
Chapitre 4

Application de la r éallocation au
probl ème de la d́etection d’ondes
gravitationnelles

On s’intéresse dans ce chapitre au probl`eme de la d´etection de chirps. On reprend ici le travail
effectué dans [27, 25] qui montre comment les distributions r´eallouées grâceà leur bonne propri´eté de
localisation, pr´esentent un grand int´erêtà ce sujet. Il apparaˆıt ici clairement qu’elles peuvent s’int´egrer
à une chaˆıne de traitement du signal, `a des fins autres que celles de l’analyse. L’application `a la
détection d’ondes gravitationnelles qui conclue ce chapitre nous a contraint `a employer des notations
spécifiquesà ce domaine, en particulier l’abandon de la pulsation au profit de la fr´equence. Certaines
quantités seront d´efinies une deuxi`eme fois en respect de ces nouvelles conventions.

4.1 Introduction

Généralement, on fait correspondre au terme “chirp signal” (ou simplement “chirp”) un signal
dont l’expression peut s’´ecrire en fonction du temps comme

x(t) = a(t) ei'(t); (4.1)

l’amplitudea(t) étant une fonction positive dont l’´evolution est lente compar´ee aux oscillations de
la phase'(t). Définis ainsi, les chirps sont destin´es à servir de mod`ele pour les signaux mono-
composantes modul´esà la fois en amplitude et en fr´equence. Leur fr´equence “instantan´ee” est alors
suppos´eeêtre reliée aux oscillations “locales” de la phase.

Les chirps sont omnipr´esents dans la Nature. Ils peuvent ˆetre observ´es dans les communications
animales (oiseaux, grenouilles, baleines,: : : ) et les sonars animaux (chauve-souris), en g´eophysique
(sifflements atmosph´eriques), en astrophysique (ondes gravitationnelles produites par la coalescence
d’étoiles binaires), acoustique (propagation d’impulsion dans des milieux dispersifs) ou en biologie
(activité nerveuse dans les donn´ees EEG lors de crise d’´epilepsie, contractions ut´erines dans les don-
nées EMG,: : : ). Ils sont aussi amplement utilis´es dans les syst`emes artificiels comme les radars et
sonars, ou dans le contrˆole non-destructif de mat´eriaux et l’exploration sismique.

Intuitivement, un chirpx(t) appelleà une description temps-fr´equence qui, si elle est faite `a l’aide
d’une représentation conjointe�x(t; f) correctement d´efinie, devrait exister essentiellement — dans
le plan temps-fr´equence — dans un voisinage ´etroit autour d’une ligne caract´eristiqueL. Cette ligne
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peut alors ˆetre, aussi bien interpr´etée comme une “fr´equence instantan´ee” (fréquence en fonction du
temps) ou — dans une perspective duale — comme un “retard de groupe” (temps en fonction de la fr´e-
quence). En supposant que cela soit v´erifié, il devient naturel de proposer un sch´ema heuristique pour
la détection d’un chirp, bas´e sur la recherche d’une telle ligne dans la distribution temps-fr´equence de
l’observationr(t), e.g., en utilisant la strat´egie de d´etection suivante

�(r) =

Z
L
�r(t; f) dl (4.2)

et en la comparant `a un seuil choisi `a partir d’hypothèses faites sur le bruit.
Qui est plus, dans le cas o`u la courbeL dépend d’un vecteur de param`etres inconnus�, en intro-

duisant la quantit´e param´etrée

�(r; �) =

Z
L(�)

�r(t; f) dl (4.3)

et en regardant son maximum selon�, on effectue non seulement la d´etection dex(t), maiségalement
l’estimation de�. Une telle strat´egieévoque clairement celle des transformations de Radon ou de
Hough généralisées.

Au delà de ces consid´erations heuristiques, le raisonnement qui aboutit `a l’utilisation de la strat´e-
gie propos´ee ci-dessus doit n´eanmoins ˆetre discut´e et justifié. Dans ce sens, et pour un chirp `a détecter
donné, trois questions principales doivent ˆetre traitées :

1. quelle repr´esentation temps-fr´equence utiliser pour donner un sens `a l’idée de localisation?

2. comment une d´emarche heuristiquebas´ee sur l’intégration le long de chemin dans le plan temps-
fréquence peut ˆetre rendue optimale selon des crit`eres statistiques pr´ecis?

3. qu’a-t-on a gagn´e d’une formulation temps-fr´equence de la d´etection optimale de chirp?

Les deux premi`eres questions sont trait´ees avec pr´ecaution dans ce chapitre. La troisi`eme ne sera
pas consid´erée en d´etail. Les résultats rapport´es ici fourniront néanmoins les indications n´ecessaires
pour justifier l’utilité d’une reformulation temps-fr´equence du probl`eme de la d´etection de chirps en
termes de robustesse et de flexibilit´e (d’emploi). Une attention sp´eciale sera port´ee au cas sp´ecifique
des chirps en “loi de puissance”, `a cause de leur importance dans le contexte de la d´etection des ondes
gravitationnelles. Mais avant de nous int´eresser `a cela, nous introduirons quelques d´efinitions (Sect.
4.2) et commencerons la discussion avec le cas plus simple des chirpslinéaires, pour lesquels les
résultats sont connus et ´etablis depuis longtemps (Sect. 4.4). Ceci nous offrira les lignes directrices
pour effectuer la g´enéralisationà des situation non lin´eaires comme celle des chirps en loi de puissance
(Sect. 4.5). Pour finir, l’exemple sp´ecifique de la d´etection d’ondes gravitationnelles ´emises par une
binaire coalescente sera finalement discut´e et illustré (Sect. 4.6).

Insistons sur le fait que l’id´ee d’utiliser une strat´egie temps-fr´equence pour d´etecter les chirps est
une longue histoire. De nombreux exemples d’application de cette approche peuvent ˆetre répertoriés
dans la littérature, e.g., [8, 9, 37, 38, 42, 64, 81] ou plus r´ecemment [55, 56]. Plusieurs r´esultats
nécessaires au traitement du probl`eme temps-fr´equence ont ´eté obtenus dans les contextes de la th´eorie
de la détection ou de l’analyse temps-fr´equence (voir par exemple, [15, 28, 36]). La plupart d’entre
eux seront n´eanmoins rappel´es (ou même démontrésà nouveau). L’objectif principal de ce chapitre est
de rassembler diff´erents ingr´edients et de les combiner de fa¸con cohérente. On y verra en particulier
comment les distributions r´eallouées sont amen´eesà jouer un rˆole naturel dans le contexte de d´ecision
considéré.

126



4.2 Chirps

À cause de leur grande importance, les chirps m´eritent une d´efinition plus précise et rigoureuse
que celle donn´ee ci-dessus. Un traitement math´ematique sophistiqu´e peutêtre trouvé dans [58], tandis
qu’une discussion sur les possibilit´es d’interprétation des d´efinitions comme celle en ´eq. (4.1) en
termes d’amplitude et de fr´equence instantan´ee est donn´ee dans [83]. Nous n’entrerons cependant pas
dans les subtilit´es de chacune de ces deux approches et nous nous restreindrons `a l’utilisation de la
définition suivante :

Definition 1. Un signalx(t) est unchirp si il admet la représentation propos´ee enéq. (4.1), avec
a(t) and'(t) telles que ���� _a(t)

a(t) _'(t)

����� 1 (4.4)

et ���� �'(t)_'2(t)

����� 1; (4.5)

où “ _ ” et “ � ” sont les dérivées premi`ere et seconde respectivement.

Les deux conditions ci-dessus ont pour but de formaliser l’id´ee d’oscillations rapides sous une
enveloppe aux variations lentes. La premi`ere condition garantit que, sur une pseudo-p´eriode (locale)
T (t) = 2�= _'(t), l’amplitudea(t) ne subisse aucune variation relative, tandis que la seconde condition
impose queT (t) soit elle-même une fonction lentement variable, donnant ainsi un sens `a la notion de
pseudo-p´eriode.

Definition 2. Un chirp x(t) est ditanalytiquesi il est tel queRefx(t)g et Imfx(t)g forment une
paire de Hilbert.

Une caract´erisationéquivalente des chirps analytiques est de dire que leur spectre est non nul pour
les fréquences positives seulement.

Definition 3. Étant donné un chirp analytiquex(t), l’amplitude instantanéeet la fr équence instan-
tanéefx(t) deRefx(t)g sont donn´ees respectivement parax(t) = jx(t)j andfx(t) = 1

2� _'(t).

Definition 4. Étant donné un chirp analytiquex(t), l’enveloppe spectraleBX(f) et le retard de
groupetX(f) deRefx(t)g sont donn´es respectivement parBX (f) = jX(f)j et tX(f) = � 1

2�
_	(f),

avecX(f) la transformée de Fourier dex(t) et	(f) la phase deX(f).

De plus, nous consid´ererons les chirpsstrictement monotones, i.e., les chirps dont la fr´equence
instantan´eefx(t) et le retard de groupetX(f) sont des fonctions inversibles.

Diff érents types de chirps peuvent ˆetre consid´erés, selon la forme dea(t) et/ou'(t). Nous adop-
terons les conventions suivantes :

Definition 5. Un chirp est unchirp linéairesi il admet une repr´esentation comme en ´eq. (4.1) où
'(t) est un polynˆome quadratique ent :

'(t) = 2�
��
2
t2 + �t+ 


�
; (4.6)

où�, � et
 sont réels, et� 6= 0.
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Remarquons que, par construction, un chirp lin´eairex(t) défini de cette mani`ere n’a aucune raison
d’être analytique. La cons´equence en est que la quantit´e 1

2� _'(t) = �t + � ne s’identifie pas en
général à la vraie fréquence instantan´ee du signal `a valeur réelleRefx(t)g. Les conditions selon
lesquelles un chirp lin´eaire est presque analytique peuvent ˆetre précisées dans quelques cas quand une
forme explicite est donn´eeà l’amplitudea(t). En particulier, dans le cas important d’une amplitude
gaussienne, il devient simple de prouver qu’un chirp lin´eaire d’amplitude gaussiennee���t

2
devient

presque analytique (i.e., s’annule presque pour les fr´equences n´egatives) dans la limite bande ´etroite
où (�2 + �2)=��2 ! 0. Ceci provient d’un calcul direct selon lequel

jX(f)j= C e
�� �

�2+�2
(f��)2

: (4.7)

Nous obtenons le r´esultat que la fr´equence centrale d’un chirp lin´eaire d’amplitude gaussienne

est�, tandis que sa largeur de bande est proportionnelle `a
�
� + �2=�

�1=2
, sous la condition de bande

étroite.

La situation de quasi-analyticit´e des chirps lin´eaires contraste avec celle des chirps enloi de puis-
sance, qui, eux, sont analytiques par construction. Ils correspondent `a la définition suivante :

Definition 6. Un chirp est unchirp en loi de puissance(d’indice r 2 R et k � 0) si son spectre est
non nul aux fréquences positives seulement et si il admet comme repr´esentation fr´equentielle

Xr;k(f) = C f�(r+1) ei	k(f)U(f); (4.8)

avec	k(f) = �2� �cfk + t0f + 

�

si k < 0, 	0(f) = �2�(c log f + t0f + 
),C, c, t0, 
 2 R et
oùU(�) désigne l’échelon de Heaviside.

Un chirp en loi de puissance est donc caract´erisé par sa loi de retard de groupetX(f) = t0 +
ckfk�1. Bien que cette d´efinition puisse s’´etendre pour des valeurs positives du param`etresk, nous
nous restreindrons dans la suite au cask � 0, pour lequel le retard de groupe correspond `a des
hyperboles g´enéralisées dans le plan temps-fr´equence.

4.3 Détection

4.3.1 D́etection optimale

La détection d’un signal est g´enéralement formul´ee en un probl`eme de test binaire d’hypoth`eses
(voir, e.g., [97])

H0 : r(t) = n(t) (4.9)

H1 : r(t) = n(t) + s(t); (4.10)

avec�T=2 � t � T=2, et où s(t) est le signal de r´eférence `a détecter (suppos´e connu et d’´energie
finie sur[�T=2; T=2]), n(t) est un bruit additif etr(t) est l’observation disponible avec laquelle la
décision doitêtre prise.

Dans ce cadre, l’obtention d’un d´etecteur “optimal” d´epend non seulement de connaissancesa
priori que l’on pourrait avoir sur le signal et le bruit, mais aussi du choix d’un crit`ere d’optimalité.
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Un concept pertinent pour un tel crit`ere est celui de “test du rapport de vraisemblance” (TRV), qui
consiste essentiellement `a évaluer la strat´egie suivante

�(r) =
p1(r)

p0(r)
; (4.11)

où p0(r) etp1(r) désignent les densit´es de probabilit´e conditionnelles de l’observation sousH0 etH1,
respectivement. D`es que le TRV est calcul´e, la détection est alors effective quand le seuil est d´epass´e.

Nous serons int´eress´es ici au cas o`u le signal suit l’expression

s(t) = x(t; �) ei
 ; (4.12)

où� est un vecteur de param`etres inconnus que l’on aimerait estimer, et
 une phase al´eatoire, unifor-
mément distribu´ee sur[0; 2�], dont on aimerait se d´ebarrasser. Dans cette situation, la notion de TRV
doit êtreétendue `a celle du TRV g´enéralisé (TRVG), défini par

~�(r; �) =
1

2�

R 2�
0 p1(rj
) d


p0(r)
: (4.13)

À partir de cette strat´egie modifiée, la détection reste encore bas´ee sur la comparaison avec un
seuil. L’estimation (au sens du maximum de vraisemblance) des param`etres peut alors ˆetre conduite
simultanément selon

�̂ = argmax�~�(r; �): (4.14)

Dans le but d’obtenir une forme explicite pour le TRVG, des hypoth`eses suppl´ementaires sur la
statistique du bruit additif sont n´ecessaires. Pour simplifier, nous supposeronsn(t) de moyenne nulle,
gaussien, et blanc, i.e., tel que

E

h
n(t)n(s)

i
= N0 �(t� s) (4.15)

pour t et s quelconques dansR, avecE[:] l’opérateur de l’esp´erance math´ematique. Ces hypoth`eses
permettent des simplifications dans l’´ecriture du TRVG, puisque nous avons [97]

p1(rj
)
p0(r)

= exp

(
� 1

N0

Z T=2

�T=2

�jr(t)� x(t; �) ei
 j2 � jr(t)j2� dt
)
: (4.16)

Il s’en suit après quelques manipulations que

~�(r; �) = e
�Ex(�)

2N0
1

2�

Z 2�

0
exp

�
1

N0

�
F (�) e�i
 + F (�) ei


��
d
; (4.17)

avecEx(�) l’ énergie du signal et

F (�) =

Z T=2

�T=2
r(t) x(t; �)dt: (4.18)

En exprimant la quantit´e précédente dans sa forme polaireF (�) = jF (�)j ei'F (�) et en réorgani-
sant les termes, nous sommes conduits `a

~�(r; �) = e
�
Ex(�)
2N0

1

2�

Z 2�

0
exp

�
2jF (�)j
N0

cos('F (�)� 
)
�
d
; (4.19)
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un résultat qui peut ˆetre réécrit comme

~�(r; �) = e
�
Ex (�)
2N0 I0

�
2jF (�)j
N0

�
; (4.20)

où I0(�) est la fonction de Bessel modifi´ee de premi`ere esp`ece [1].
Le point remarquable est que,I0(�) étant une fonction monotone croissante, la strat´egie de d´etec-

tion se réduità la comparaison dejF (�)j (ou tout autre fonction monotone croissante dejF (�)j) avec
un seuil. Il s’en suit donc que l’ingr´edient de base pour la d´etection TRVG consid´erée se r´esume `a

�(r; �) =

�����
Z T=2

�T=2
r(t) x(t; �)dt

�����
2

: (4.21)

Concernant l’estimation, quelques pr´ecautions doivent cependant ˆetre prises puisque la maximi-
sation selon� de la strat´egie simplifiée�(r; �) à la place de la forme exacte~�(r; �) suppose implici-
tement que l’énergie du signalEx(�) ne dépende pas de�.

La stratégie de d´etection propos´ee ici est donc excessivement simple, puisqu’elle consiste seule-
ment en la corr´elation des observations avec une r´eplique du signal recherch´e. Mais, on ne doit pas
oublier qu’il en est ainsi `a cause des nombreuses hypoth`eses qui ont ´eté faites, et particuli`erement
celle de gaussiannit´e. On peut remarquer que le d´etecteur TRVG admet une interpr´etation en termes
de “filtre adapté,” un concept bas´e sur l’idée d’un filtrage des observations qui maximiserait le rapport
signal sur bruit (i.e., le contraste entre les deux hypoth`eses en comp´etition) en sortie du filtre. En rai-
son du terme de phase al´eatoire, le d´etecteur TRVG optimal se trouve co¨ıncider avec un filtre adapt´e
suivi par le calcul de son enveloppe : une structure que l’on appelle “filtrage adapt´e avec d´etection
d’enveloppe.” [97].

Jusqu’à maintenant, le bruit additif a ´eté suppos´e blanc. Dans la situation plus r´ealiste o`u le bruit,
toujours stationnaire et centr´e, est color´e, la même strat´egie de d´etection s’applique encoremutatis
mutandis, sous l’hypoth`ese de gaussiannit´e à condition de blanchir les observations dans un premier
temps. Plus pr´ecisément,étant admis que le support en temps du signal `a détecter est enti`erement
contenu dans l’intervalle d’observation[�T=2; T=2], la relation de Parseval garantit alors que�����

Z T=2

�T=2
r(t) x(t; �)dt

�����
2

=

����
Z +1

0
R(f)X(f ; �)df

����
2

(4.22)

pour les signaux analytiques. En cons´equence, si nous introduisons une op´eration de blanchiment

x(t) 7�! xw(t) =

Z +1

0

X(f)p
�n(f)

ei2�ft df (4.23)

et si nous l’appliquons aux observations, le probl`eme de la d´etection d’un signal donn´e dans un bruit
coloré est (au moins formellement) transform´e dans le probl`eme nouveau de la d´etection du signal
original pré-filtré dans un bruit blanc, conduisant alors `a la stratégie suivante :

�w(r; �) =

�����
Z +1

0

R(f)X(f ; �)

�n(f)
df

�����
2

: (4.24)

C’està cette quantit´e que nous nous proposons de donner une formulation temps-fr´equence ´equi-
valente.
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4.3.2 D́etection temps-fŕequence

Ainsi que le met en ´evidence la structure du TRVG, la d´etection optimale repose sur une mesure
de corrélation — comprise comme un module carr´e d’un produit scalaire — entre les observations et
une référence. Cette corr´elation peut ˆetre exprimée de mani`ereéquivalente en temps ou en fr´equence.
Ceci sugg`ere naturellement qu’une troisi`eme approche ´equivalente soit possible: celle selon laquelle
le produit scalaire pourrait ˆetreécrit conjointement en temps et en fr´equence par l’utilisation d’une
distribution temps-fr´equence convenable, que l’on peut penser comme une “signature” bien-adapt´ee
aux signaux non stationnaires.

L’id ée est donc d’introduire une distribution temps-fr´equence�x(t; f) (qui doit être au moins
quadratique enx) telle que nous ayons, pour tous signauxx1(t) etx2(t), une relation du type

jhx1; x2itj2 = jhX1; X2if j2 = h h�x1; �x2i itf ; (4.25)

où h:; :it, h:; :if eth h:; :i itf désignent des produits scalaires convenablement choisis op´erant en temps,
en fréquence et `a la fois en temps et en fr´equence, respectivement (les d´efinitions explicites de ces
produits scalaires seront d´etaillées dans la suite pour donner un sens pr´ecis auxégalités précédentes).

Une telleéquivalence n’a, bien sur, aucune raison d’ˆetre vérifiée par toutes les distributions temps-
fréquence quadratiques. Cela n’est, par exemple, pas le cas pour la plus simple des distributions `a
laquelle on peut penser, nomm´ement lespectrogramme(module carr´e de la FCT) et lescalogramme
(module carr´e de la transform´ee en ondelettes). Ceci peut ˆetre contrˆolé directement, mais cette af-
firmation (et, avec elle, le moyen de trouver une distribution convenable qui d´epasse les limitations
des spectrogrammes et scalogrammes) peut ˆetre justifiée d’une fa¸con plus intéressante en consid´erant
des classes g´enérales de distributions auxquelles les spectrogrammes et scalogrammes appartiennent.
Nous pouvons par exemple introduire la d´efinition suivante [28, 36] :

Definition 7. La classe de toutes les distributions quadratiques temps-fr´equence qui sont covariantes
aux translations en temps et en fr´equence est appel´eeclasse de Cohenet se définit par

C(')
x (t; f) =

ZZ
'(�; �)Ax(�; �) e

�i2�(�t+�f)d� d�; (4.26)

avec

Ax(�; �) =

Z
x
�
t +

�

2

�
x
�
t � �

2

�
ei2��t dt (4.27)

et où'(�; �) est une fonction de param´etrisation arbitraire telle que'(0; 0) = 1.

Avec cette d´efinition, il est facile d’établir le résultat suivant [59]:

Proposition 1. Une distribution temps-fr´equence appartenant `a la classe de Cohen estunitaire, i.e.,
satisfait ����

Z
x1(t) x2(t)dt

����2 =
ZZ

C(')
x1

(t; f)C
(')
x2 (t; f)dt df; (4.28)

si et seulement si la fonction de param´etrisation'(�; �) est de module unit´e.

La conséquence de ce r´esultat est que le spectrogramme de fenˆetreh ne peut pas ˆetre unitaire
puisqu’il est bien connu [28, 36] qu’il appartient `a la classe de Cohen avec'(�; �) = Ah(�; �), une
quantité qui ne peut pas ˆetre de module unit´e sur le plan(�; �) en entier. Un r´esultat similaire peut
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être établit pour le scalogramme, que l’on sait ˆetre un membre de laclasse affine[36]. Il apparaˆıt
donc que ces distributions (spectrogrammes et scalogrammes) ne peuventa priori servir de base `a un
détecteur temps-fr´equence optimal, bien qu’ils puissent ˆetre mis en avant `a ce sujet et que leur utilit´e
ait été prouvée pour l’obtention de d´etecteurs sous-optimaux [3, 55, 56]. Des distributions optimales
au sens de la d´etection peuvent ˆetre néanmoins trouv´ees. Nous nous focaliserons sur le cas sp´ecifique
de la détection de chirp. Nous renvoyons le lecteur int´eress´e par une discussion plus g´enérale sur la
détection temps-fr´equence optimale `a [38] ouà [89].

4.4 Détecter les chirps lińeaires

La détection temps-fr´equence optimale des chirps lin´eaires a ´eté considérée, la premi`ere fois,
dans [64]. Dans une perspective temps-fr´equence, il apparaˆıt que les chirps lin´eaires sont intimement
associés à un membre sp´ecifique de la classe de Cohen, la distribution de Wigner-Ville d´efinie par
[28, 36]

Definition 8. La distribution de Wigner-Villedu signalx(t) est le membre de la classe de Cohen
attaché à la paramétrisation'(�; �) = 1 et son expression (`a valeurs réelles) s’écrit explicitement

Wx(t; f) =

Z
x
�
t +

�

2

�
x
�
t � �

2

�
e�i2�f� d�: (4.29)

La raison pour laquelle les chirps lin´eaires et la distribution de Wigner-Ville sont fortement reli´es
est donn´ee dans la propri´eté suivante

Proposition 2. Quand elle est appliqu´ee au chirp linéaire de la Définition 5, aveca(t) = 1, la distri-
bution de Wigner-Ville (4.29) est parfaitement localis´ee et s’écrit

Wx(t; f) = �

�
f � 1

2�
_'(t)

�
: (4.30)

Puisque la fonction de param´etrisation de la distribution de Wigner-Ville est'(�; �) = 1, elle est
bienévidemment de module unit´e, ce qui garantit son unitarit´e. Il s’en suit donc que nous avons

����
Z
x1(t) x2(t) dt

����2 =
ZZ

Wx1(t; f)Wx2(t; f)dt df (4.31)

pour tous signauxx1(t) et x2(t). Dans le cas o`u x1(t) = r(t) 1[�T=2;T=2](t) (avec1I(t) la fonction

indicatrice de l’intervalleI) et x2(t) est un chirp linéairex2(t) = a(t) ei('(t)�2�
), nous obtenons
(grâceà la propriété de conservation de support de la distribution de Wigner-Ville et `a sa compatibilit´e
avec les modulations [28, 36])

�����
Z T=2

�T=2
r(t) a(t) ei('(t)�2�
)dt

�����
2

=

Z T=2

�T=2

Z
Wr:a(t; f) �

�
f � 1

2�
_'(t)

�
dt df (4.32)

=

Z T=2

�T=2

�Z
Wa

�
t;

1

2�
_'(t)� �

�
Wr(t; �) d�

�
dt: (4.33)
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On en déduit que la d´etection optimale au sens du TRVG (dans un bruit blanc gaussien centr´e) d’un
chirp linéaire de param`etres inconnus� = (�; �) peutêtre accomplie en utilisant comme strat´egie la
quantité suivante, bas´ee sur une ´ecriture temps-fr´equence :

�(r;�; �) =

Z T=2

�T=2
�r(t; �t + �) dt; (4.34)

avec

�r(t; f) =

Z
Wa(t; f � �)Wr(t; �) d�: (4.35)

Étant donn´e le modèle du chirp linéaire (5), l’énergie du signal `a détecter ne d´epend pas des
paramètres inconnus� et �, ce qui autorise leur estimation au sens du maximum de vraisemblance
parargmax�;��(r;�; �).

4.5 Détecter les chirps en loi de puissance

Dans le cas des chirps en loi de puissance, la distribution de Wigner-Ville n’est plus un bon can-
didat puisque, bien qu’unitaire, il lui manque la propri´eté de localisation qui permet d’obtenir une
solution sous forme d’int´egrale de chemin. Dans le cas particulier des chirps hyperboliques (i.e.,
k = 0), une solution bien adapt´ee aété propos´ee dans [81] sur la base d’une variante de la distribu-
tion de Wigner-Ville (que l’on appelle la distribution de Altes-Marinovic), que l’on obtient par une
anamorphose (“warping operation”). Nous ne suivrons pas cette approche ici `a cause de deux limita-
tions : d’abord le fait que la strat´egie qui en r´esulte n’est pas invariante par les translations en temps
(ce qui est un probl`eme si l’origine temporelle du chirp est inconnue et doit ˆetre estim´ee) et ensuite
cette technique d´eveloppée pour le cask = 0 ne peutêtre directement ´etendue `a des valeurs dek
quelconques.

Le cadre que nous proposons d’utiliser plutˆot est celui desdistributions temps-fr´equence affines,
comme l’ont développé J. et P. Bertrand [14]. Ces distributions forment une classe enti`ere de distribu-
tions temps-fr´equence. Mais, en comparaison `a la précédente classe de Cohen, son introduction exige
la covariance des distributions qu’elle contient, par rapport `a chacune des extensions `a 3 param`etres
du groupe affine. Cela r´esulte en la construction d’une famille de distributions param´etrisées pour
laquelle nous adopterons la d´efinition suivante [14]:

Definition 9. La distribution de Bertrand(d’indicek 2 R) d’un signal analytiqueX(f) est donn´ee
par

P
(k)
X (t; f) = f2(r+1)�q

Z
�k(u)X (f�k(u)) X (f�k(�u))ei2�tf�k(u) du; (4.36)

avec

�k(u) = �k(u)� �k(�u): (4.37)

Dans cette d´efinitionr et q sont des param`etres réels quelconques, et�k(u) une fonction arbitraire,
tandis que la forme explicite de la fonction de param´etrisation�k(u) est fixée par

�k(u) =

�
k
e�u � 1

e�ku � 1

� 1
k�1

(4.38)
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si k 6= 0; 1, les deux cas sp´eciaux associ´esà k = 0 et k = 1 étant définis par continuit´e par

�0(u) =
u

1� e�u
(4.39)

et

�1(u) = exp

�
1 +

u e�u

e�u � 1

�
: (4.40)

On peut remarquer qu’une distributionde Bertrand est `a valeur réelle sous la condition de sym´etrie
hermitienne�k(u) = �k(�u), une condition que nous supposerons satisfaite dans la suite.

Pour obtenir la formulation temps-fr´equence pour le d´etecteur de chirp en loi de puissance, nous
aurons besoin de quelques r´esultats sur les distributions de Bertrand. Nous les r´esumerons dans les
Propositions 3 `a 6 suivantes, dont les preuves peuvent ˆetre trouvées dans [14] et [13].

Localisation — Étant entendu que la distribution de Wigner-Ville est naturellement adapt´ee aux
chirps linéaires, l’ad´equation entre distributions de Bertrand et chirps en loi de puissance peut ˆetre
prouvée par la proposition suivante [14] :

Proposition 3. Quand elle est appliqu´ee à un chirp en loi de puissance (4.8), la distribution de
Bertrand d’indicek (4.36) estparfaitement localiséesur la courbe de retard de groupetX(f) =
t0 + ckfk�1 et s’écrit

P
(k)
Xr;k

(t; f) = C2 f�(q+1) � (t � tX(f)) ; (4.41)

si et seulement si la fonction de pond´eration arbitraire�k(u) est donn´ee par

�k(u) = _�k(u) (�k(u)�k(�u))r+1 : (4.42)

Ceci prouve que, en termes de localisation temps-fr´equence, la structure des distributions de Ber-
trand est adapt´eeà celle des chirps en loi de puissance, ce qui constitue le premier ingr´edient pour la
détection temps-fr´equencevia une intégration de chemin.

Filtrage — Quand on sort de la classe des chirps en loi de puissance, la distribution de Ber-
trand n’est plus parfaitement localis´ee. Par exemple, quand un signal est filtr´e, la proposition suivante
montre que sa distribution de Bertrand est filtr´ee en cons´equence. Plus pr´ecisément, [13] :

Proposition 4. Quand elle est appliqu´ee au produitX(f) =M(f) Y (f), la distribution de Bertrand

P
(k)
X (t; f) s’écrit

P
(k)
X (t; f) = f q+1

Z
P
(k)
Mr

(t� �; f)P
(k)
Y (�; f) d�; (4.43)

où

Mr(f) = f�(r+1)M(f): (4.44)

Unitarité — Le troisième ingrédient dont nous aurons besoin est l’unitarit´e, pour lequel — en
introduisant des produits scalaires convenables sur la demi-droite des fr´equences positives et sur le
demi-plan temps-fr´equence associ´e — nous avons le r´esultat suivant [14]:
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Proposition 5. Une distribution de Bertrand estunitaire, i.e., satisfait����
Z +1

0
X(f) Y (f) f2r+1 df

����
2

=

Z Z +1

0
P
(k)
X (t; f)P

(k)
Y (t; f) f2q dt df (4.45)

pour tous signauxX(f) et Y (f), si et seulement si la fonction de pond´eration arbitraire�k(u) est
donnée par

�k(u) = _�
1=2
k (u) (�k(u)�k(�u))r+1 : (4.46)

Unitarité étendue — En corollaire aux Propositions 3 and 5, les propri´etés requises de localisation
et d’unitarité peuvent ˆetre simultan´ement remplies si et seulement si_�k(u) = 1, équation dont la
seule solution enk estk = 0 (cela peut ˆetre clairement ´etabli en notant que nous avons la relation
�k(u) = eu �k(�u), quelque soitk [14]). À moins que nous ne voulions consid´erer seulement le cas
des chirps hyperboliques, il semble que les deux propri´etés de localisation et d’unitarit´e ne puissent
pasêtre combin´ees directement, de mani`ereà imiter ce qui a ´eté préalablement fait dans le cas des
chirps linéaires. Une ´echappatoire est cependant possible, qui repose sur la proposition suivante [14] :

Proposition 6. Étant donnée une distribution de Bertrand localis´eeP (k)
X (t; f) aveck < 0, il existe

une distribution auxiliaire~P (k)
X (t; f) caractérisée par

~�k(u) = (�k(u)�k(�u))r+1 (4.47)

et telle que ����
Z +1

0
X(f) Y (f) f2r+1 df

����
2

=

Z Z +1

0

~P
(k)
X (t; f)P

(k)
Y (t; f) f2q dt df (4.48)

pour tous signauxX(f) etY (f).

Cela nous offre un degr´e de liberté supplémentaire dans la manipulation des distributions de Ber-
trand, en assouplissant la contrainte stricte d’unitarit´e associ´ee à une distribution donn´ee via l’in-
troduction d’une paire de distributions et une relation de dualit´e qui les lie. Dans le cas sp´ecifique
k = �1, cette dualit´e est identique `a celleévoquée par A. Unterberger (voir [95]), qui a invent´e les
termes d’ “active” et de “passive” pour distinguer les distributions correspondantes. Pour g´enéraliser,
nous adopterons donc la d´efinition suivante :

Definition 10. La distribution auxiliaire ~P
(k)
X (t; f) est appel´ee la distributionpassiveassociée à

P
(k)
X (t; f), cette dernièreétant qualifiée d’active.

Alors que, par construction, il manque `a la forme passive d’une distribution, la propri´eté de loca-
lisation que poss`ede la forme active qui lui est associ´ee, la premi`ere peut ˆetre explicitement reli´eeà la
dernière, ce qui est mis en ´evidence par la proposition suivante :

Proposition 7. La forme passive~P (k)
X (t; f) d’une distribution de Bertrand localis´ee est reliéeà la

forme active correspondanteP (k)
X (t; f) par

~P
(k)
X (t; f) = f

Z
Gk(f(t� �))P (k)

X (�; f) d�; (4.49)

où

Gk(s) =

Z
ei2�s�k(u) du: (4.50)
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Preuve. En prenant comme point de d´epart la définition de la distribution passive, bas´ee sur la fonction
de pondération~�k(u), nous pouvons ´ecrire

~P
(k)
X (t; f) = f2(r+1)�q

Z
~�k(u)X (f�k(u)) X (f�k(�u)) ei2�tf�k(u) du (4.51)

= f2(r+1)�q
Z

~�k(u)

�k(u)

h
�k(u)X (f�k(u)) X (f�k(�u))

i
ei2�tf�k(u) du (4.52)

=

Z
f2(r+1)�q

_�k(u)

h
�k(u)X (f�k(u)) X (f�k(�u))

i
ei2�tf�k(u) du; (4.53)

de telle sorte que cela fasse apparaˆıtre la fonction de pond´eration�k(u) de la distribution active
associée. En utilisant alors le fait que, pourk � 0, la fonction�k(u) = �k(u)� �k(�u) est bijective

deR versR, on peut faire le changement de variableu = ��1k (v) pour exprimer~P (k)
X (t; f) comme

une transform´ee de Fourier ordinaire. Nous obtenons alors

~P
(k)
X (t; f) =

Z
f2(r+1)�q

_�k(�
�1
k (v))

"
�k(�

�1
k (v))

_�k(�
�1
k (v))

X
�
f�k(�

�1
k (v))

�
X
�
f�k(���1k (v))

�#
ei2�tfv dv

(4.54)

=

Z
Gk(s)P

(k)
X

�
t � s

f
; f

�
ds (4.55)

= f

Z
Gk(f(t� �))P

(k)
X (�; f) d�; (4.56)

avec

Gk(s) =

Z
1

_�k(�
�1
k (v))

ei2�sv dv (4.57)

=

Z
d

dv

�
��1k (v)

�
ei2�sv dv (4.58)

=

Z
ei2�s�k(u) du; (4.59)

d’où le résultat.

Étant donn´e une distribution active, sa contrepartie passive apparaˆıt alors comme une version fil-
trée de celle-ci, la r´eponse impulsionnelleGk du filtreétant dépendant de la fr´equence (la “largeur” en
tempséquivalente deGk varie comme l’inverse de la fr´equence). Dans le cas g´enéral (k quelconque),
aucune expression analytique n’existe pourGk. Remarquons n´eanmoins que dans le cas o`u k = �1
(��1(u) = eu=2, distribution de Unterberger [14]), nous avons explicitement

G�1(s) =

Z
1q

1 + v2

4

ei2�sv dv (4.60)

= 4K0(4�jsj); (4.61)
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où K0(�) est la fonction de Bessel modifi´ee de deuxi`eme esp`ece [1], ce qui est en accord avec les
résultats donn´es dans [95].

Tous les résultats obtenus jusqu’ici peuvent maintenant ˆetre combin´es et ce qui m`ene au r´esultat
central :

Proposition 8. Étant donné le problème de d´etection o`u le signalx(t; �0) à détecter est un chirp en
loi de puissance (4.8) de loi de retard de groupetX(f) = t0+ c0kf

k�1 avec les param`etres inconnus
�0 = (t0; c0), et où le bruit additifn(t) est gaussien, centr´e, stationnaire et de densit´e spectrale de
puissance�n(f), la stratégie optimale admet la formulation temps-fr´equence suivante :

�w(r; t; c) =

Z +1

0
�R

�
t + ckfk�1; f

�
df; (4.62)

avec

�R(t; f) = C2 f2q
Z

~P
(k)
A (t� s; f)P

(k)
R (s; f) ds (4.63)

et

A(f) =
f�(3r+2)

�n(f)
U(f): (4.64)

Preuve. Supposons d’abord que�0 = (t0; c0) est connu. Dans ce cas, `a partir des r´esultats de la
Proposition 3 (localisation) et 6 (unitarit´e étendue), nous obtenons [14] clairement, pour tout signal
Z(f), ����

Z +1

0
Z(f)Xr;k(f) f

2r+1 df

����
2

=

Z Z +1

0

~P
(k)
Z (t; f)P

(k)
Xr;k

(t; f) f2q dt df (4.65)

= C2

Z +1

0

~P
(k)
Z (tX(f); f) f

q�1 df: (4.66)

Il s’en suit que le membre de gauche de l’´equation ci-dessus s’identifie exactement avec la strat´e-
gie (4.24) siZ(f) = R(f)f�(2r+1)=�n(f) etX(f ; �0) = Xr;k(f). En cons´equence, le membre de
droite de la mˆemeéquation nous donne une formulation temps-fr´equence alternative pour le probl`eme
de détection de chirps en loi de puissance et, en utilisant les r´esultats ´etablis en proposition 4 (filtrage),
cela nous conduit finalement au r´esultaténoncé, avec� = �0, i.e., t = t0 et c = c0. Dans le cas r´eel
où le vecteur de param`etres�0 est inconnu, la mˆeme strat´egie doitêtre utilisée en rempla¸cant�0 par
un ensemble de valeurs tests� = (t; c). La détection est alors effective quand

max
(t;c)

�w(r; t; c)> �; (4.67)

où � est un seuil prescrit, tandis que l’estimation de�0 peutêtre conduite avec

�̂0 =
�
t̂0; ĉ0

�
= argmax

(t;c)
�w(r; t; c): (4.68)

Selon ce r´esultat, les chirps en loi de puissance noy´es dans un bruit gaussien peuvent ˆetre détectés
de manière optimalevia une strat´egie d’intégration de chemin dans le plan temps-fr´equence. Leur
paramètre peuvent ˆetre estim´es par une transform´ee de Radon ou Hough g´enéralisée, appliqu´eeà une
distribution bien d´efinie. Une application potentielle de ce r´esultat va maintenant ˆetre discut´ee.
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4.6 L’exemple des ondes gravitationnelles

Alors que l’existence des ondes gravitationnelles a ´eté prédite par la th´eorie de la relativit´e géné-
rale depuis longtemps, aucune preuve exp´erimentale n’a ´eté obtenue jusqu’ici.̀A vrai dire, détecter
les ondes gravitationnelles sur terre rel`eve du défi à cause des minuscules effets qu’elles induisent
sur les syst`emes physiques. Cela n’est seulement que depuis un pass´e très récent que des projets aux
limites des technologies actuelles, ont ´eté lancés. Pour les projets VIRGO et LIGO — les deux plus
importants projets, qui sont toujours en construction —, le d´etecteur prend la forme d’un interf´ero-
mètre géant, destin´e à convertir le passage d’une onde gravitationnelle en un mouvement d´etectable
de franges d’interf´erences. Parce que les ondes gravitationnelles sont si faibles, bien que chaque bras
des interféromètres mesurent plus de 3 km de long, leur d´etection est soumise `a l’obtention d’une
sensibilité de l’ordre de10�22. Étant donn´ees les limitations dues au bruit, ceci devrait ˆetre pourtant
possible dans une “fenˆetre” fréquentielle comprise entre quelques dizaines et quelques centaines de
Hertz.

En ce qui concerne la d´etection (du point de vue du traitement du signal), la question cl´e est de
d’obtenir des informationsa priori sur les structures possibles des formes d’ondes attendues. En fait,
une grande vari´eté de situations peut ˆetre consid´erée [90], chacune correspondant `a un type de signal,
plus ou moins bien caract´erisé. Il est néanmoins a peu pr`es universellement accept´e que la source la
plus prometteuse en termes de d´etection d’ondes gravitationnelles est celle produite par la coalescence
d’un système binaire massif, la seule situation que nous consid´ererons ici.

4.6.1 Un mod̀ele pour la coalescence de binaires

Une “binaire coalescente” est un syst`eme de deux objets astrophysiques tr`es massifs (e.g., des
étoilesà neutrons, ou des trous noirs), en rotation l’un autour de l’autre. Au cours de ce processus de
rotation, de l’énergie est rayonn´ee sous forme d’ondes gravitationnelles. La cons´equence en est que
les deux objets deviennent de plus en plus proches, ce qui acc´elère leur rotation, jusqu’`a la coales-
cence. Ceci montre intuitivement que les binaires coalescentes devrait donner naissance `a des ondes
gravitationnelles qui se comportent comme des chirps.

En première approximation (newtonienne), une forme explicite peut ˆetre donn´eeà la forme d’onde
espérée.À un terme de phase pr`es, elle peut ˆetre exprimée comme la partie r´eelle du signal `a valeurs
complexes [93, 88]

x(t; t0; d) = A (t0 � t)�� e�i2�d(t0�t)� U(t0 � t); (4.69)

où � = 1=4 et � = 5=8. Dans cette expression,t0 est le temps de coalescence, etd etA sont des
constantes qui d´ependent principalement des masses individuelles des objets et, bien sur, d’autres
quantités géométriques comme la distance de la binaire `a la terre ou bien l’orientation relative des
fronts d’ondes et du d´etecteur. Plus pr´ecisément,étant donn´es deux objets de masse individuellesm1

etm2, on peut introduire la “masse totale”M = m1 +m2 et la “masse r´eduite”� telle que��1 =
m�1

1 +m�1
2 . En utilisant ces deux quantit´es, on peut d´efinir [93] la “chirp mass”M = �3=5M2=5 et

selon [88], on obtient

d = 160� 33=8M�5=8
� � 241M�5=8

� ; (4.70)

avecM� =M=M� et oùM� désigne la masse solaire. Pour une orientation relative optimale entre
le détecteur et la binaire, nous avons qui plus est [78]

A =

�
4

33=4

�
1:92� 10�21

M5=4
�

r
� 3:37� 10�21

M5=4
�

r
; (4.71)
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où r est la distance terre-binaire, exprim´ee en Mpc.
Selon la Définition 1, la forme d’onde (4.69) peut alors ˆetre interprétée comme un chirp, si l’am-

plitudea(t) = (t0 � t)�� et la phase'(t) = 2�d(t0 � t)� sont telles que���� _a(t)

a(t) _'(t)

���� = �

2�d�
(t0 � t)�� � 1 (4.72)

et ���� �'(t)_'2(t)

���� = j� � 1j
2�d�

(t0 � t)�� � 1: (4.73)

Comme précisé dans [36], ces deux conditions m`enent en fait `a une seule condition selon laquelle
le modèle (4.69) peut ˆetre interprété en tant que chirp sur un intervalle de temps caract´erisé par

t0 � t� tc =

�
maxf�; j� � 1jg

2�d�

�1=�

: (4.74)

Dans le cas sp´ecifique des ondes gravitationnelles, cela conduit, `a partir des valeurs des diff´erentes
constantes dont nous disposons, `a

tc = 3� (1600 �)�8=5M� � 3:6� 10�6M�: (4.75)

En supposant que l’interpr´etation en tant que chirp est valide, la forme d’onde (4.69) a (approxi-
mativement) pour fr´equence instantan´ee

fx(t) =
5d

8
(t0 � t)�3=8 (4.76)

et la condition (4.74) d´efinit alors un intervalle de fr´equence caract´erisé par

f � fc = fx(tc) = 100� (1600 �)3=5M�1
� � 1:66� 104M�1

� : (4.77)

La Figure 4.1 illustre la validit´e de cette condition quandm1 varie entre1M� et20M�, et quand
m2 = km1, avec1 � k � 10. On déduit de ce diagramme que, dans le cas o`u la fréquence de
coupure haute du d´etecteur est approximativement de500Hz, l’interprétation en tant que chirp peut
être consid´erée comme valide pour une grand plage de scenarii qu’il est vraisemblable d’observer.

En considérant (4.69) comme un chirp, son spectre peut ˆetre obtenu par une approximation de
phase stationnaire, qui conduit au r´esultat suivant :

Proposition 9. Dans le domaine o`u elle peutêtre consid´erée comme un chirp, la forme d’onde (4.69)
correspond approximativement `a unchirp en loi de puissanceau sens de la D´efinition 6, avec une
enveloppe d’indicer = (���=2)=(�� 1), une phase d’indicek = �=(�� 1), un décalage de phase

 = �=4, un taux de modulation

c = �� � 1

�
(d�)�1=(��1) (4.78)

et une amplitude

C =
Apj� � 1j (d�)

(��1=2)=(��1): (4.79)

L’erreur relative de cette approximation d´epend de la fr´equence et est born´ee par

Q(f) =
5

4

�
�2

� � 1
+ �+

(� � 2)(� � 1=2)

6

�
(d�)1=(��1) f��=(��1): (4.80)

139



0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7
masse 2 / masse 1 = 1 a 10 (de bas en haut)

masse 1 (en masses solaires)

fr
e

q
u

e
n

c
e

 c
ri
ti
q

u
e

 (
k
H

z
)

FIG. 4.1 – Mesure quantitative de la validit´e de l’interprétation en tant que chirp des ondes gravi-
tationnelles. Les ondes gravitationnelles ´emises par une binaire coalescente peuvent ˆetre consid´erées
comme des chirps tant que leur fr´equence maximale est plus petite que la fr´equence critique qui d´e-
pend des massesm1 etm2 de la binaire. Ce diagramme montre (en lignes continues) la fr´equence
critique quandm1 varie entre1M� et 10M�, et quandm2 = km1, avec1 � k � 10. La ligne
pointillée (placée arbitrairement `a 500Hz) désigne la fréquence de coupure haute du d´etecteur, ce qui
permet d’avoir une borne approch´ee pour la validité de l’approximation.
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Preuve. Le calcul du spectre de Fourier de (4.69) revient `a évaluer l’intégrale

X(f ; t0; d) = e�i2�ft0
Z +1

0
a(t) ei (t) dt; (4.81)

aveca(t) = A t�� et (t) = �2�(dt� � ft).
Il est clair que (t) n’a pas de point stationnaire quandf < 0 et avec le r´esultat donn´e en An-

nexe D, on peut d’abord conclure que (4.69) est presque analytique, tant que la condition (4.74) est
satisfaite.

Pour les fréquences positives, (t) a un et un seul point stationnaire non d´egénéré, nommément

ts =

�
f

d

�1=(��1)

; (4.82)

avec la condition� (ts) > 0.
Quand on applique sp´ecifiquement le r´esultat général (D.6) au mod`ele (4.69), il vient que (4.81)

coı̈ncide exactement avec un chirp en loi de puissance dans le sens de la D´efinition 6, avec les
constantes donn´ees en (4.78) et (4.79). Pour chaque fr´equence, l’´evaluation de phase stationnaire
du spectre revient `a considérer la contribution du signal au pointt = ts, et donc le reste (D.8) en ce
point. Après avoir retiré minutieusement chaque ind´etermination lors du calcul deQ(ts), on obtient
finalement le r´esultat donn´e en (4.80), qui permet de borner le domaine en fr´equence sur lequel l’ap-
proximation de phase stationnaire peut ˆetre consid´erée comme valide, ´etant donn´ee une erreur relative
maximale.

Deux remarques peuvent ˆetre faites `a ce point. Premi`erement, alors que les “conditions de chirp”
de la Définition 1 sont couramment pr´esentées comme validant l’approximation de phase stationnaire
(voir, e.g., [36, 88] ou [33]), la validit´e de l’approximation de phase stationnaire est en fait contrˆolée
par (D.8), ce qui est finalement plus compliqu´e. Deuxièmement, si on applique le pr´ecédent résultat
(4.80) au cas des ondes gravitationnelles, on obtient que, pour une erreur relative d’approximation au
pluségaleàx pourcents, la fr´equence doit ˆetre bornée par

f � 7:18� 104 x3=5M�1
� ; (4.83)

ce qui est en accord avec les conditions (de chirp) qualitatives en (4.77). Les crit`eres exact et heuris-
tique sont donc de mˆeme nature, mais les r´esultats de la Proposition 9 autorisent un contrˆole quantitatif
de l’approximation.

La Fig. 4.2, qui pr´esente un exemple typique d’une forme d’onde, illustre l’efficacité de l’approxi-
mation de phase stationnaire.

4.6.2 Un d́etecteur temps-fŕequence simplifíe

À strictement parler, le d´etecteur temps-fr´equence optimal (4.62) n´ecessite le calcul d’une version
filtr ée (en temps) de la distribution de Bertrand de l’observation. Ceci implique malheureusement
un gros coˆut de calcul. Pour aboutir `a une solution pratiquement exploitable, il est obligatoire de
considérer une description temps-fr´equence plus simple, mais toujours pr´eciseà la place de la fonction
exacte�R(t; f) donnée en (4.63). Alors qu’une simplification ne semble pas possible dans le cas
général, il apparaˆıt qu’elle peutêtre effectu´ee dans le cas sp´ecifique des ondes gravitationnelles, grˆace
aux valeurs des param`etres physiques qui sont impliqu´es.
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FIG. 4.2 – Approximation de phase stationnaire du spectre d’une onde gravitationnelle. Le signal
que l’on esp`ere être émis par une binaire coalescente compos´ee de deux objets de 1M� et 10M�

à une distance de 200 Mpc, est montr´e en(a), avec la fréquence instantan´ee correspondante en(b).
La densité spectrale d’´energie est donn´ee en(c) (ligne pleine), accompagn´ee de son approximation
de phase stationnaire (ligne pointill´ee). La validité de cette approximation est contrˆolée par l’erreur
relative (qui dépend de la fr´equence) en(d).
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En effet, si nous revenons `a (4.63), nous pouvons ´ecrire d’une fa¸conéquivalente,Z
�R(t; f) e

�i2��tdt = C2 f2r+1�q h(u)

Z
P
(k)
R (t; f) e�i2��tdt (4.84)

avec

h(u) =
(�k(u)�k(�u))r+1

_�k(u)
A (f�k(u)) A (f�k(�u)) (4.85)

et

u = ��1k

�
�

f

�
: (4.86)

À cause des limitations aux basses fr´equences (bruit sismique) et aux hautes fr´equences (bruit de
photons), la largeur effective d’observation est n´ecessairement restreinte `a un intervalle en fr´equence
passe-bandef� � f � f+ (avec comme valeurs typiques, que l’on pourrait raisonnablement choisir,
f� � 50Hz etf+ � 500Hz). Ceci a pour cons´equence que le spectre de FourierZ

P
(k)
R (t; f) e�i2��t dt = f2r+1�q (�k(u)�k(�u))r+1 R (f�k(u)) R (f�k(�u)) (4.87)

est non nul seulement dans la bande

juj � u+ = log
f+
f�
; (4.88)

ce qui montre que le facteurh(u) de la transform´ee de Fourier deP (k)
R (t; f) peutêtre simplement

ignoré dans (4.84) dans la mesure o`u il est presque ´egalà1 pourjuj � u+.
À l’int érieur de la bande de fr´equence d´efinie ci-dessus, on peut consid´erer (voir, e.g., [55, 56]) que

la densité spectrale de puissance�n(f) du bruit d’observationn(t) varie, en moyenne, continuement
et se comporte1 en�n(f) = �2 f��, avec� � 1 . En supposant donc que

A(f) = ��2 f ��(3r+2) (4.89)

pourf� � f � f+, nous obtenons de (4.85) que

h(u) = ��4
(�k(u)�k(�u))��(2r+1)

_�k(u)
(4.90)

pour juj � u+. Dans le cas des binaires coalescentes (k = �5=3, r = 1=6) et d’un bruit en “1/f ”
(� = 1), cela se r´eduit alorsà

�4 h(u) =

�
��5=3(u)��5=3(�u)

��1=3
_��5=3(u)

; (4.91)

une quantit´e qui, dans l’espace consid´eré des fonctions d´efinies sur un intervalle limit´e enu, peutêtre
considérée comme l’élément neutre de la convolution, comme illustr´e en Fig. 4.3.

1. Notons que ceci n’est qu’une premi`ere approximation et que, dans le cas des d´etecteurs r´eels, des raffinements doivent
être faits sur la base de mod`eles plus r´ealistes.
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FIG. 4.3 – Quand la bande passante du d´etecteur est limit´ee, la fonction temps-fr´equence `a utiliser,
peutêtre bien approch´ee par une distribution de Bertrand `a condition que la fonction�4h(u), définie
en (4.91), agisse comme l’´elément neutre de la convolution dans l’espace de fonction `a support born´e
en u. La validité de cette approximation est illustr´ee ici en montrant dans le diagramme du haut
�4h(u) (ligne pleine) et la fonction indicatrice de l’intervalle enu associéeà la bande de fr´equence
50Hz – 450Hz (ligne pointillée), et en comparant dans le diagramme du bas leur transform´ees de
Fourier.
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Quand l’approximation ci-dessus est valide, cela conduit alors `a un détecteur semblable `a (4.62),
mais avec la simplification

�R(t; f) � C2

�4
f q+2��(4r+3) P

(k)
R (t; f): (4.92)

En partant de cette structure simplifi´ee, le probl`eme final est de trouver une approximation pr´ecise
et facileà mettre en œuvre de la distribution de BertrandP

(k)
R (t; f). Puisque la caract´eristique-clé

de cette distribution est sa localisation parfaite (4.41) sur les chirps “adapt´es”, la solution que nous
proposons est de la remplacer par unspectrogramme r´ealloué[5, 9] �Shx(t; f) qui, lorsqu’il est appliqu´e
au même chirp en loi de puissance, se comporte approximativement en

�Shxr;k (t; f) � C2 f�2(r+1) � (t� tX(f)) : (4.93)

L’efficacité de cette approximation est illustr´ee en Fig. 4.4.
En comparant (4.41) et (4.93), nous sommes conduits `a choisirq = 2r+1, ce qui donne la forme

finale du détecteur optimal approch´e :

�w(r; t; c)� C2

�4

Z +1

0

�Shr

�
t + ckfk�1; f

�
f2(��(r+1)) df: (4.94)

Dans le cas sp´ecifique des binaires coalescentes, nous pr´eférerons param´etrer le signal `a détecterà
l’aide de son temps de coalescencet et de sa “chirp mass” r´eduiteM�. Avec les constantes correctes,
nous obtenons finalement (`a un facteur d’amplitude pr`es)

�w (r; t;M�) /
Z
L(t;M�)

�Shr (�; f) f
�2=3; (4.95)

avec

L(t;M�) =
n
(�; f)

��� t� � = 3� 1008=3M�5=3
� f�8=3

o
: (4.96)

4.6.3 Une illustration

Pour illustrer l’efficacité de l’approche propos´ee, nous pr´esentons en Fig. 4.5 deux exemples dif-
férents bas´es sur une des situations typiques discut´ees dans [55, 56]. Dans ces deux exemples, on
suppose que la binaire est constitu´ee de deux objets de1M� et 10M� (temps de coalescence fix´e à
t = 0). Dans le premier exemple, la binaire est localis´eeà une distance de 200 Mpc de la terre, et 1
Gpc dans le deuxi`eme exemple. La simulation a ´eté faite en alt´erant les donn´ees par un bruit additif
gaussien, avec� = 1 et�2 = 0:7� 10�42=Hz sur une plage de fr´equence de50Hz – 500Hz. La stra-
tégie propos´ee, bas´ee sur le spectrogramme r´ealloué, n’atteint pas la performance id´eale prédite par
la théorie du filtre adapt´e, à cause de la pr´ecision limitée des différentes approximations impliqu´ees
pour son obtention (en particulier, la nature `a bande limitée du signal implique que la distribution de
Bertrand ne peut ˆetre localisée le long de la ligne de retard de groupe). Cependant, cette figure met
enévidence que cette strat´egie permet clairement la d´etection du chirp et qu’elle pr´esente des perfor-
mances qui d´epassent celles d’une simple int´egration de chemin faite sur le spectrogramme standard.

Dans l’exemple de la Fig. 4.5, la chirp massM� aété implicitement suppos´ee connue, ce qui n’est
en aucun cas vrai en pratique. Si l’on suppose queM� est inconnue, une strat´egie plus sophistiqu´ee
consiste alors `a appliquer la pr´ecédente en parall`ele enévaluant autant d’int´egrales de chemin que
nécessaire pour ´echantillonner convenablement les valeurs deM� sur un intervalle raisonnable de
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FIG. 4.4 – Distributions temps-fréquence pour les ondes gravitationnelles.Étant donnée une onde
gravitationnelleémise par une binaire coalescente (temps de coalescence fix´e à t0 = 0), on attend
d’une distribution temps-fr´equence “adapt´ee” qu’elle soit aussi localis´ee que possible sur la ligne
de fréquence instantan´ee. Cette figure compare la repr´esentation “idéale” (a) avec certaines distri-
butions candidates. Du point de vue th´eorique, il est connu que la distribution que l’on d´esire, est
obtenue en utilisant la distribution de Bertrand adapt´ee (k = �5=3) : ceci estillustrée en(b), où
l’algorithme décrit dans [48] aété utilisé. Une bonne approximation, simple `a mettre en œuvre, est
donnée par le spectrogramme r´ealloué (c). Ces deux situations contrastent avec celles obtenues par
la distribution de Wigner-Ville(d), le spectrogramme(e) et le scalogramme(f).
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FIG. 4.5 – Détection d’une onde gravitationnelle. Cette figure illustre l’efficacit´e d’une détection
temps-fréquence optimale d’une onde gravitationnelle issue d’une binaire (temps de coalescencet =
0) compos´ee de deux objets de1M� et 10M� à une distance de 200 Mpc dans le cas(a) et 1 Gpc
dans le cas(b). Puisque la distance entre la binaire et la terre change simplement l’amplitude du
signal, le rapport signal sur bruit est le seul param`etre qui est modifi´e entre ces deux exemples.
Chaque graphique compare le module carr´e de l’enveloppe du signal en sortie du filtre adapt´e (trait
mixte) avec une strat´egie temps-fr´equence bas´ee sur une int´egration de chemin sur le spectrogramme
classique (trait pointillé) et sa version r´eallouée (trait plein). Pour faire apparaˆıtre clairement ce
qui est gagn´e en terme de contraste, le maximum de chacune de ces courbes a ´eté arbitrairement
normalisé à l’unité.
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FIG. 4.6 – Détection-estimation conjointe d’une onde gravitationnelle `a partir du spectrogramme
réalloué. Dans le cas o`u le paramètre de chirp massM� est inconnu, diff´erentes int´egrations de
chemin (similaires `a celle faites en Fig. 4.5, mais sur un certain nombre de courbes temps-fr´equence)
doiventêtreévaluées, ici sur le spectrogramme r´ealloué. Ceci résulte en une surface dont le maximum
permet la détection de l’onde gravitationnelle (quand il d´epasse un seuil prescrit) et l’estimation `a
la fois du temps de coalescence et de la chirp mass (les valeurs r´eelles sont indiqu´ees par des lignes
pointillées).

valeurs. Les Figs. 4.6 et 4.7 montrent l’application de cette strat´egie pour le spectrogramme r´ealloué
et le spectrogramme standard, respectivement. Ce probl`eme de d´etection-estimation conjointe permet
doncégalement une estimation deM�. Il doit être noté que, lorsque l’on parcourt les valeurs test
deM�, l’ énergie du signal de r´eférence est modifi´ee. La sortie de chaque d´etecteur doit donc ˆetre
divisée par un facteur proportionnel au module carr´e de l’amplitude du signal de r´eférence (qui varie
enM5=3

� ) pour pouvoir comparer des r´esultats coh´erents.

4.7 Conclusion

L’objectif de ce chapitre ´etait de combiner des ´eléments emprunt´esà la théorie de la d´etection
optimale età l’analyse temps-fr´equence pour traiter le probl`eme de la d´etection temps-fr´equence opti-
male de chirps. Nous en avons extrait un cadre coh´erent dans lequel nous montrons que les strat´egies
intuitives de détection de chirps par des int´egrations le long de chemin dans le plan temps-fr´equence
revêtent la propri´eté d’optimalité sous plusieurs conditions, la plus importante d’entre elles ´etant l’uti-
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FIG. 4.7 – Détection-estimation conjointe d’une onde gravitationnelle `a partir du spectrogramme.
La surface montr´ee ici est la réponse du d´etecteur(-estimateur) bas´e des intégrations de chemin sur le
spectrogramme standard. Celle-ci doit ˆetre compar´ee avec celle de la Fig. 4.6. Le manque d’acuit´e du
pic de détection et le mauvais contraste entre son maximum et le niveau du bruit font que la proc´edure
de détection est plus difficile `a réaliser. Les lignes pointill´ees indiquent les valeurs vraies du temps de
coalescence et de la chirp mass.

149



lisation d’une distribution temps-fr´equenceunitaireet à lalocalisation parfaitesur la loi de fréquence
intantanée (ou de retard de groupe) du signal `a détecter. Cette distribution est g´enéralement difficile `a
calculer num´eriquement. Nous sugg´erons la remplacer par uneapproximatioǹa l’aide d’une distribu-
tion réallouée simple `a mettre en œuvre (comme le spectrogramme ou le scalogramme). On dispose
alors d’un moyen syst´ematique et simple pour obtenir des strat´egies de d´etectionquasi-optimalede
chirp.À ce titre, l’exemple des ondes gravitationnelles (que l’on pense ´emises par les binaires coales-
centes) est un cas d’importance particuli`ere, et la possibilit´e de leur d´etection temps-fr´equence a ´eté
discutée avec une certaine attention. Les conditions pour qu’une strat´egie quasi-optimale de d´etection
ont été établies. Cela met donc une nouvelle fois en ´evidence, dans un exemple pr´ecis, que la m´ethode
de réallocation peut prendre part `a une chaˆıne de traitement du signal dans un but diff´erent de celui de
l’analyse. La question est maintenant de discuter plus avant ce qui peut ˆetre réellement gagn´e par une
telle approche en termes de flexibilit´e et de robustesse.
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Conclusion

Pour conclure, nous ferons un bilan de ce qu’offre la m´ethode de r´eallocation comme potentialit´es
pour l’analyse du signal et pour sa manipulation. Nous axerons ce bilan en deux points :

� Analyse temps-fr´equence du signal et distributions r´eallouées
La méthode de r´eallocation permet d’obtenir une description temps-fr´equence pouvant raisonna-

blementêtre comprise par des personnes ne disposant pas de connaissances profondes du contexte de
l’analyse temps-fr´equence. Les situations typiques pour lesquelles les distributions r´eallouées donnent
de bons r´esultats en terme de lisibilit´e de la repr´esentation, sont celles o`u le rapport signal sur bruit
(RSB) est favorable et o`u le signal est une modulation en fr´equence i.e., dont la densit´e d’énergie
temps-fréquence est essentiellement concentr´ee autour d’une courbe dans le plan temps-fr´equence.
La description donn´ee est alors fortement contrast´ee. Son interpr´etation n’est pas compliqu´ee par les
termes interf´erentiels qui apparaissent classiquement dans les repr´esentations de la classe de Cohen
ou de la classe affine.

La présence de bruit att´enue le contraste de la description offerte par les distributions r´eallouées.
Pour remédierà ce problème, nous avons propos´e une supervision de la r´eallocation, dont l’objectif
principal est de donner simultan´ement une bonne repr´esentation du signal et du bruit. La supervision
présente un int´erêt jusqu’à des RSB de0 dB environ, ordre de grandeur que nous avons pu ´evaluer sur
quelques exemples.

Les distributions r´eallouées sont ´egalement utiles pour des probl`emes de d´etection. Nous avons
montré que, pour le probl`eme sp´ecifique de la d´etection temps-fr´equence de chirp, elles pouvaient ˆetre
à la base de sch´ema de d´etection temps-fr´equence quasi-optimaux. La mise en œuvre de ces strat´egies
de détection est plus simple et rapide que celle des strat´egies optimales. En effet, la plupart des dis-
tributions réallouées peuvent ˆetreévaluéesà l’aide d’algorithmes efficaces (nous les avons pr´esentés
dans le cas du spectrogramme et du scalogramme), avec des temps de calcul acceptables sur des ordi-
nateurs aux performances standards (d’aujourd’hui). On ne peut cependant pas parler d’algorithmes
rapides. Il ne serait pas raisonnable d’int´egrer les distributions r´eallouées dans un traitement o`u le
coût de calcul est un aspect crucial, comme c’est le cas, par exemple, pour la d´etection “en ligne” des
ondes gravitationnelles.

� Caractérisation du signal et carte temps-fr´equence
Nous avons montr´e que la m´ethode de r´eallocation peut conduire `a des formes de description du

signal différentes de celle donn´ee par une distributiond’´energie temps-fr´equence. Plus pr´ecisément, en
utilisant de l’information d´eduite du champ des vecteurs de r´eallocation, on peut dessiner une carte qui
découpe le plan temps-fr´equence en r´egions, chacune associ´eeà une composante du signal. Autrement
dit, cela revient `a décomposer le signal en composantes modul´ees en fr´equence et/ou amplitude. La
carte temps-fr´equence peut alors servir de point de d´epartà de nombreuses applications comme la
classification, le d´ebruitage,: : : Nous en avons donn´e quelques illustrations.
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Il est important de signaler deux limitations de cette approche :

– la partition du plan temps-fr´equence est sensible au bruit. Nous avons propos´e plusieurs al-
gorithmes de fusion de partition pour diminuer cette sensibilit´e, mais il faudrait en faire une
évaluation plus compl`ete.

– la réallocation différentielle, et les post-traitements (classification ascendante hi´erarchique, en
particulier) nécessaires `a l’obtention de la carte temps-fr´equence, sont des algorithmes lourds
en temps de calcul ce qui limite fortement la taille des signauxacceptables.

� Perspectives
Ce travail ouvre des voies de recherches `a explorer et laisse quelques questions sans r´eponse.

Parmi elles, en voici quatre que nous estimons importantes :

– les calculs faits au chapitre 2 concernant les densit´es de probabilit´es des op´erateurs de r´eallo-
cation n’ont de r´eelle utilité que s’ils sont exploit´es pour permettre, par exemple, l’obtention de
traitements optimaux au sens d’un certain crit`ere statistique.

– En ce qui concerne la supervision, plusieurs questions restent en suspens, en particulier quel
est le bon choix `a faire pour la famille de fenˆetre à utiliser, et pour le moyen de combiner
l’information provenant de spectrogrammes et de champs de vecteurs de r´eallocation bas´es sur
des fenêtres différentes.

– nous avons d´ejà mentionn´e plus haut que les algorithmes de fusion m´eritent une ´evaluation plus
approfondie. Ajoutons encore qu’il serait int´eressant de concr´etiser l’idée de la r´egularisation
du champ de vecteurs de r´eallocation pour la stabilisation de la partition temps-fr´equence.

– L’avantage principal de la formulation temps-fr´equence du probl`eme de d´etection de chirp est
qu’elle permet `a partir du détecteur quasi-optimal, d’ajuster, tr`es intuitivementet de mani`ere très
flexible, le compromis entre efficacit´e (nombre de fausses alarmes, largeur du pic de d´etection)
et robustesse (au bruit ou `a l’égard d’unécart du signal au mod`ele de référence) de la d´etection.
Il resteà montrer que cela peut effectivement se mettre en pratique dans des cas concrets (celui
de la détection des ondes gravitationnelles par exemple).
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Annexes

A Simplifications des oṕerateurs de ŕeallocation du spectrogramme

Cette annexe r´eunit tous les calculs n´ecessaires pour la simplification des d´efinitions (1.5) et (1.6)
des opérateurs de r´eallocation du spectrogramme en temps et en fr´equence respectivement que nous
rappelons maintenant :

t̂hx(t; !) =
1

Shx(t; !)

ZZ
sWx(s; �)Wh(s� t; � � !)

dsd�

2�
(A.1)

!̂hx(t; !) =
1

Shx(t; !)

ZZ
�Wx(s; �)Wh(s � t; � � !) dsd�

2�
: (A.2)

Ces simplifications sont utilis´ees en Sect. 1.2 pour diverses interpr´etations.

A.1 Opérateur de réallocation en temps

Il s’agit remplacer dans le num´erateur de l’éq. (A.1)

Ihx =

ZZ
sWx(s; �)Wh(s� t; � � !)

dsd�

2�
(A.3)

la distribution de Wigner-Ville du signal et de la fenˆetre par sa d´efinition

Wx(t; !) =

Z
x(t+ s=2)x�(t� s=2)e�is! ds: (A.4)

On obtient alors une int´egrale quadruple

Ihx =

ZZ ZZ
s x(s+ u=2)x�(s � u=2)e�iu�h(s� t+ v=2)h�(s � t� v=2)e�iv(��!)dudv

dsd�

2�
;

(A.5)

que l’on va simplifier en int´egrant selon chacune des variables dans un ordre d´eterminé. On effectue
d’abord la somme selon� Z

e�i(u+v)�
d�

2�
= �(u+ v) (A.6)

de laquelle r´esulte une distribution de Dirac que l’on fait agir sur le reste de la fonction par une
intégration env qui donne :Z

h(s � t + v=2)h�(s� t � v=2)eiv!�(u+ v) dv = h(s� t � u=2)h�(s� t + u=2)e�iu!: (A.7)
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Après un changement de variablesfs1 = s+ u=2; s2 = s � u=2g de jacobien ´egalà 1

Ihx =

ZZ
s1 + s2

2
x(s1)x

�(s2)h(s1 � t)h�(s2 � t)e�i(s1�s2)!ds1ds2; (A.8)

on reconnaˆıt la FCT du signal que l’on isole, ce qui m`ene au r´esultat finalZZ
sWx(s; �)Wh(s� t; � � !) dsd�

2�
= Re

�
Fh�x (t; !)

Z
s x(s)h�(s� t)e�i!s ds eit!=2

�
:

(A.9)

A.2 Opérateur de réallocation en fŕequence

On procède de la mˆeme mani`ere pour l’opérateur de r´eallocation en fr´equence, ´eq. (A.2), dont on
metà part le num´erateur

Jhx =

ZZ
�Wx(s; �)Wh(s� t; � � !) dsd�

2�
; (A.10)

dans lequel on ins`ere les expressions des distributions de Wigner-Ville du signal et de la fenˆetre

Jhx =

ZZ ZZ
� x(s+ u=2)x�(s� u=2)e�iu�h(s� t+ v=2)h�(s� t � v=2)e�iv(��!)dudvdsd�

2�
:

(A.11)

On intègre d’abord en fr´equenceZ
�e�i(u+v)�

d�

2�
= i�0(u+ v); (A.12)

ce qui nous donne cette fois-ci la d´erivée de la distribution de Dirac dont l’action sur le reste de la
fonctionà intégrer conduit `a

Z
h(s� t + v=2)h�(s� t� v=2)e�iv!i�0(u+ v) dv =

(�i) �h0(s � t � u=2)h�(s� t+ u=2)e�iu! + h(s � t � u=2)h0�(s� t + u=2)e�iu!+

i!h(s� t� u=2)h�(s� t + u=2)e�iu!
�
: (A.13)

On effectue le mˆeme changement de variable qu’en section pr´ecédentefs1 = s + u=2; s2 =
s � u=2g :

Jhx = !Shx(t; w)�
i

2

ZZ
x(s1)x

�(s2)
�
h0(s2 � t)h�(s1 � t) � h(s2 � t)h0�(s1 � t)

�
e�i(s1�s2)!ds1ds2;

(A.14)

d’où après réarrangement des termes, le r´esultatZZ
�Wx(s; �)Wh(s� t; � � !)

dsd�

2�
= !Shx(t; !)� Im

�
Fh�x (t; !)

Z
x(s)h0�(s� t)e�i!s ds eit!=2

�
:

(A.15)
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B Simplifications des oṕerateurs de ŕeallocation du scalogramme

Cette annexe r´eunit tous les calculs n´ecessaires pour la simplification des d´efinitions (1.70) et
(1.72) des op´erateurs de r´eallocation du spectrogramme en temps et en ´echelle respectivement que
nous rappelons maintenant :

b̂ x (a; b) =
1

S x (a; b)

ZZ
sWx(s; �)W 

�
s� b

a
; a�

�
dsd�

2�
(B.1)

!̂ x (a; b) =
1

S x (a; b)

ZZ
�Wx(s; �)W 

�
s� b

a
; a�

�
dsd�

2�
(B.2)

â x (a; b) = !0=!̂
 
x (a; b): (B.3)

B.1 Opérateur de réallocation en temps

Il s’agit remplacer dans le num´erateur de l’éq. (B.1)

I x =

ZZ
sWx(s; �)W 

�
s� b

a
; a�

�
dsd�

2�
(B.4)

la distribution de Wigner-Ville du signal et de la fenˆetre par sa d´efinition

Wx(t; !) =

Z
x(t+ s=2)x�(t� s=2)e�is! ds: (B.5)

On obtient alors une int´egrale quadruple

I x =

ZZ ZZ
s x(s+ u=2)x�(s� u=2)e�iu� 

�
s� b

a
+ v=2

�
 �
�
s� b

a
� v=2

�
e�iva�dudv

dsd�

2�
;

(B.6)

que l’on va simplifier en int´egrant selon chacune des variables dans un ordre d´eterminé. On effectue
d’abord la somme selon� Z

e�i(u+av)�
d�

2�
= �(u+ av) (B.7)

de laquelle r´esulte une distribution de Dirac que l’on fait agir sur le reste de la fonction par une
intégration env qui donne :Z

 

�
s � b
a

+ v=2

�
 �
�
s � b
a

� v=2
�
�(u+ av) dv =

1

a
 

�
s� b
a

� u

2a

�
 �
�
s� b

a
+

u

2a

�
:

(B.8)

Après un changement de variablesfs1 = s+ u=2; s2 = s � u=2g de jacobien ´egalà 1

I x =

ZZ
s1 + s2

2
x(s1)x

�(s2)
1

a
 

�
s2 � b

a

�
 �
�
s1 � b
a

�
ds1ds2; (B.9)

on reconnaˆıt la transformée en ondelettes du signal que l’on isole, ce qui m`ene au r´esultat finalZZ
sWx(s; �)W 

�
s� b

a
; a�

�
dsd�

2�
= Re

�
T �x (a; b)

Z
s x(s)

1p
a
 �
�
s � b
a

�
ds

�
(B.10)
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B.2 Opérateur de réallocation enéchelle

On procède de la mˆeme mani`ere pour l’opérateur de r´eallocation en fr´equence, ´eq. (B.2), dont on
metà part le num´erateur

J x =

ZZ
�Wx(s; �)W 

�
s � b
a

; a�

�
dsd�

2�
; (B.11)

dans lequel on ins`ere les expressions des distributions de Wigner-Ville du signal et de la fenˆetre

J x =

ZZ ZZ
� x(s+ u=2)x�(s � u=2)e�iu� 

�
s� b

a
+ v=2

�
 �
�
s� b
a

� v=2

�
e�iva�dudv

dsd�

2�
:

(B.12)

On intègre d’abord en fr´equenceZ
�e�i(u+av)�

d�

2�
=
i

a

d

dv

�
�(u+ av)

�
; (B.13)

ce qui nous donne cette fois-ci la d´erivée de la distribution de Dirac dont l’action sur le reste de la
fonctionà intégrer conduit `a

Z
 

�
s � b
a

+ v=2

�
 �
�
s � b
a

� v=2
�
i

a

d

dv

�
�(u+ av)

�
dv =

1

2ia2

�
 0
�
s� b

a
� u

2a

�
 �
�
s� b
a

+
u

2a

�
�  

�
s� b

a
� u

2a

�
 0�
�
s� b

a
+

u

2a

��
: (B.14)

On effectue le mˆeme changement de variable qu’en section pr´ecédentefs1 = s + u=2; s2 =
s � u=2g :

J x =

ZZ
x(s1)x

�(s2)

�
1

2ia2

��
 0
�
s2 � b
a

�
 �
�
s1 � b
a

�
�  

�
s2 � b
a

�
 0�
�
s1 � b

a

��
ds1ds2;

(B.15)

d’où après réarrangement des termes, le r´esultatZZ
�Wx(s; �)W 

�
s� b
a

; a�

�
dsd�

2�
= �1

a
Im

�
T �x (a; b)

Z
x(s)

1p
a
 0�
�
s� b
a

�
ds

�
: (B.16)
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C Densit́e de probabilité des vecteurs de ŕeallocation du spectrogramme

C.1 Formule des interf́erences

La formule des interf´erences est un r´esultat classique des syst`emes linéaires. Dans le contexte
de la Sect. 2.3.1, elle m´erite qu’on s’y attarde un peu, en particulier pour pr´eciser la mani`ere de la
manipuler lorsqu’un bruit blanc gaussien complexe analytiquen(t) intervient.

Les parties r´eelle et imaginaire d’un tel signal sont deux bruits blancs r´eels

E[Refn(t)gRefn(s)g] = E[Imfn(t)gImfn(s)g] = E[b(t)b(s)] =
�2

2
�(t� s); (C.1)

li és par une corr´elation impos´ee par la transform´ee de Hilbert

E[Refn(t)gImfn(s)g] = 1

�
vp

Z
E[b(t)b(�)]

s � � d� = � �2

2�(t� s)
si t 6= s, 0 sinon: (C.2)

La fonction d’autocorr´elation
n(t � s) = E[n(t)n�(s)] de n(t) admet alors une expression
composite entre les deux types de corr´elation (C.1) et (C.2)


n(t� s) = 2E[Refn(t)gRefn(s)g] + i 2E[Refn(t)gImfn(s)g] (C.3)

= �2
�
�(t � s)� i

�(t� s)

�
; (C.4)

qui se traduit sur la densit´e spectrale�n(!) =
R +1
�1 
n(�) d� par unéchelon de Heaviside

�n(!) = �2(1 + sgn(!)): (C.5)

Soitx1 = n?h1 etx2 = n?h2, deux versions filtr´ees den(t), la corrélation entre ces deux processus
à l’instantt

E[x1(t)x2(t)
�] =

ZZ
E[n(�1)n

�(�2)]h
�
1(t � �1)h2(t� �2) d�1 d�2 (C.6)

donne, en utilisant Parseval,

E[x1(t)x2(t)
�] = 2�2

Z +1

0
H�

1(!)H2(!) d!=(2�): (C.7)

Dans le cas o`u les supports fr´equentiels deh1 et h2 sont approximativement contenus dans le
demi-plan des fr´equences positives, on peut alors invoquer Parseval `a nouveau pour obtenir le r´esultat
qui nous sera utile

E[x1(t)x2(t)
�] � 2�2

Z
h�1(s)h2(s) ds: (C.8)

C.2 Densit́e de probabilité des vecteurs de ŕeallocation, fen̂etre gaussienne, signal +
bruit

Le calcul de la densit´e de probabilit´e du vecteur de r´eallocation du spectrogramme de Gabor dans
le cas “signal+bruit” suit la trame de celui d´ejà fait pour le cas “bruit seul”. C’est ce que nous allons
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maintenant pr´eciser en partant de l’´eq. (2.86), point d’embranchement o`u se différencie les deux cas,
qui s’écrit

f(r) =
�t2h
��21�

2
2

ZZ
jwj2 expfjw� S1j2=�21 + j � i�thrw � S2j2=�22g dRefwg dImfwg: (C.9)

On doit, cette fois, prendre soin de mettre sous forme canonique la forme quadratique dans l’ex-
ponentielle

jw� S1j2
�21

+
j ��thrw � S2j2

�22
=�

1

�21
+

�t2hjrj2
�22

�
jwj2 � 2Re

�
w

�
S1
�21
� �thr

�S2
�22

���
+
jS1j2
�21

+
jS2j2
�22

: (C.10)

En posanta = 1=�21 + �thjrj2=�22, b = S1=�
2
1 ��thr

�S2=�
2
2 et c = jS1j2=�21 + jS2j2=�22, on

reconnaˆıt une intégrale gaussienne

f(r) =
�t2h
��21�

2
2

�ZZ
jwj2e�ajw�b=aj2 dRefwg dImfwg

�
ejbj

2=a�c; (C.11)

qu’il est possible d’´evaluer par un changement en coordonn´ees polaires [22]

f(r) =
�t2h

��21�
2
2a

2
(1 + c+ jbj2=a� c)ejbj2=a�c: (C.12)

Il s’agit alors de remplacer dans (C.12),a, b et c par leur définition, en remarquant auparavant que

jbj2=a� c = ��t2hjs1j2
jr � r0j2

�22 + �21�t
2
hjrj2

; (C.13)

pour obtenir

f(r) =
�t2h

�21�
2
2(1=�

2
1 + �t2hjrj2=�22)2�

1 +
jS1j2
�21

+
jS2j2
�22

��t2hjS1j2
jr� r0j2

�22 +�t2h�
2
1jrj2

�
exp

�
��t2hjS1j2

jr � r0j2
�22 + �t2h�

2
1 jrj2

�
; (C.14)

ce qui nous conduit au r´esultat en ins´erant les expressions de�1 et�2

f(r) =
1

� (1 + jrj2)2
�
1 +

S

2�2

�
1 + jr0j2 � jr � r0j2

1 + jrj2
��

exp

�
� S

2�2
jr � r0j2
1 + jrj2

�
; (C.15)

que l’on préfère sous la forme (2.96).

C.3 Quotient de variables aĺeatoires complexes gaussiennes

Le problème qui nous int´eresse ici est le suivant : soity = [y1y2 : : : yN ]
t un vecteur al´eatoire

gaussien complexe circulaire de moyennes = [s1s2 : : : sN ]t et de matrice de covariance� inversible,
donc de densit´e de probabilit´e

fy(y) =
1

�N det(�)
exp(�(y � s)y��1(y � s)); (C.16)
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quelle est la densit´e conjointe de probabilit´e du vecteurr = [r1r2 : : :rN�1] dont les coordonn´ees sont
données parrn = (1=�n)yn+1=y1, pourn = 1 : : :N � 1 où f�n; n = 1 : : :N � 1g est une famille de
nombres complexes?

La résolution de notre probl`eme passe par l’utilisation du changement de variable[y1y2 : : :yN ]!
[y1r1r2 : : : rN�1]. Du changement de variable inverse[y1r1r2 : : :rN ] ! [y1y2 : : : yN ], où yn+1 =
�nrny1 pourn 2 [1::N � 1], on déduit la matrice jacobienne

J =

2
6664

1 0
�1r1 �1y1
�2r2 �2y1

... 0
.. .

3
7775 : (C.17)

La densité de probabilit´e du vecteurr s’obtient en marginalisant la densit´e conjointe par rapport
à y1,

f(r) =

ZZ �����
N�1Y
n=1

�n:y
N�1
1

�����
2

fy (r�y1)dRefy1gdImfy1g; (C.18)

où r� désigne le vecteur[1�1r1 �2r2 : : : ]t.
La mise en forme canonique de la forme quadratique dans la gaussiennefy (r�y1)

(r�y1 � s)y��1(r�y1 � s) = (ry��
�1r�)

�����y1 � sy��1r�

r
y
��

�1r�

�����
2

� jsy��1r�j2
r
y
��

�1r�
+ sy��1s; (C.19)

conduità l’expression g´enérale

f(r) =
1

�N det�

�����
N�1Y
n=1

�n

�����
2 ZZ

jy1 + b=aj2N�2 exp ��ajy1j2� dRefy1gdImfy1g exp ��jbj2=a+ c
�
;

(C.20)

où l’on a défini les constantesa = r
y
��

�1r�, b = sy��1r� et c = sy��1s. En outre, nous tiendrons
compte par la suite de la simplification

�jbj2 + ca = �(s1~r� � ~s)y
h
ggt + g1~�

�1
i
(s1~r� � ~s); (C.21)

où les variables introduites ici sont des sous-blocs des vecteurs et matrices d´efinies plus haut

�
�1 =

"
g1 gy

g ~�
�1

#
s = [s1~s]

t
~r� = [�1r1�2r2 : : : ]

t: (C.22)

Lorsque on se focalise sur le casN = 3 qui nous importe, l’´eq. (C.20)

f(r) =
j�1�2j2
�4 det�

ZZ
jy1 + b=aj4 exp ��ajy1j2�dRefy1gdImfy1g exp

��jbj2=a+ c
�

(C.23)

devient intégrable. En utilisant pour� > 0, [22]ZZ
(x2 + y2)2e��((x�x0)

2+(y�y0)2) dxdy =
�

�3
�
2 + �(x20 + y20) + 4�2(x20 + y20)

2
�
; (C.24)

159



on arrive finalement au r´esultat

f(r) =
j�1�2j2
� det� a3

"
2 + c2 + (1 + 8c)

jbj2� ca
a

+ 4

� jbj2 � ca
a

�2
#
exp

��jbj2=a+ c
�
: (C.25)

Si y est un vecteur centr´e, i.e., lorsques = 0, nul besoin de se restreindre `a une valeur pr´ecise de
N

f(r) =

���QN�1
n=1 �n

���2
�N det�

ZZ
jy1j2N�2 exp

��ajy1j2� dRefy1gdImfy1g; (C.26)

le calcul général (C.20) peut ˆetre conduit `a terme, et conduit `a

f(r) =

���QN�1
n=1 �n

���2 (N � 1)!

�N�1 det�
�
r
y
��

�1r�

�N : (C.27)
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D La méthode de la phase stationnaire

Le principe de phase stationnaire est souvent invoqu´e lors de l’évaluation du spectre de Fourier
d’un chirp. Cette annexe a pour but de consid´erer ce probl`eme en d´etail, et de s’int´eresser en par-
ticulier au contrˆole quantitatif de l’erreur d’approximation correspondante, ce qui nous sera utile au
Chapitre 4. Une analyse d´etaillée conduit `a l’introduction d’un critère plus pr´ecis mais plus compliqu´e
que celui produit par les conditions heuristiques qui sont g´enéralement consid´erées dans ce contexte.
Il est également mis en ´evidence par l’interm´ediaire de deux contre-exemples appartenant `a l’impor-
tante classe des chirps en loi de puissance, que — en opposition `a des croyances habituelles — les
conditions heuristiques ne sont ni n´ecessaires, ni suffisantes pour la validit´e de l’approximation de
phase stationnaire. Le travail fait ici que l’on peut retrouver dans [26] est une entit´e en soi. C’est
la raison pour laquelle cette annexe a ´eté écrite de mani`ereà ce qu’elle puisse ˆetre lue et comprise
indépendamment du reste du document.

D.1 Quelques rappels

Par définition, un chirp est un signal de la forme

x(t) = a(t) expfi'(t)g; (D.1)

où a(t) est une fonction d’amplitude aux variations douces et donc l’´evolution est lente compar´ee aux
oscillations du terme de phaseexpfi'(t)g.

Rappelons cela se traduit formellement par les deux conditions de la D´efinition 1 (du Chapitre 4)

"1 =

���� _a(t)

a(t) _'(t)

����� 1 ; "2 =

���� �'(t)_'2(t)

����� 1; (D.2)

qui caractérisentx(t) en tant que chirp.
Bien que la d´efinition d’un chirp se donne g´enéralement en temps (comme dans (D.1)), de nom-

breuses applications appellent une description ´equivalente en fr´equence [27, 25, 36]. Pour ce faire,
il est habituel de faire appel `a l’approximation de phase stationnaire en supposant plus ou moins
explicitement que les conditions (D.2) r´egissent l’efficacit´e de l’approche.

D.2 Approximation de phase stationnaire des spectres des chirps

Le principe de phase stationnaire

L’argument de phase stationnaire peut ˆetre formulé comme suit. SoitI une intégrale oscillante de
la forme

I =

Z


b(t) ei (t) dt; (D.3)

où b(t) > 0 et (t) sontC1, entendu quesuppf (t)g est restreint `a un intervalle
 � R sur lequel
b(t) est intégrable. En supposant queb(t) varie lentement relativement aux oscillations contrˆolées
par (t), les valeurs positives et n´egatives de l’int´egrande tendent `a s’annuler r´eciproquement, avec
la conséquence que la contribution principale deI provient seulement du voisinage des points o`u la
dérivée de la phase est nulle.
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Un point stationnaire et spectres de chirps approch́ee

Dans le cas d’un mod`ele (D.3), les r´esultats classiques de la th´eorie de la phase stationnaire (voir,
e.g., [92] ne peuvent pas ˆetre directement appliqu´es dans la mesure o`u les oscillations ne sont pas
contrôlées par un param`etre dont on peut faire croˆıtre la valeur librement. En supposant, cependant,
que la phase (t) a un et seulement un point stationnaire non d´egénéré (i.e., pour lequel_ (ts) = 0
et � (ts) 6= 0), nous pouvons faire le changement de variable

u2 =
 (t)�  (ts)

� (ts)=2
(D.4)

et ainsi réécrire (D.3) sous un forme canonique

I = ei (ts)
Z

0
g(u) ei�u

2
du; (D.5)

avecg(u) = b(t(u))(du=dt)�1 et � = � (ts)=2. En utilisant un d´eveloppement de Taylor de
l’exponentielle du membre de droite de (D.5), nous sommes conduits [54] `a la décomposition de
(D.3) enI = Ia + R, avec

Ia =

s
2�

j � (ts)j
b(ts) e

i (ts) ei(sgn
� (ts))�=4; (D.6)

la qualité de l’utilisation deIa comme une approximation deI dépendant de l’amplitude du resteR.
Le prolongement d’approches d´eveloppées dans [54, 94] nous permet de borner explicitement

l’erreur relativeQ = jR=Iaj par

Q � Qm =
5

4

supu2
0 j�gj
j�j g(ts) (D.7)

et l’approximation de phase stationnaire est alors valide siQm � 1. Étant donn´e le modèle (D.3), une
évaluation explicite de cette quantit´e mèneàQm = supt2
 F (t), avec

F (t) = 5

q
2j � (ts)j

����� a

a(ts)

 1=2

_ 

�����
������
�a

a

 
_ 2

+
3

2

_a

a _ 

 
1�  � 

_ 2

!
+

0
@3 

 
� 
_ 2

!2

� 3

2

� 
_ 2
�   000

_ 3

1
A
������ ;

(D.8)

où est une notation compacte pour (t)�  (ts).
Ce résultat nous donne un crit`ere suffisant pour justifier (quantitativement) l’efficacité de l’ap-

proximation. Il peut ˆetre appliqu´e tel quel au probl`eme de l’évaluation du spectre d’un chirp (D.1) de
fréquence instantan´ee monotone en posantb(t) = a(t) et (t) = '(t) � 2�ft (le point stationnaire
ts étant alors d´efini par _'(ts) = 2�f ). On en déduit que l’erreur correspondante n’est pas seulement
contrôlée par les termes"1 et "2 (tels qu’il sont définis dans (D.2)), mais ´egalement par des termes
additionnels qui d´ependent de combinaisons compliqu´ees dea(t), '(t) et de quelques-unes de leurs
dérivées successives. En g´enéral, l’évaluation de la borne sup´erieureQm dans (D.7) n’apparaˆıt pas
faisable mais, dans la plupart des cas, un substitut utile est donn´e parF (ts), une telle simplification
revenant `a considérer le terme principale du reste int´egralR.
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Pas de point stationnaire et quasi-analyticit́e des chirps

En revenant au mod`ele général (D.3), il est intéressant de s’interroger sur le cas o`u il n’y a pas de
point stationnaire. Dans cette situation o`u _ (t) 6= 0 quelque soitt, (D.3) peutêtre réécrit comme

I =

Z



b(t)

i _ (t)
i _ (t) ei (t) dt; (D.9)

de telle sorte que l’on puisse l’int´egrer par parties. En supposant queb(t) 2 L1(
) et b(@
) = 0,
nous obtenons

I

kbk1 �







_b(t)

b(t) _ (t)







1

+







� (t)
_ 2(t)







1

; (D.10)

ce qui signifie que, relativement `a la situation o`u les oscillations du terme de phase seraient infiniment
ralenties, le module de (D.3) est dans ce cas born´e par une quantit´e dont la décroissance vers z´ero est
contrôlée par les conditions de chirps (D.2). Qui plus est, dans le cas o`u I correspond `a la transform´ee
de Fourier du chirp (D.1), i. e., quandb(t) = a(t) et (t) = '(t) � 2�ft, et si nous supposons par
ailleurs que _'(t) > 0 pour toutt 2 
, nous pouvons conclure que le domaine de fr´equence dans
lequel il n’existe aucun point stationnaire, est la demi-droite des fr´equences n´egatives. Puisque, dans
ce cas, nous avons� (t) = �'(t) et _ (t) � _'(t) quandf < 0, il est alors clair que






_b(t)

b(t) _ (t)







1

�




 _a(t)

a(t) _'(t)






1

(D.11)

et 





� (t)
_ 2(t)







1

�




 �'(t)

_'2(t)






1

: (D.12)

Il apparaˆıt que les conditions heuristiques (D.2) sont suffisantes pour rendre le membre de droite
de (D.10) négligeable, et ainsi garantir la quasi-analyticit´edu modèle exponentiel (D.1) — dans le sens
où les contributions spectrales aux fr´equences n´egatives sont presque nulles —, avec la cons´equence
que la quantit´e _'(t)=2� puisseêtre effectivement interpr´etée comme la fr´equence instantan´ee du chirp.

D.3 Exemples et contre-exemples

Chirps en loi de puissance

Pour mettre en ´evidence les possibles limitations de l’utilisation de l’approximation de phase sta-
tionnaire quand `a l’évaluation du spectre d’un chirp, nous nous focaliserons ici sur la classe importante
des chirps en loi de puissance.

Par la Définition 6 (du Chapitre 4) , un chirp en loi de puissance est un chirp (D.1), pour lequel

a(t) = (t0 � t)�� (D.13)

et

'(t) = 2�d(t0 � t)� ; (D.14)
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avec�; � et d trois param`etres réels ett < t0. (On ne tient pas compte ici du terme de phase `a
l’origine).

À partir de cette d´efinition, il doit d’abordêtre remarqu´e que différents types de forme d’onde
peuventêtre obtenus, selon les valeurs que l’on donne aux param`etres� et� :

– si l’on considèrea(t) comme l’amplitude du chirp, on observe alors quea(t0) = 0 (resp.+1)
si � < 0 (resp.> 0) ;

– si on identifie_'(t)=2� = d�(t0�t)��1 avec la “fréquence instantan´ee” du chirp, on est conduit
à une divergence en loi de puissance ent0 pour toutes les valeurs de� telles que� < 1. Mais
ceci correspondra `a un signal “infiniment oscillant” ent0 uniquement sous la contrainte plus
forte � < 0 [77]. En effet, dans l’intervalle0 < � < 1, la phase pr´esente une valeur bien
définie ent0 : '(t0) = 0, le comportement singulier de sa d´erivéeétant alors homog`eneà celui
d’une singularité non oscillante ent0.

Dans le cas des chirps en loi de puissance, il peut ˆetre montré que les deux crit`eres obtenus `a partir
des conditions heuristiques (D.2) ou de l’analyse raffin´ee présentée en Sect. D.2, partagent la mˆeme
dépendance fr´equentielle

" = C (�d)
1

��1 f
� �

��1 ; (D.15)

la seule différence provenant du pr´e-facteurC, qui s’écrit

C1 = (1=2�)max(j�j; j� � 1j) (D.16)

dans le premier cas et

C2 = (5=48�)j12�2� 12�+ 12�� + 2�2 � 5� + 2j=j�� 1j (D.17)

dans le second.
Dépendant de quelle quantit´e est plus grande que l’autre, nous pouvons d´emontrer que, pour un

d donné, il existe des couples(�; �) tels que l’approximation de phase stationnaire reste valide alors
que les conditions heuristiques (D.2) sont enfreintes, ou bien r´eciproquement, l’approximation ne
fonctionne plus alors que ces conditions sont toujours satisfaites. C’est ce qui est illustr´e en Fig. D.2
à D.3

Dans le contexte de la d´etection des ondes gravitationnelles issues de binaires coalescentes, les
indices sont fix´es (par des arguments physiques) `a� = 1=4 (divergence de l’amplitude `a la coales-
cence) et� = 5=8 (singularité non oscillante `a la coalescence), tandis que le taux de modulation
hyperboliqued est un param`etre libre relié aux masses des objets du syst`eme. On d´eduit que, pour
les valeurs des param`etres� et �, et sur une ´echelle de valeur raisonnable pourd, les critèresC1 et
C2 coı̈ncident approximativement. Qui plus est, ils ont tous deux une petite valeur, ce qui validea
posteriori l’efficacité de l’approximation de phase stationnaire ce qui est un r´esultat important pour
les développements faits au Chapitre 4, et qui est, par ailleurs, couramment utilis´e dans ce contexte
(voir e.g., [36]). C’est ce qui est illustr´e en Fig. D.4.
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FIG. D.1 –Comparaison des crit`eres heuristique et raffin´e de validité de la phase stationnaire pour
les chirps en loi de puissance d’indice� and � (voir texte). Le domaine de couleur blanche (resp.
grise) correspond aux valeurs de� et� telles que le crit`ere raffinéC2 est plus petit (resp. plus grand)
que le critère heuristiqueC1. Les lignes pleines indiquent les points solutions deC2 = 0. La croix, le
cercle et l’étoile sont des valeurs sp´ecifiques utilis´ees dans les Figs. D.2 `a D.4 respectivement.
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FIG. D.2 –Validité de l’approximation de phase stationnaire — Contre-exemple 1 :dans le cas d’un
chirp en loi de puissance dont les param`etres sont indiqu´es par la croix en Fig. D.1, on constate que
le critère heuristique (ligne pointill´ee dans le diagramme du bas) pr´edit une bonne approximation
(dans une bande de fr´equence choisie), tandis que la comparaison avec le vrai spectre (diagramme
du haut) révèle une différence significative, comme indiqu´e par le critère raffiné (ligne pleine dans le
diagramme du bas).
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FIG. D.3 –Validité de l’approximation de phase stationnaire — Contre-exemple 2 :dans le cas d’un
chirp en loi de puissance dont les param`etres sont indiqu´es par le cercle en Fig. D.1, on constate que
le critère heuristique (ligne pointill´ee dans le diagramme du bas) pr´edit une mauvaise approximation
(dans une bande de fr´equence choisie), tandis que la comparaison avec le vrai spectre (diagramme
du haut) révèle un bon accord, comme indiqu´e par le critère raffiné (ligne pleine dans le diagramme
du bas).
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FIG. D.4 –Validité de l’approximation de phase stationnaire — Exemple 3 :exemple utilisant le mo-
dèle pour les ondes gravitationnelles produites par la coalescence d’un syst`eme binaire, pour des va-
leurs typiques : les param`etres du chirp en loi de puissance sont fix´esà� = 1=4,� = 5=8 etd = 137.
On constate que les crit`eres raffiné et heuristique co¨ıncident approximativement (diagramme du bas).
Qui plus est, ils admettent tous deux une petite valeur dans la bande de fr´equence consid´erée,ce qui
valide a posteriori l’efficacit´e de l’approximation de phase stationnaire qui est couramment utilis´ee
dans ce contexte.
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