.1) de
frequence instantae’monotone en posaitt) = a(t) et (t) = ¢(t) — 27 ft (le point stationnaire
t, étant alors dfini par¢(ts) = 27 f). On en édduit que I'erreur correspondante n’est pas seulement
contidlée par les termes, ete; (tels qu'il sont &finis dans (D.2)), maisgalement par des termes
additionnels qui dpendent de combinaisons comphbgs’de: (), »(¢) et de quelques-unes de leurs
dérivées successives. Eemgral, I'évaluation de la borne sapéure(,, dans (D.7) n‘apparapas
faisable mais, dans la plupart des cas, un substitut utile esedmani’(¢,), une telle simplification
revenanta consi@ter le terme principale du resteégral &.

162



Pas de point stationnaire et quasi-analyticié des chirps

En revenant au made gereral (D.3), il est inéressant de s'interroger sur le casiln’y a pas de
point stationnaire. Dans cette situatian®(t) # 0 quelque soit, (D.3) peutstre Eécrit comme

— &z ciU(t)
I_/m'lb(t) B(t) e d, (D.9)

de telle sorte que I'on puisse l'iegrer par parties. En supposant @8 < L'(Q) etb(99) = 0,
nous obtenons

I
1ol ~

45
by, ||¥*(@)

ce qui signifie que, relativemeatla situation ales oscillations du terme de phase seraient infiniment
ralenties, le module de (D.3) est dans ce cas épar'une quangtdont la écroissance verserd est
contidlée par les conditions de chirps (D.2). Qui plus est, dans lewcasorrespond la transforreé

de Fourier du chirp (D.1), i. e., quangt) = a(t) et (t) = ¢(t) — 27 ft, et si nous supposons par
ailleurs quep(t) > 0 pour toutt € 2, nous pouvons conclure que le domaine @gjfrénce dans
lequel il n'existe aucun point stationnaire, est la demi-droite degguiehces egatives. Puisque, dans
ce cas, nous avons(t) = @(t) et (t) > (t) quandf < 0, il est alors clair que

: (D.10)

o0

b(f)(;)(t) T a(?)(;)(t)Hoo (D.11)
et
Hf% = EoR (0.12)

Il apparaf que les conditions heuristiques (D.2) sont suffisantes pour rendre le membre de droite
de (D.10) regligeable, et ainsi garantir la quasi-analygdti moale exponentiel (D.1) — dans le sens
ou les contributions spectrales aurdiences egatives sont presque nulles —, avec la egughce
que la quant#((¢) /27 puisseetre effectivement interptée comme la #quence instantae’du chirp.
D.3 Exemples et contre-exemples
Chirps en loi de puissance

Pour mettre ervidence les possibles limitations de I'utilisation de I'approximation de phase sta-
tionnaire quana I'evaluation du spectre d’un chirp, nous nous focaliserons ici sur la classe importante
des chirps en loi de puissance.

Par la Definition 6 (du Chapitre 4) , un chirp en loi de puissance est un chirp (D.1), pour lequel

alt) = (to — 1)~ (D.13)
et

o(t) = 2md(ty — )P, (D.14)
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aveca, et d trois parametres eels ett < 5. (On ne tient pas compte ici du terme de phase °
l'origine).

A partir de cette dfinition, il doit d’abordetre remarge que diférents types de forme d'onde
peuventetre obtenus, selon les valeurs que I'on donne aux petrasa et 5 :

— sil'on consiatrea(t) comme I'amplitude du chirp, on observe alors gui&) = 0 (resp.+o0)
sia < 0 (resp.> 0);

— sionidentifies(t) /2 = dj3(to—1)°~! avec la “fiéquence instantae” du chirp, on est conduit
a une divergence en loi de puissancegpour toutes les valeurs detelles ques < 1. Mais
ceci correspondra un signal “infiniment oscillant” em, uniguement sous la contrainte plus
forte 5 < 0 [77]. En effet, dans l'intervall® < 5 < 1, la phase @Sente une valeur bien
définie ent, : ¢(to) = 0, le comportement singulier de sard#éeétant alors homagnea celui
d’une singulari¢'non oscillante ety,.

Dans le cas des chirps en loi de puissance, il pgretrhonte que les deux ceres obtenua partir
des conditions heuristiques (D.2) ou de I'analyse raffipEsente en Sect. D.2, partagent l&emé
dépendance &juentielle

¢ = C (Bd)FT [, (D.15)
la seule dif€rence provenant dugxfacteur”’, qui s’écrit
C1 = (1/27) max(|al. |5 - 1) (D.16)
dans le premier cas et
Cy = (5/48m)[12a* — 120 + 1208 + 26* — 58+ 2|/|5 — 1| (D.17)

dans le second.

Dépendant de quelle quartiest plus grande que 'autre, nous pouvoasdhtrer que, pour un
d donrg, il existe des couplgsy, 3) tels que I'approximation de phase stationnaire reste valide alors
gue les conditions heuristiques (D.2) sont enfreintes, ou ldeipndquement, I'approximation ne
fonctionne plus alors que ces conditions sont toujours satisfaites. C'est ce qui est dlusiig. D.2
aD.3

Dans le contexte de laetéction des ondes gravitationnelles issues de binaires coalescentes, les
indices sont fies (par des arguments physiquas) = 1/4 (divergence de I'amplitude [a coales-
cence) et3 = 5/8 (singulari€ non oscillanta la coalescence), tandis que le taux de modulation
hyperboliqued est un paramtre libre relé aux masses des objets du sys¢. On e@duit que, pour
les valeurs des paratresa et 3, et sur unezchelle de valeur raisonnable paijrles crieresC’; et
(5 coincident approximativement. Qui plus est, ils ont tous deux une petite valeur, ce quiaalide
posterioril'efficacité de I'approximation de phase stationnaire ce qui esesaltat important pour
les ddveloppements faits au Chapitre 4, et qui est, par ailleurs, courammerd déhis ce contexte
(voir e.g., [36]). C'est ce qui est illustrén Fig. D.4.
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15

-1
-2 -15

Fic. D.1 —Comparaison des crires heuristique et raffie’de validi€ de la phase stationnaire pour
les chirps en loi de puissance d’indice and 5 (voir texte). Le domaine de couleur blanche (resp.
grise) correspond aux valeurs deet 5 telles que le crigre raffiré C, est plus petit (resp. plus grand)
gue le criere heuristiqué’;. Les lignes pleines indiquent les points solutiong’de= 0. La croix, le
cercle et |étoile sont des valeurs spifiques utilises dans les Figs. D&2D.4 respectivement.
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(x) alpha=0.15 ; beta=0.85; d = 100
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Fic. D.2 —Validite de I'approximation de phase stationnaire — Contre-exempledans le cas d’'un

chirp en loi de puissance dont les paratres sont indiges par la croix en Fig. D.1, on constate que

le critere heuristique (ligne pointiéé dans le diagramme du bas)eglif une bonne approximation
(dans une bande dedquence choisie), tandis que la comparaison avec le vrai spectre (diagramme
du haut) €\ele une diffrence significative, comme indigpar le cri€re raffiré (ligne pleine dans le
diagramme du bas).
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(0) alpha=10.01; beta=0.5;d=25
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Fic. D.3 —-Validite de I'approximation de phase stationnaire — Contre-exempledans le cas d’'un

chirp en loi de puissance dont les paratres sont indiges par le cercle en Fig. D.1, on constate que

le critere heuristique (ligne pointi#é dans le diagramme du baseglif une mauvaise approximation
(dans une bande dedquence choisie), tandis que la comparaison avec le vrai spectre (diagramme
du haut) €wele un bon accord, comme indigpar le criere raffirg (ligne pleine dans le diagramme

du bas).
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(*) alpha =0.25 ; beta = 0.625 ; d = 137
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FiG. D.4 —Validite de I'approximation de phase stationnaire — Exemple&emple utilisant le mo-
déle pour les ondes gravitationnelles produites par la coalescence d’uensgdiinaire, pour des va-
leurs typiques: les paraetres du chirp en loi de puissance sonefiga = 1/4, 5 = 5/8 etd = 137.

On constate que les cetes raffirg et heuristique aoicident approximativement (diagramme du bas).
Qui plus est, ils admettent tous deux une petite valeur dans la bandegiesfice consatée,ce qui
valide a posteriori I'efficacié’de I'approximation de phase stationnaire qui est courammentesilis”
dans ce contexte.
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