Chapitre 3

Des extensions et des aghorations a la
reallocation

Ce chapitre contient une collection de contributioediéésa la géréralisation edt'amélioration
de la méthode deeaallocation. L'uni€ de ce chapitre tient dans la marg avec laguelles sont abeest’
toutes ces contributioressavoir : I'abandon de la distributioeallouge comme point deaparta tout
traitement sup@mentaire et son remplacement par la distribution classique, i.e.eabboge (dans
ce chapitre, le spectrogramme) accompagydé son champ des vecteurs e@location. Par coms”
guent, toutes les propositions faites ici partent d'un point de vue en amont, i.e, eaiéotation, dont
I'objectif est I'extraction du maximum d’information des quaesitiont on dispose. Les distributions
bilineaires d€nergie temps-&uence comme le spectrogramme, sont bien connues. leragigro-
fondir notre connaissance du champ dalidcation et en tirer parti. Dans un premier temps, nous
décrirons la structureagpnetrique du champ de vecteurs @aliocation. Nous verrons comment il est
possible de I'associex des eseaux de courbes de niveau (Sect. 3.1.1), ou de lignes de plus grande
pente (Sect. 3.1.2), ce qui nous conduira naturelleme@ritoduire une nouvelle forme deailocation
(Sect. 3.2). Fort de cette descriptiogogEtrique et dad’de cette nouvelle ethode, nous verrons que
I'on peut dEduire des informations sumptientaires sur la structureeme du signal (Sect. 3.3). Enfin,
nous exploiterona houveau le champ des vecteurselidcation du spectrogramme, mais cette fois
lorsqu’on fait varier la feafre, pour reradier au manque de robustesse des vecteursallecation
établi au chapitre ggdent et obtenir une distributioeallolge plus stable en psence de bruit.

3.1 Geometrie du champ des vecteurs de&allocation

Les champs de vecteurs deatlocation ne sont pas n’'importe quels champs de vecteurs. lls
obéissenta’ des contraintes structurelles en relation avec celles qui asservissent la forme des densi-
tés dénergie temps-f&quence, plus pcigment, celles quieterminent 'admissibilé'd’'une fonction
quelconque d&®? en tant que distribution éiiergie temps-éuence. Ces contraintes se traduisent
par une gongtrie particulere pour le champ des vecteurs dallbcation que nous allongdrire ici.

Nous montrona ce sujet I'existence deux fonctions partieséiment importantes puisque les vecteurs
de allocation sont tangents aux courbes de niveau de la erenat aux lignes de plus grande pente
de la seconde. Ces travaux ont fait I'objet d’'une publication [24].
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3.1.1 Phase gometrique et courbes de niveau
L'operateur de Weyl, pris dans sefihition symplectique,
W (t,w) = exp(i(wt — tw)), (3.1)

(ou [th](z) = zh(z) et{wh](z) = —idh/dx sont les opfateurs assoes respectivement au temps
et a la frequence) transforme le sigrialen le translatant d’un retardsur I'axe des temps et d’'un
dopplerw sur I'axe fléquentiel. Son action su, [W (¢, w)h](z) = h(z — t) expi(wz — tw/2), fait
apparate un terme de phase pure important, puisqu’il egnise le traitement des variables temporelle
et frequentielle. Si on efinit la FCT comme une caefation entre le signat et les translaés de la
fenétre h dans le plan tempsdtjuence palV (¢,w), elle prend alors indiffemment une forme de
corrélation temporelle

F.(t,w) = /x(s)h*(s — t)eTw8 ds /2, (3.2)

ou fréquentielle, qui s’obtient en rempgknt simplement dansdguation pecdente chaque quardit”
par sa duale par Fourier et en changeant les signes dans les exponentielles:

Fo(t,w) = /X(g)H*(g —w)e'® % eiw/2, (3.3)
La synétrie formelle sétendegalement aux agateurs degdllocation (cfeq. (1.32)):

fd(tvw) = (_t/Q - aw@a _W/2 + 8t99)t7 (34)

qui se @composent en un vecteur diagonal dans le plan teregstdrice ajoeta un vecteur ortho-
gonal au gradient de la phaseeqj.’(3.4) sugegre que les vecteurs deallocation suivent des courbes
de niveau d'une fonction d&? dansR, lieed (¢, w). Ces courbes de niveau doiveioeSsairement
étre, comme le champ de vecteurs dalidcation, covariantes aux translations du signal dans le plan
temps-fEquence. Or, la phasggt,w) ne respecte aucune de ces covariances.

En effet, si on note pafl’;z|(t) = [W(s,0)z](t) = z(t — s), la version translag en temps de,
sa FCT s&crit

Fr(t,w) = Fy(t — s,w)e” /2. (3.5)

Si s prend une valeur quelconque ddRsles phases dér_,.(t,w) et de F,(t — s,w) ne sont
égales gua’'la conditionw = 0. En congquence(t,w) n'est pas covariante aux translations en
temps du signal. Desquations similaires peuveetré€crites pour les translations eeduence.

Par coneguent, nous cherchons une fonctzin qui lieea la phase mais qui doit s’affranchir
de la dpendance de la phase sur le choix de I'origine du plan teregsidrice. Pouesoudre notre
probleme, nous introduisons une nouvelle fonctigy, ., (¢,«) que I'on appellgphase gongtrique
La fonction®,, ,.)({,w) est la phase que nous mesurons au point tengussénce de coordoea’
(t,w) si (to,wo) est I'origine du eférentiel. BEplacer I'origine en temps de a ¢, signifie que la
valeur du signat a la distance de la nouvelle origine est doea'parz (t + to) = [W(—to, 0)z](1).
De manere similaire, éplacer 'origine temps-éuence erfty,wy) corresponda remplacer: par
W (—tg, —wo)z. Donct,

D(1g,u0) (t,w) = arg(W (—to, —wo)z, W(t,w)h) (3.6)

= arg(z, W (tg,wo) W (t,w)h). (3.7)

1.(z,y) = [ z(s)y*(s) ds désigne le produit scalaire canonique d&A¢R ) et ||z|| = v/(z, z), la norme assoek.
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Puisque nous avons

[W (to, wo) W (t,w)h](2)

— W (t0,w0) (h(ac - t)eme—”wﬂ) (3.8)
= h(z — (t + to))e'Bleteo)z—(wwo)(t4to) +(two—tow)]/2 (3.9)
= [W (to + t,wo 4 w)h](x)e/l(torwo) (tw)]/2) (3.10)
on peut exprimes, ,(t,w) a l'aide de la forme symplectiqu€o, wo) (,w)] = two — tow,
D (1g.w0) (1, w) = (t +to,w + wo) = [(lo, wo) (,w)]/2, (3.11)

ce qui prouve directement que le vecteur ei@idcation est tangent €n,, wy) aux courbes de niveau
de® (1w (t,w):

#(t0,wo) = (=0 P(1,0) (1) 3@ (19 o) (£:9)) | (1) =(0.0)- (3.12)

Ceci justifie 'appellation de phase égiétrique” pour la fonctionb,, ) (¢,w), en ce quelle
fournit une interpetation gfongtrique locale du champ de vecteurs dalidcation au pointt, wo).

3.1.2 Potentiel scalaire et lignes de plus grande pente

Réécrivons la FCTF (¢, w) du signalz a I'aide du formalisme propespar Bargmann dans [10],
c’est-a-dire en utilisant?, fonction de la variable complexe= w + it et de sa variable conjuge”

z*:

F(t,w) = F(z,2%) exp (—|2|*/4) . (3.13)
Les phases d& et F sontévidemmenegales. En notant queg F (¢,w) = log|F (¢, w)|+ip(t,w)

et en utilisant I€q. (3.4), il est donc possible d’exprimer les vecteursddacation avec lesativees
partielles deF :

tt,w) —t=—t/2 —Im{d,F/F} (3.14)
= /2 —Tm{(0.F + 0.+ F)/F}, (3.15)
Ot,w) —w=—w/2+ Im{0,F/F} (3.16)
= —w/2+ Re{(0.F — 0.+F)/F}. (3.17)
La dérivation delog F'(t,w),

OF|F = —t/2+ (10,F —i0F)|F (3.18)
O F|F = —w/[2+4 (0.F — 0F)/F, (3.19)

fait apparare un couple ddquations
Re{0:F/F} = —t/2 — Im{(0.F — 0+F)/F} (3.20)
= 0| F|/|F, (3.21)
Re{0,F/F} = —w/2+ Re{(0.F + 0.«F)/F} (3.22)
= 0L 1|/ F], (3.23)
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duquel, lorsqu’il est combmavec (3.15) et (3.17), on peuwadliire:
i = Vlog|F| — 2(Im{d.« log F}, Re{d.+ log F})’, (3.24)

ou I'egali€ est valide suR?*\{(¢,w)|F(t,w) = 0}. LopérateurV désigne le gradient dans le plan
V = (0, 0u)".

Ce @sultat peuetre interpeté comme suitetant done’la factorisation de Bargmann (3.13) de la
FCT, le champ de vecteurs deatlocation peuéfre dscomposg’en deux termes, un premier qui n’est
autre que le gradient d’un potentiel scalaire (ncemnmehtlog| F'|) et un autre qui est une mesure de
la non-analyticié’deF. Cette @composition peut toujouetre faite mais elle prend un &€t pour
certaines feefres d’observation.

e Fenétre gaussienne de variance wit”

En effet, si la feefre d’observation est une gaussienne de variance eiitont les isocontours
sont des cercles dans une regehtation de Wigner, fetre “ronde” dans le plan tempsefflience),
i.e. si nous consiefons la reprSentation de Bargmann d’un espacestits cokfents” [10], alorsF
est une fonction ergie dez, d’oul 9..F = 0 (équations de Cauchy). Nous concluons fue

r(t,w) = Vlog|F|, (3.25)

ce qui prouve que, dans ce cés,champ de vecteurs deallocation @&rive du potentiel scalaire
log| F|.

Ce @sultat esimportant pour deux raisons:

1. Une coneguence imradiate en est la descriptiorgretrique pecise du champ. En effet,
I'eq. (3.25) prouve quious les vecteurs desallocation pointent tous dans la direction des
maxima du module de la FCTet aspect est fondamental puisqu’il ouvre la partdes ne-
thodes particulaires qui serorgctites dans la suite de ce chapitre,

2. Sil'oncompare leggs. (3.4) et (3.25), on peut de plus remarquer guse constante ps,la
phasep(t,w) est enterement dtermirée par le module, et vice-versae qui veut dire que le
spectrogramme correspondant (moduleecde1a FCT) porte autant d’'information que la FCT
(a valeur complexe).

Ces deux arguments apportent une justificagidatilisation de ngthodes de traitement d'images (re-
cherche de composantes connexes, de contours, de lignes de partage des eaux) sur le spectrogramme
(considéré comme une image) pour I'analyse du signal.

e Fenétre arbitraire
Dans les autres cas (fetné arbitraire), un terme sumgphentaire

g(t,w) = —2(Im{d.« log F}, Re{d. log F})’, (3.26)

vient modifier la direction indige€é par la ligne de plus grande pente-dieg| F'|. On peut donner une
expression plus simple de ce termesenivant la FCT en fonction des variables complexes:*

Ft,w) = /x(s) n” (5 A ) el (E+2T)8/2 g (=) [8 2274 (3.27)

2

2. Remarquons quediuivalent de Eq. (3.25) pour 'image dans le plan complexe de(cf. éq. (1.26)), éfinie comme
fonction des variables complexe®t »* prend une forme &S compacte, parfois utifur les calculst = 2i+/23, log| F|.
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puis en @&tivant son logarithme par rapp@t*. On reconnd’alors le quotient de FCT suivant
i Fdh/dt-l—th

0ur log(F) = =5 ———. (3.28)

d’ou on peut @duire le vecteur

dh/di+th dh/di4th )\ ¢
g(t,w) = (Re {FT} , —Im {FT}) . (3.29)

e Influence de la fegtte surg(t, w).

Si la ferétre d’observation est gaussienne de variadagielconquel () = 7= /4/v/X e~/ (2}%)
alors la colirgarig entredh/dt et th(t) autorise la écriture de I&q. (3.28) selon les deux formes
équivalentes

i 1 Fth i Fdh/dt
. = (1-=)]—=--(\-1 :
avec lesquelles, compte tenu ags. (1.37) et (1.38), on prouve la proportionreaditi terme suppt
mentaireg (¢, w) & une version anamorplersdu vecteur desgllocation

~ 13
glt,e) = (A—1/)) (% /\(d—w)) . (3.31)
Il est clair dans Eq. pecdente que la ppondrance dgy(¢,w) dans la @composition (3.24)
s’accroit quand la fegtte devient largeXtend verstoc) ou étroite ¢ tend verd), et ce par la m@-
sence du coefficierftA — 1/X) en facteur. Ceasultat suggre que I'importance du terme suppién-
taireg augmente lorsque la fetré d’observation et sa transfagmde Fourier deviennent défiéntes
I'une de l'autre ; autrement dit, lorsque I'on analyse le signal de erariihhomoghe” en temps et
en fréquence. Pour argumenter cette intuition, remarquons d'abord que la norme du yecteur

Fdh/dt-l—th

= , (3.32)

2
loll* = 5

est d’autant plus faible quE#"/4+t" prend de petites valeurs. Séift), une fergtre de norme uret’
|2||* = 1 dont la duge At = [|th(t)|| et la largeur de bandaw = ||dh/dt|| existent et songégales
etz (1), un signal quelconque eiiergie uni. On noteh, (1) = v/ Ah(\t), la ferétre obtenue par une
dilatation deh d’un facteurA en maintenant nergiea 1. On se propose de chercher la valeuAde
qui minimise celle deF# /44t |2 ’inegalié de Cauchy-Schwarz nous fournit un majorant

\Fdh*/dt“h*(1t,w)\2 < ||zl dhy /dt 4 thy]?, (3.33)
qui apes c&Eveloppement
|dhy/dt 4 thy||? = ||dhy/dt||* + [[tha||* + 2(th, (1), dhy/dt), (3.34)

s’évalue par irdgration par parties,

= A+ ALY — 1. (3.35)
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I suffit ensuite d’utiliser les expressions deseriXt, = At/\ etlargeur de bandaw, = \Aw
de la fergtre dila€eh (¢) en fonction de la feette de eférence pour obtenir la majoration suivante:

‘Fdhk/dt+th>\(t7w)‘2 <APINE N AL? - 1. (3.36)

On notef(A?), la fonction majorante dans le membre de gauchee®aé [/ (\?) = — A2 /A +
Aw? s'annule en\? = Aw/At = 1, minimum def. On en conclut qud forme de feafre d’obser-
vation donme, le terme supphentairgg est de norme minimale lorsqu’on observe le signal sans
privilegier ni le temps, ni la @quence. Inversement lorsque lesalutions en temps et erefjuence
deviennent &s differentes I'une de l'autre, la horme de ce terme seqmglitaire devient de plus en
plus grande.

SiA =1, I"eq. (3.36) Kcrit

| P A 02 < AR+ AWt — 1, (3.37)

et ddpend donc du choix de la feméh (¢). Parmi tous ceux qui sont possibles, le majorant atteint une
valeur minimale, pour la gaussienae/ariance uné, cas uniquewil s’annule, ce que nous avons
déja trouné plus directement.

Les Figs. 3.1 et 3.3 comgient cette argumentation en montrant égarhposition (3.24) sur un
chirp linéaire pour dif€rentes feefres gaussiennes (pour la preneifigure) et triangulaire (pour la
deuxiéme). En conclusion, la norme gadépend de deux cetes:

1. le produit duee-bandeA?? Aw?, qui mesure I'encombrement de fré conjointement en
temps et en &fuence. Ce produitegpend naturellement du type de étre” emploge et est
minimum pour les gaussiennes,

2. le rapport duzé/bande\t? / Aw? qui mesure les diéifences de tailles enttet) et H (w). Pour
un type de feafre done’ la norme est minimale si la cee’et la bande d’analyse sagdles.

La ferétre qui Ealise simultaement ces deux cetes est la fegite gaussienne “ronde” pour
lagquelle la norme dg est uniforr€ment nulle. Remarquons pasément que la fonctiotF, que
fait appardre la factorisation de Bargmannetdigne de I'analyticié’(au senswles conditions de
Cauchy deviennent de moins en moins vraies) au farraesure que I'un de ses efies s€carte de
la valeur obtenue avec la fetné gaussienne de variance enit”

e Enrésung

Nous venons montrer que le champ de vecteurgdiacation peuefre dicrit géongtriquement
par deux ensembles de courbes: d’'une part, les courbes de niveaux d’'une fonction, la @hase g”
métrique, liéea la phase de la FCT, et d’autre part, les lignes de plus grande pente d’'une fonction
liee au module de la FCT, qui alors peut s’intez@f comme un potentiel dont le champ dallo-
cation dgrive (sous certaines condition, exactement). C’'est ce dernier point que nous allonseexploit”
maintenant.

3.2 Reallocation differentielle

3.2.1 Principe

Le fait qu’un lien existe entre le champ de vecteurs etdlocation et un potentiel scalaire sug-
gére de consiefer un systme dynamique dont le fonctionnement serait gousgraxr’ ce potentiel.
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Fic. 3.1 — Décomposition de Bargmann du champ de vecteurs dalldcation pour une feetre
gaussiennelLe champ de vecteurs dealflocation peut seatomposer (cfeq (3.24) en la somme
du gradient du potentidbg | F'(¢,w)| et d’un terme suppimentaireg (¢, w). Nous avons morgrque
g(t,w) est pepondrant lorsque la feafre et sa transforeé de Fourier sont de tailles (resp. ca”
et largeur de bande) difentes I'une de l'autre. C’est ce que montre ce tableau de figurea o°
chaque ligne, on effectue l&dompositioli3.24) pour la fer€tre correspondante en Fig. 3.2. La ligne
centrale correspond au casu@mn observe le signal (ici, un chirp kaire d’enveloppe gaussienne,
s(t) = e‘(l‘i)ﬁ/?) identiquement en temps et erdtience (fegtte gaussienna variance uni¢). Le
termeg(t,w) s’annule alors uniforrament. On dissyetfise cette situation particidre en gtrécis-
sant (premeére ligne) ou erelargissant (troistime ligne) la feefre. Le termey(¢,w) n’est alors plus
négligeable devanV log | F'(t,w)].
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FiG. 3.2 — Fenétres utiliges en Fig. 3.1Cette figure pesente les trois featfes gaussiennes utidies
pour la Fig. 3.1. Leur distribution de Wigner-Ville sontindegs sur la ligne du haut par deux courbes
de niveau. La feefte en(b) est une gaussienne de variance angéule fonction superposalaesa
transforn€e de Fourier. Sa distribution de Wigner-Ville essyn&trie circulaire dans le plan temps-
frequence, d’'o T'appellation de fepfre “ronde”.

En partant de cette perspective, on propose d’'introduire wtbodé deaeallocation difErentielle
[24] qui géréralise la version originale. Dans laethode originale de laegllocation, chaque valeur
du spectrogramme esedlace d’'une quantd finie, éventuellement grande, sans tenir compte des
régions du plan tempsédguence qu’elle traverse. Lé@ est maintenant d’assimiler chaque point du
plan temps-fequence une particule dont le mouvement est coetgment éfermire par sa position
initiale et par sa vitesse que I'on fixe en tout podgale au vecteur deeallocation correspondant.
Chaque valeur du spectrogramme est al@plaiEe par sauts infirgSimaux et de fagn continue
jusqua convergence vers waguilibre.

Plus formellement, consilons le champ de vecteurs éallocation comme un champ de vitesse
qui contdle le mouvement de chaque contribution temesifience'(¢, w), assimiea une particule
de position de dpart, le poin{t, w). Nous obtenons lesquations du mouvement suivantes,

£(0) =1
w(0) =w

dt(s)/ds = i(t(s),(s)) — 1(5)
do(s)/ds = &(t(s),w(s)) - w(s),

(3.38)

qui définissent le processus que I'on appelle@allocation difErentielle
Dans le cas fegtfe gaussienrgevariance uné, cesquations prennent une forme partieundi liee
au fait que le champ de vecteurs @alibcation @five d’'un potentiel scalaire (céd. (3.25))

(£(0), w(0)) = (¢, w) d(tc’l:’)t = Vlog|F]. (3.39)
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FiGc. 3.3 — Décomposition de Bargmann du champ de vecteurs dalldcation pour une feetre
triangulaire. Cette figure est identiqueela Fig.3.1, exception faite que la fetmé est cette fois trian-
gulaire (cf. 3.4). La ligne centrale est asseet la ferétre triangulaire dont la duee esiegalea la
largeur de bande. Cette fetré n’est pas de produit dag-bande minimum (commetdit le cas pour
la gaussienne). Le vecteyg(t, w) n'a plus de raison de s’annuler.ddnmoins au sein de cette famille
de fergtre, elle conduit'un termey (¢, w) de normel? minimale.
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FiG. 3.4 —Fenétres utiligges en Fig. 3.3Cette figure pesente les trois fatfes triangulaires utilises
pour la Fig.3.3 avec, sur la ligne du haut, leur distribution de Wigner-Ville indiegil'aide de deux
courbes de niveau.

Le syseme dynamique ainsetftit est un sygme purement dissipatif dans lequel chaque particule
converge vers les maxima tteg| F'|. Nous reviendrons plus eret#il sur ce point.

Si la ferétre est quelconque, laggénce d’'un terme supmptientaire dans laedomposition (3.24)
du champ de vecteurs deallocation ne nous permet pas de conclure directement sur la nature de la
dynamique.

La réallocation diférentielle peugfre vue comme un post-traitement des “images” temgguiehce
a base d’EDP. Dans cette famille de traitements, il exisj@ dh algorithme similaire. En effet, les
méthodes “agte et squelette” qui extraient les lignes de maxima dans les transformations de Ga-
bor (ou les @compositions en ondelettes) en explorant le plan tengogHmice (ou tempsehelle)a
I'aide d’une rechercheatative le long d’'une directionatessairement parale€a I'axe des temps ou
des féquences. Dans le cas de ladgr gaussienrevariance uné, la Ballocation dif€rentielle peut
s'interp@ter comme uneeggéralisation d’un tel algorithme dans la mesutelarecherche s’effectue
sans contrainte de direction. En effet, nous avons redoiijue la €allocation diférentielle utilisait
alors le plus court chemin pour aller chercher 18ta”.

3.2.2 Points fixes par la eallocation

Le r6le degoints fixex'est-a-dire les points qui segllouent en eux-gres, est crucial. On peut
les classer en trois cajories :

1. pointfixe stabletoutes les particules comprises dans un certain voisinage de ce point convergent
vers ce point,

2. point fixe col on ne peut converger vers ce point qu’en empruntant certaines trajectoires,

3. point fixe instableaucune particule ne vient finir sa trajectoire en ce point, exception faite de
celle dont la position initiale est ce point exactement.

3. Les nEthodes “agfe et squelette” [33, 53] sontgséntes en Sect. 1.4.
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Dans le cas de la fetre gaussienna& variance und, les particules tempsefuence se meuvent
sur un potentiel. Le fait que ce potentiel soit le logarithme du spectrogramme (et donc pas n'importe
guelle fonction 2D) va contraindre la nature des points fixes et leur position. C'est ce qui va nous
intéresser maintenant. Nous allonsgiseregalement ce qu'il advient au lien qui unit les points fixes
aux extrema du potentiglg| F'| lorsque la feefre est gaussienne, mais n’est plus “rondeidriance
guelconque).

Points fixes et maxima déog| I/

Un point fixe par laeallocation est un pointole vecteur degéallocation est nul, soit

) Fth Fdh/dt
t(t,w)—t:Re{T} =0 O(t,w) —w = —Im T =0. (3.40)

Si la ferétre est gaussiennk, (1) = =—1/4/v/X e~ /(%) il devient simple de caraetiser ces
points. Les ferfresth, () etdh, /dt étant proportionelles,q. (3.40) implique

Fdh)\/dt Fth)\
Re{ T }_Im{ T }_0. (3.41)

Les grandeurs complexdg”»() (¢, w) et F*¥*r/4(z o) sont donc nulles au point fixe. En uti-
lisant le fait quedlog|F'| = Re{0F/F} (la dérivée partielle opfant sur le temps ou ladquence
indifferemment) et les relations suivantes

O F = —Fdt R O, F = —iF" — itF)/2, (3.42)

qui s’obtiennent simplement paedvation de [Eq. (1.3), le gradient dieg| F'| s’exprime avec des
guotients de FCT

Fdha/dt
O¢log|F| = —Re 2 (3.43)
Fth)\
dylog|F| = Im{ T } , (3.44)

nuls aux points fixes selordy. (3.40). Les points fixes sont doegalement les pointsucs’annule le
gradient ddog| F’|. En ces points, le termg(?,w) dans la @composition (3.24) s’annubeson tour,
nécessairement.

Il'y a donc identi€ entre le lieu des points fixes par &tlocation pour les FCT de Gabor et celui
des extrema du module de la FCT (ou du spectrogramme).

Géonkétrie des maxima delog| F|

Cette identi¢” est tes importante puisqu'il existe deegultats forts concernant la structure des
courbes de maxima du module de la FCT, qui s’appliquent desormiiais aux ensembles de points
fixes par la e€allocation. En effet, sk(t) = hq(¢) est gaussienne “rondef@ts cokfents), on peut
montrer [91] que les maxima de la FCT peuvent s’aligner uniquement selon deux types de courbes

1. les droites qui correspondent aux modulationsdirés de quence d’enveloppe constante,
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2. les cercles qui correspondent aux fonctions d’Hermite,

sinon ils forment un ensemble de points exlCela limite donc constdablement les agencements
possibles de points fixes par kallocation.

Il est possible ddtendre cesasultats aux FCT calce#’s avec une fetre gaussienne de variance
guelconque en invoquant la correspondance entre les FCT

h h
FI(1,w) = Fh (M@, (3.45)

ou 1 /,)(t) = z(t/\) /A, qui se @montre par un simple changement de variable (cf. Sect. 1.2.4). Les
résultats de [91] appliggs sur le membre de droite ded;. (3.45) o'la fergtre d’analyse est aduate,

sont alors trangfies sur le membre de gauche. La famille de courbes d’extrema a@®peurF >

inclut donc des droites, des ellipses d’excentgigit; ou des points ises.

Stabilité des points fixes, attracteurs

Les points fixes stables sont centraux pour la dynamique engendr’ la eallocation difé-
rentielle puisqu’ils constituent les pointsedjtilibre vers a 'convergent toutes les particules temps-
frequence : nous les qualifierons donattfacteurs On peut se poser la question de savoir si le terme
suppEmentaire ne vient pas entraver cette convergenceepanse peuttie donee par le calcul du
produit scalaire entre le vecteur dmatlocation et celui de la direction de la plus grande pente

Y (A WY A Y 8 B s

qui, dans le caa fergtre gaussienne qui nouséntsse, seeduit alorsa’

1
- Viog|F| = 5 ‘Fth (3.47)

‘2

Ce produit scalaire est donc toujours positif. L'angle ente¢V log| F'| reste compris entrer /2
et /2 ce qui garantit que ne perturbe pas la course des particules vers les points fixes.

La réallocation dif€rentielle va slectionner parmi tous les extrema, seulement ceueguilibre
est stable. Pour prouver la stal®lid’un point fixe, il suffit de trouver le signe de la parteeiie des
valeurs propres de la matriceriée du champ desgllocation,D (7). Dans le cas gaussiarnvariance
unité, cela reviena étudier le spectre de la matrice

A _ (0Flog|F| 07, log|F|
Dt = (G5 i) (3.48)
qui, au pointfixe 0'0;| F| = 9, |F| = 0, est ausseégale
A _ L (oF] OlF|
D)= () i) (3.49)

La stabili# est donc directementka la courbure locale du module de la FCT. Nous ne pouvons
conclure sur la stabilitdes points fixes pour tous les signaux. En revanche, il est endatrs [91]
gue si le point en question appartientine droite o@ un cercle de points fixes, il estcessairement
un maximum local déF’| (la concavi€ delog| F'| y est touree vers le bas), ce qui prouve la stabilit”
de cette position @quilibre. En ce qui concerne les extremaésoil est possible que certains d’entre
eux correspondetat des pointsol oua des minima locaux en lesquelsduilibre est instable.
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e Enrésung

En s’appuyant sur lesesultats de la section prédente et sur une analogie aux gyaes phy-
siques, nous avons introduit une nouvellthode deeallocation, la allocation difErentielle, gne-
ralisation de la version classique. Nous avatsdié quelques unes de ses prates. En particulier,
nous montrons lI'importance des points fixes par éalldcation qui s'interpetent comme des at-
tracteurs vers lesquels convergent asymptotiquement toutes les contributions tequesié€ ainsi
reallouges. Nougtablissons, dans le casferétre gaussienne, la correspondance entre ces points
fixes et les extrema locaux du spectrogramme.

3.3 Partition

3.3.1 Differentes approches

De nombreux prol@mes de traitement du signal commedbudiitage, la classification de signaux,
etc., peuvent se reformuler dans le contexte de I'analyse teraggence par la recherche d’un moyen
de partager le plan tempsefflience en zones marquant chacune des composantes d’un signal et per-
mettant leur extraction de mame indpendante. Dessiner une carte tempsiience, c'est essentiel-
lement &gicomposer le signhal en composantes meesiEn fequence et/ou en amplitude.

Cette question n'est pas nouvelle et vouloir y donner wpmnse dfinitive est un dfi perdu
d’avance. En effet, pour apporter une solutiore probéime, il faut donner unegfinitiona ce qu’est
une composante d’un signal. Le concept de composarggensi on peut en avoir une intuition
assez pmCise, est comptement ambigu. Si on le maintient au rang dédphilosophique, aucune
preuve mathmatique n'est possible. Il faut alors le formaliser ; il perd alorsyitablement, de son
universali€. On dresse une liste de quelques contributions relativeess probéime. Le propos n’est
pas I'exhaustivié’mais plubl d’'insister sur les diverses conceptions que I'on peut avoir de la nature
d’'une composante.

Cohérence de phase sous I'enveloppe

Dans cette approche, on applique au signal leet@dxplicite suivant (€ja évoqle au chapitre 1)

N
p(t) = A (1)), (3.50)
n=1

ou I'amplitude A,,(¢) présente de faibles variations par rappouelles de la phagg, (¢). Les diffé-

rences entre les ethodes atta@€sa cette approche sont dans la nemaide traduire cette deane
phrase. Une composante du signal est donc clairenezmited comme une modulation deefjience
oscillant de fapn Bguliere sous une enveloppe aux variations lentes.

Cette ide aete exploi€e par exemple en traitement de la parole dans [76] sous le nom delénod”
sinusodal” en imposana I'amplitude d&tre lindaire par morceaux et la cErivée de la phase dife
cubique par morceaux.

Pour les rethodes “agfe et squelette” [33, 53] qui I'utilisegalement, chaque composante est dite
“asymptotique”, ce qui se traduit par la contrainte suivante sur la phase et I'amplitude

1 dA,
A, dt

dé,,
dt

. (3.51)
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Cette hypotkSe permet par la suite d’'invoquer le principe de phase stationnaire (pour le calcul
des transformés temps-&uence ou tempasehelle, cf. Sect. 1.4).

Cette approche atteint ses limites lorsque I'on essaie d’analyser une impulsion, oemdus g°
ralement lorsque I'enveloppe varieesr rapidement. |l faut alors faire appel’asymptotisme” en
frequence [33, 53], version duale dwepident, qui contraint les variations relatives de I'amplitude
et de la phase de la transfaemde Fourier du signal de laeme margre qu’eneq. (3.51). Pour les
signaux qui nelangent les deux types de comportement, le @roklest alors de savoir quand passer
d'un mocelea I'autre, dans I'hypotbse que ce passage soit possible.

Encombrement dans le plan temps-fequence

Aucun modtle n’est, cette fois, appligLeu signal. On s’appuie sur le fait que, dans le plan temps-
frequence, les signaux ne peuvent pae arbitrairement conceps’'simultaement en temps et en
frequence. C'est ce que traduit par exemplestjali€ bien connue d’Heisenberg-Gabor. eglést de
faire une mesure de I'encombrement du signal dans le plan terpseinCe puis de comparer cette
mesurea celle obtenue avec un signal édérence (celui d’encombrement minimum). Le nombre de
composantes psentes dans le signal seddiit dans le principe, de la mané suivante: si 'encom-
brement meswréest, par exemple, le double de I'encombremenetience, alors on conclut qu'ily a
deux composantes dans le signal. La diffiegtincipale e€side dans la recherche d’'une bonne mesure
de I'encombrement. Les approches les plus prometteuses seeistag’ Evaluation de la quanét”
d’information porge par une distribution diiergie temps-&quence de la classe de Cohen cozsiel”
comme une dengtde probabilié’@ deux dimensions).

Nous allons nous ietesser, en particulieg deux mesures d’informatiora I'information de
Rényi d’ordre 3 sur la distribution de Wigner-Vittgcf. &q. (1.2)) [7, 6]

1 dtdw
w _ = 3
1(e) = —3los, [ [ Weiw) G2 (352)
et égalemena 'information de Shannon pa@e par le spectrogramme [98]
I355(2) = — / / S, (1,0) logy S (1, ) d;d“, (3.53)
T

ou dans les deux caqt) est un signal dghergie uni’

Ces fonctionnelles peuvent s’integber comme des mesures de concentration puisque, par ana-
logie a la théorie des probabils, une variable abtoire pesentant une densitde probabil#’tres
concentee (“piguee”) est porteuse de peu d’information. On peut montrer [6] pkeuas qu’elles
pos®dent la propeté de compter les composantes. En effet, si un signal est la somume)ds de
y(t) = z(t— At) exp(tAwt), son transla'en temps et endrjuence, alors pouxt et Aw suffisament
grands [6]

IRs(z +y) = IRs(x) +1 D Iy(e+y) =I5 (a) + 1. (3.54)

Il existe rEanmoins des diffences entre ces solutions qui peuvent faied&petr 'une plubt que
l'autre. En effet, la prengire I}};(x) hérite de la distribution de Wigner-Ville de quelques prefrs
d’invariance (en particulier, par les changementHElle et par les modulations et convolutions par
les chirps ligaires) que ne posde pas la deugihel 3, ().

4. |l estimportant de noter que cette prengimesure n’est pas toujoursfhie [6].
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Les quanties d’information (3.52) et (3.53) sont expees en nombre de bits que I'on peut
convertir en nombre de composantes (ou dimensionathgiR6]) respectivement par :

NP (2) = 2t (@)~ Liah), (3.55)

ou h(t) est le signal d’information minimalea(Savoir n'importe quelle modulation kaire de fe-
guence, d’enveloppe gaussienne) et par:

NgH(x) = QIgH(I)_IgH(h)7 (356)

ou h(t) est la ferltre d’observation (et, dans ce cas, le seul signal d'information minimum).
Remarquons cependant que cedtmodes nous donne au final le nombre de composaresies
dans le signal mais aucune information n’est demadr leur position, ni erme de leur structure.

3.3.2 Une proposition baée sur la reallocation differentielle

Notre contribution [21]a’ce probéme se distingue des autres dans la mesurelle cEfinit la
notion de composante indirectement par un outil deasgmtation du signal, le champ de vecteurs de
réallocation du spectrogramme, ttjue par des arguments physigues commedgiemment.

Fort des esultats obtenus en Sect. 3.2, il devient natureleat®icE le signal dans le plan temps-
frequence en termes d'attracteurs, de bassins d’attraction et de lignes de partage des eauet®Jne vari’
de caraatfisation des signaux peatré cgduite d'un tel paraetrage. Pour mciser la terminologie,
on appelle ldbassin d’attractiore plus grand voisinage de poirdpartir desquels il y a convergence
vers un point fixe stable. Un borggarant deux bassins ne petite” affect’a I'un ou l'autre de
ces bassins. Les bords regroupent tous les endroits depuis lesquels on converge vers un point fixe
col, ou vers l'infini. Notons que I'ensemble de ces lignes, habituellementegsbigihes de partage
des eauxest de mesure nulle. Lawhion de tous les bassins d’attraction recompose le plan temps-
frequence dans son entier. Le partage du plan tenegskrice en zones distinctes, chacune associ”

a une composante, peut dagtes obtenu par ce biais. Confaemeéenta I'intuition, une composante se
trouve ainsi @crite par urcentretemps-feéquence (I'attracteur) et wlomaineessentiel d’existence
dans le plan (le bassin d’attraction).

Sion utilise une feafre gaussienne, les composantes que laaaé sont des ensembles de points
connexes (on peut tracer une ligne continue entre chacun de ces points et I'attracteur) contenant un
maximum local du spectrogramme (ou plusieanchndition qui s’alignent de magrie dense, le long
d’une droite, ou d’une ellipsef I'int'erieur d’une composante, on peut imaginer le spectrogramme
comme un “@me” d’énergie. En cela, cetteatiiode proede de la rafe philosophie que celle expo-
see dans [84].

3.3.3 Algorithme pour la partition

La mise en ceuvre du calcul de la partition temgsfrénce passe par plusieatspes.

La r éallocation difféerentielle en pratique

On calcule lepoints de gallocation asymptotiqueise., les coordoneés de la position de chaque
particule en fin de trajectoire en egrant le sysime déquations di#rentielles ¢g. (3.38)) liant la
position de la particula son champ de vitesse. Chaque trajectoireceahée nuneriquement par
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une m€thode Runge-Kutta d’ordre @ pask fixe dont la pecision est er© (£%). Sit, etw, repe-
sentent respectivement les coordees temporelles etdguentielles de la particule au cours de son
mouvement, on a

(T @n)' = (L, wa)' + kP (Ln, ) (3.57)
(bt 1s @nt1)' = (Lo, W)’ + k/2(7 (Lo, wn) + P (T, 0), (3.58)

l'arrét de litérationétant adtermiré par un criere sgcifique. Il ne s'agit pas en effet d'ater la
progression de I'algorithme alors que la particule est encore loin de sa position asymptotigue. R’
ciproquement, il est inutile dé@‘er la néthode de Runge-Kutta si la convergence eq dffective.

Le critere d’argt que nous proposons nous garantit que I'approximation que nous obtenons est dans
un carg d’ated (donrgée®) centg sur la valeur asymptotique vraie. Ce eré est obtenu en faisant
I'hypothése d’'une approximation quadratique locale du potentiel (ce qui rexiapprocher locale-

ment le signal par une modulationdiaire de fequence d’enveloppe gaussienne). Si le potentiel est
guadratique, cela implique que son gradient egidire. Donc legquations difrentielles (3.38) de la
réallocation dif€rentielle admettent au voisinage de la position asymptotiguew..) une solution
exponentiellea’savoir

ln =l + (to — too) exp(—n/T) (3.59)
Wy = Weo + (Wo — wao ) exp(—n/9), (3.60)

ou T et sont les temps (algorithmiques) de relaxation ggjlent la vitesse de convergence vers la
valeur asymptotique selon chaque axe.
On veut un criere simple qui nous indique lorsque

|t — teo| < d lwp — weo| < d. (3.61)
Concentrons-nous sur la variable temps, et observons sa variation locale

[t — tuei] = |(to — too) exp(—n/T)| |1 — exp(1/T)]. (3.62)
En comparana (3.59), on voit apparae la distance 1a valeur asymptotique

|tn - tn—1|

1= exp(/T)] (3.63)

|tn _t<><>| =

On obtient une estimation d’'un paratre 7' géréralement inconnu, en notant que le rapport de
deux variations successives est constargetd

|tn—1 - tn—2|
|tn - tn—1|

résultat que I'on reporte daes|. (3.63), pour obtenir une forme exploitable de la pezmiréquation
dans (3.61)

=exp(1/T), (3.64)

|tn - tn—1| <
‘1 - |tn—1 - tn—2|/|tn - tn—lH
5. Pour garantir une convergence acceptable, onifixaine valeur egligeable par rapport au pas de ldlgrdu plan

temps-féquence. Pour un plagchantillon® au pas unit’en temps et endguence, un bon choix eét= 10~2. Choisir
une valeur plus petite augmente, biem, 4 temps de convergence, donc le temps de calcul.

d. (3.65)
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Ces calculs sont directement transposablés variable fequence. Le crére complet prend la
forme de deux conditiores respecter simultament :

_ 2 d _ _ _
n - - - -
|t tn 1| > ‘|tn tn 1| |tn 1 tn 2|‘

|wn - wn—1|2 > d ‘|wn - wn—1| - |wn—1 - wn—2|‘-

Notons qu’il récessite seulement la connaissance de trois points de calculs successifs.

Pré-traitement

Il s'agit d’effectuer le tri parmi les ograteurs degallocation asymptotiques de marea reggrer
les positions exactes des attracteurs. Le nombre de paian$a ce stade gféralement @3 grand,
on effectue un premier passage que I'on appaiéetraitementll consistea regrouper tous les points
situésa une distance iefieurea v/2d, i.e., la diagonale d’un cardle ©té d. Tous les points qui
convergent vers la emme valeur asymptotique sorgstings en un seul (que 'on fixegala leur
barycentre). Notons que cettgape concerne en premier lieu aux signaux meslahi amplitude pour
lesquels les points deallocation asymptotiques forment un ensemble de pointssol”

Classification ascendante kararchique

Il nous faut maintenant associer les points qui appartienmésmtréme ligne de modulation de
frequence. Un algorithme plus complexe (@d'timportance de laeduction du nombre de points
réalige lors de Ktape peddente), la Classification Ascendanteetdifchique [11] (CAH),va nous
le permettre. La CAH des points deailocation petrai€s nous fournit une structure arborescente (le
dendogramme)wsont ordonas les points suivant la distance qui lepare. Il suffit alors d’appliquer
un seuil €galad + D, la distance maximale entre deux attracteurs appartenEntreéme ligne de
modulation de fequence dans le pire des cas, 0 ‘est le pas de la grille de disiSation du plan
temps-fEquence) dans le dendogramme pour mettre ensemble tous les points qui s'alignent sur une
méme lign€ du plan. Chaque classe ainsi obtenue est alorseaféiliine neine composante.

Carte temps-fréquence.

La dernireétape consista affectera tous les amtedents des points deallocation asympto-
tiques le numefo de la composante correspondante.

3.3.4 Quelques exemples

L'algorithme que nous proposons peut servir de point egadta de hombreuses applications
en traitement du signal. La classification de signaux, leur reconnaissance, I'estimation detyggram”
peuvent s’appuyer sur la partition tempeetience. Voici quelques exemples d'illustration aux objec-
tifs multiples: les premiers sonediésa la comparaison de cet algorithme avec d’autres, le dernier
montre comment il peut s’appliquer aelatuitage de signaux.

6. Nous savons, qu’en gofie, les ensembles denses d’attracteurs ne peatrentjie des droites ou des ellipses. La
CAH devrait doncetre destieea traiter ces deux cas. Mais, en pratique, les contributions ne convergent pasteomepit
vers leur position asymptotique (erreur dardi, convergence trop lente). Par ceqaént, il arrive parfois que I'on se
retrouve avec un ensemble de contributions aeesk long du ligne (pasoéssairement une droite ou un cercle) du plan
alors qu’elles auraientudfoutesetre regroupés en un seul point. Lors de cedtape, on rattrape les erreurs commises en
affectanta toutes ces contributions laemie€tiquette.

93



Partition de Voronoi du plan temps-fréquence

Le but de ce premier exemple, phaitde I'ordre de I'exercice, est de donner ecidirage sur le
résultat de la partition. On congirE le signak (¢), somme deV atomes gaussiens de variance @nit”
2, (t) = 7= exp((t — t,)?/2 + iw,t) aux centres tempsdguencedt,,, w,) suffisammeneloigrés
les uns des autres (nous donnerons plus loin une signifiaties derniers mots)

N
$(t) =D (). (3.67)

n=1

(Notons que laeférence de phase de chacun de ces atomes se situe en leut,céntre

La FCT d’'un tel signal seetluit par liréari@, I'(t,w) = ZnNzl F,(t,w). Sih(t), laferétre d'ob-
servation, est gaussienne, son champ de vecteursatlecationr s’obtient par une gréralisation
pour N signaux de Eq. (2.22). Plus mcigment, 'image complexe de(champ de vecteurs norma-
lisé défini enéq. (1.39)) crit

|

N
r=> —tr. (3.68)
n=1

On se place elft,w) au voisinage det;,w;) et ({x,wy) de tel sorte que pout # j etn #
k, |F.(t,w)] < ||z||*. En ce point, tout se passe comme si le champeddiacation esultait de
I'interaction des atomeget &

F; Fy

~ F1 T T+ F 1T T (3.69)

r

Si la ferétre h(t) est “ronde” (de variance um]}, le calcul explicite de pour un tel signal peut
étre ramean, par une translation suivie d’une rotation dans le plan tengug+émcea celui plus simple
de la sommey(t) = 1 (t) + y2(t) de deux atomes,; (1) = 7~ Y 4exp(—(t + 19)?/2) ety (t) =
7~ /4 exp(—(t—ty)?/2) centés sur I'axe des temps, de part et d’autre de |'origine. Remarquons que
cetteéquivalence est possible uniguement parce que la distribution de Wigner Ville des atomes et celle
de la fergtre sont invariantes par toute rotation dans le plan tengog+énce.

Le calcul der suit la méme trame que pour le sigreatieux impulsions et commenad'eq. (2.22)

T:1+?2/F1+1-|—;21/F27 (3.70)
ou le quotient des FCT s’obtient avec (2.10)
Fy/Fy(t,w) = exp(—to(t — iw)). (3.71)
On en a&duit que le champ deallocation dey s’écrit
o L (etiltw) L fehilot) g
Itexp(lo(i— @) —V3 Ttexp(—holl— ) —v3
ou bien, Eduit sous une forme plus compacte,
. . 13
"= (_% + %Cosh(:;;h—f—ti?s(tow)’ _% - %Cosh(tzllfl;(ffgs(tow)) ' 3.73)
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Les points fixes par laegllocation sont les points tels que

sin (tow) sinh (tot)
“ % cosh(tot) + cos(tow) % cosh (tot) + cos(tow) (3.74)

Nous allons sparer la recherche sgshatique de ces points en dertapes : d’abord, le long des
axes du plan tempséddquence, puis dans le reste du plan.

e Axe des temps; = 0.

La premereéquation de (3.74) eskvifiée sur cet axe. La dewetiieéquation qui devient

sinh (to?)
t="to cosh(tot) + 1’ (3.75)

posde un nombre diéfent de solutions selon la valeur the Sit, < /2, I'eq. (3.75) admet une
seule solution en = 0 (la fonctionsinh (¢ot) / (cosh(¢ot) + 1) croit plus lentement queau voisinage
de0). Les deux logons sont trop proches pour pouetiie distinges avec la feetreh ; on détectera
alors une seule composante. Dans le cas contgairey/2 (condition deRayleigh), I'eq. (3.74) admet
trois solutions 0 et un couple de solutions non alyiques de signe opp®s (dont la valeur proche
det, peutétreévallée nuneriquement) et-7;.

Ces solutions sont de natures diffntes, ce que I'on peugrifier en calculant laelivée du champ
de vecteurs desdllocation

. 1 1 4 cos(tow) cosh(tot) . to  sin(tow) sinh(tot)
Ot —t)=—=(1—-1¢ L 0o —w)= -2
(t-1) 2 ( 0 (cosh(tot) + COS(tow)>2) ( ) 2 (cosh(tot) + Cos(tow))2
(3.76)
Dolf=1) = (& —w),  O(o—w) = —% (1 42 (1 +;;Si§0j:) Cos(i(to)t)é) . @)
cosh(tot) 4 cos(tow

Des simplifications interviennent sur I'axe= 0 :

. 1 i .1 i
(e —w) = 2 (1 + cosh (tot) + 1) Kt —=1) = 2 (1 ~ cosh(tot) + 1) (3.78)

de plus, les dfivées croisés s’annulent. On peut conclure directement@(e& — w) est strictement
négatif,cosh(#ot) + 1 étant toujours positif.

Au point (1, 0), il en est de reme pour l'autre @fivéed, ({ — t) = — (1 — tot; / sinh(tgt;)) dans
la mesure asinh est toujours au-dessus de la prermsibissectrice des axes. En ce point, la matrice
dérivée der est dfinie régative ; c’est donc un maximum. On peut faire lem& raisonnement pour
(—11,0).

Au point (0,0), la situation est dififente dans la mesure@;(f — t) = —(1 — t2/2)/2 est
strictement positive sous la condition de Rayleigh* 1/2) ce qui rend donc ce point instable (point
col).

e Axe des fequenceg, = 0.
La deuxemeéquation de (3.74) esevifiee sur cet axe. La presreéquation qui £crit

B sin (tow)
W = to 71 T Cos(tow) 5 (379)
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admet, quelque solt, une infinié de solutions. Sur I'axe = 0, I"equilibre est instable: la matrice
dérivée du champ de vecteurs dmhlocation est diagonale et lariVée partielle

. 1 i

est minoge en tout point par une quasetipositived; ( — ¢) > —(1 — t2/2)/2 > 0 sity > /2. Tous
les points solutions sont donc des points cols.

¢ Reste du plan, # 0 etw # 0.
L'existence d'un extremum dans le reste du plan est souar@eondition ecessaire

f(t,w) = tsin(tow) + wsinh(tet) = 0, (3.81)

obtenue en faisant le quotient, memlarenembre des deweqs (3.74). Pour un temps> 0 fixe, la
dérivée partielled,, f = tot cos(wtp) + sinh(#pt) est strictement positive dans la mesutesmh (¢)
est toujours au-dessus de la prereibissectrice gi > 0. La fonction f(¢,w) est donc strictement
croissanteat fixé. Puisquef(¢,0) = 0, f(¢,w) ne s'annule pas ailleurs. On peut faire lemé
raisonnement pour un temps< 0. La condition recessaire (3.81) est donerifiee uniquement sur
les axes = 0 ouw = 0, excluant de cette &mn I'existence d’extrema ailleurs.

Il existe donc deux maxima parmi tous les extrema. Il estreg$ant de savoir quelles sont les par-
ticules qui vont converger vers I'un ou l'autre, autrement dit comment la partition se fait. Les champs
de vecteurs deegllocation et les spectrogrammes asse@iChacun de cas envissgpeacdemment
sont montes en Fig. 3.5.

A partir de (3.73), on peuterifier que, conforramenta l'intuition, ¢ = 0 est la ligne de partage
des eaux selon laquelle s’effectue Ecdupe du plan tempsefguence. Une ligne de partage des eaux
d’un potentiell” est une ligne de champ comgesde points$t,w) stationnaires et instables selon au
moins une directiom. Plus pecig€ment, les points d’une ligne de partage des eaux doivent respecter
trois conditions, soit

Ju € R?, v _ 0 (3.82)
ou
O*V

37 >0 (3.83)

VV A (dt,dw)" =0, (3.84)

ou (dt, dw)' est la tangenta [a ligne de partage des eaux au pgint>) (notons bien que, pour une
analogie avec des syshes physiques, le sens de la graeist ici invers) etu A v désigne le produit
vectoriel des vecteurs etv.

Leq. (3.82) impose que le poiftt w) soit un extrema local et par cagtglient une position djui-
libre selon la direction dore® paru. Linstabilité de ceequilibre est fiee par 18qg. (3.83). La ligne
de partage des eaux est la seule ligne de champ (ligne tangente en toatlpdighé de plus grande
pente) parmi I'ensemble de pointsfiiis par les deux conditionsguedentes, ce quekectionne IEq.
(3.84).

En ce qui concerne notre prahe, regardons en= 0 et en choisissant la directian= (1, 0)?,
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ce que deviennent cegjlations
d(log|F|)/ou(0,w) = 7w = 1(0,w) =0 (3.85)
9*(log| F|)/0u*(0,w) = (1, Duu'd? > 0 sity > /2 (voir &q. (3.80)) (3.86)
V(log|F|)(0,w) A (0, 1)) = # A (1,0)" = 0, (3.87)

ou 9+ est la matrice dfivée du champs de vecteurs @altbcation.

La lignet = 0 est donc une ligne de partage des eaux. L'algorithme pratiqgue une caufare °
médiatrice entrdtg,0) et (—to,0), centres effectifs des deux logons. épsire donc le plan temps-
frequence en deux ensembles: I'un qui regroupe les points plus prochigs@ejue de(—ty, 0), et
son Eciproque. Forme de cette maeie, ce que fait I'algorithme de partition est danposteriori
identiquea ce qu’on obtiendrait en pratiquant la partition du plan tempgtfence par des polggés
de Vorono™ [86] assocésa chacun des centres des logons.

On vient détablir 'équivalencea posteriorientre deux rathodes de partition du plan temps-
frequence, ce que I'on peuenifier sur la Fig. 3.6 pour un signal com@ogé trois logons gaussiens
centes, en(—tg,0), (t0,0) et(0,ty), sommets d’un triangle isete. La Fig. 3.7 illustre quedquiva-
lence fonctionne toujours dans le cas plesdral ai les logons sont en nombre plus important et sont
positionres en(t,,, w,) choisis afatoirement (dengtaniforme suf—to, to] X [—to, to]) dans le plan
temps-fEquence.

Si la ferétre n’est plus de variance uejt’équivalence avec la partition de Vorarsgmble tou-
jours possible en modifiant la distance entre points du plan terepsériceElargir ou €trécir la
fenétre “ronde” revient appliquer au plan tempsefjience une anamorphose. Pour conserver la su-
perposition des frongires fournies par I'algorithme de partition sur celles dmagpar les polygyies de
Voronai, il s'agit alors de changer laefinition de la distance pour I'adapter au plan temgsifience
anamorphos’

Influence de I'amplitude relative sur la partition

L"eloignement n'est pas le seul paetne qui affecte la capaeita £parer deux composantes.
Entrentégalement en ligne de compte, leur amplitude relative et leur relation de phase.

On reprend le proleime pecddenta deux logons en y ajoutant de nouveaux dsgié libent.

On autorise maintenant des amplitudes et des pleabesgine arbitraires. Le traitement gagne alors
consicErablement en complexit”

Regardons d’abord 'influence de I'amplitude en conservarféaence de phase de chaque logon
en leur centre. Notre signalt) est maintenant la somme ge(t) = exp(—(t + t0)?/2) ety (t) =
aexp(—(t —t9)?/2), ola € RT. Le calcul des oprateurs degdllocation suit une trame identique
au cas: = 1, a la difference qu’un terme dng(a) vient s’ingrer dans I'exponentielle desky. (3.71)
qui devient

Fi/F5(t,w) = exp(—loga — to(t — iw)). (3.88)
Les vecteurs deedllocation s£crivent alors

. ot L+ lo sinh(#ot + log a) 7 w sin(tow) t‘ (3.89)
2 2 cosh(tot + loga) + cos(tow)” 2 2 cosh(tpt + loga) + cos(tw)

7.S0itP = {pn}n=1..~ un ensemble de N points du plan, le payg de Voronoassoa'a un pointp; de P est le lieu
du plan qui contient tous les points plus prochegdgue desV — 1 autres points dé.
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FiG. 3.5 — Spectrogramme et champ de vecteurs @altbcation de la somme de deux logons gaus-
siens.Cette figure €pertorie les di#frentes situations possibles pour la structure du spectrogramme
(ferétre d’observation gaussienaevariance uni¢) du signal compasde deux logons distants ¢de
défini en Section 3.3.4a) Au dessous de la distance critique ¢@, le spectrogramme ne gsente
qu’un seul maximum (le champ de vecteur @alldcation ne s’annule qu’en un seul poif) 0).(b)

Ceci est toujours vrai au point critiqug = /2. (c) Au dessus de cette distance, le spectrogramme
admet trois extrema, dont deux maxima. Il devient possibleegarsf les deux logons. (Le champ
des vecteurs deedllocation n'est pas re@seng en vraie grandeur pour faciliter la lecture. Signaux
échantillonresa 5Hz)
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FiG. 3.6 — Partition temps-fequencea base de eallocation et partition de Vorono'trois logons
gaussiensLes algorithmes de partition du plan tempsdtience base deeallocation et de partition

du plan temps-&Quence par des polggés de Voroncdboutissent pour le signal jouegd: (3.67),

N = 3) formé de trois logons cengs en(ty,w;) = (—3,0), (t2,w2) = (+3,0) et (t3,ws) = (0,+3)

a des Bsultats identiques. Il s’agitici d’'une simplenification car nous savons que ce signal respecte
les hypotleses des approximations introduites en Section 3(d8)4spectrogrammeb) champ des
vecteurs deeallocation et lignes de partage des ea(t},partition temps-fequence (niveau de gris)
et partition (lignes frontre). (Signakchantillonr€a 5Hz)
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FiGc. 3.7 — Partition temps-fiéquencea base de eallocation et partition de Vorono'cing logons

gaussiensOn compare sur cette figure, pour un signal (spectrogrammni@grompos’des logons
positionrés aux pointst,,, w,) choisis aBatoirement (densétuniforme suf-5,5] x [—5, 5]), la par-

tition temps-fEquence obtenue avec keallocation (zones en niveaux de gris d@mg et la partition

par les polyghes de Voronglignes fronteres dangb)). Les limites trougés par les deux ethodes
se superposent exactement. (Sigeadantillonr€a 5Hz)

100



Les points fixes de laedllocation respectent les deux conditions suivantes

A sinh (tot + log a) 7 (3.90)
cosh(tot + log a) 4 cos(tow)

sin (tow)

. 91
% cosh(tot + log a) + cos(fow) (3.91)

w=—1

Nous n’en effectuerons patiide compdie. Il est cependant important de savoir comment I'am-
plitude influe sur la capactde gparation des deux composantes. Pour cela, nous nous concentrerons
sur I'axe des temps. Sur cet axeed.” (3.91)etant toujours gfifiee, le systie se eduit de deux
conditions de stationnaéti une seule:

sinh(tot + log a)
=t =0. .92
fy=t—to cosh(tot + loga) + 1 0 (3.92)

L' etude des variations de la fonctig(¢) montre qu’elle admet troisezds distincts sous la condition
de Rayleighto > v/2, & laquelle s’ajoute une contrainte sur I'amplitude relafivga,) < a < ao,
ou I'amplitude critique s’exprime de la mai suivante

tor/12 — 2
go= —Plovig —2) (3.93)
12— 1+19/13 — 2

Similairement au cas = 1, deux de ceser0s sont des maxima et attracteurs, le dernieesitu’
entre les deux mddents, est un point col. Il indique la position de la ligne de partage des eaux
qui est, cette fois, plus difficila obtenir: elle est une solution non triviale ded:’(3.92) qu'il faut
résoudre numriquement. C'est ce qu'illustrent les figures 3.8 et 3.9.

M éthodes s’appuyant sur une mesure d’'information

Lorsque les composantes sont proches, lepasdtion devient exérhement dlicate. L'ambiguté
est telle qu’il est parfois possible d’envisager plusieurs solutions physiquement acceptablas-et n”
moins, totalement difffentes. Qui plus esd,faible€loignement, la relation de phase devient cruciale :
il est naturellement plus difficile deeparer des composantes en phase qu’en quadrature. Aweune r’
ponse @finitive ne pouvant nous servir deférence, on se propose de faire une comparaison entre
notre algorithme et celui propesians [7, 6] qui est bassur les mesures d’information. Nous nous
servirons des deux mesures d’information exq@ssén Sect. 3.34 savoir I'information de Bnyi
d'ordre 3 sur la distribution d&}); (=) définie eneq. (3.52) et Iinformation de Shannon peetpar le
spectrogramméz;; (=) définie eneq. (3.53).

Dans les deux cas, on convertit kestiltat obtenu exprienén bits vers une uithomognea un
nombre de composante par kgs. (3.55) et (3.56).

Les comparaisons entre les mesures d’'information et natthade sont faites en Fig. 3.10 sur un
signal composde deux logons dont on fait varier la distance et la phase relative (ampléagdies
et constantes). Legsultats sont & comparables. En particulier, la frarg entre les configurations
distance-phaseuwil y séparation des logons par la partition et celle elle n’est paseéli€e, se
superpose assez biara courbe de niveal 5 de N5 (z).
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FiG. 3.8 — Influence de 'ampitude relative et de la distance sur la partition tempsefyflence : dis-
tance constante, amplitude variabl8i le signal est compesie deux logons d’amplitude difEntes

(cf. 3.3.4), la partition ne sectionne plus le plan tempgtrénca la médiatrice des centres des deux
logons, mais era un tempg; qui varie non lirdairement en fonction de la demi-distartgeet de
I'amplitude relativea. Les graphega) et (b) montrent, respectivement pour une distance courte et
longue, I'évolution det; en fonction dex choisi dang1, ay] (la deuxeme moi& de la gamme de va-
leurs admissibles pour, [1/ag, 1], donne dese@sultats syrtriques). Dans le premier cag (= 2), la
partition est tes sensibla I'amplitude relative {; varie quasi lirdairement en fonction de. A ftitre
d’exemple, on a superpe€n(c) le spectrogramme du signat¢hantillonrga 13Hz environ) pour

a = 2 et laligne de partage des eaux (en poimjliDans le deuxime cas#, = 5), 'amplitude cri-
tiqueay devient tes grande. Dans des gammes d’amplitude raisonnabled(iécrit [1, 100]), il est
remarguable que la diéfence d’amplitude n’influe plus sur la partition. Tout se passe alors comme si
les deux logonstaient de rafne amplitude. Le grapl{d) en montre un exemple pour= 10 (signal
echantillonrga 5Hz). Les deux logonstant d’amplitude tes difErente, le spectrogramme est indéqu”
par des courbes de niveau§6(, 10, 1} en trait continu{0,5, 0.1, 0.001} en trait mixte).
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Fic. 3.9 — Influence de I'amgitude relative et de la distance sur la partition tempsefjuence :
amplitude constante, distance variablette figure compte la Fig. 3.8 en pg&entant, efa)et pour

le méme signal, Evolution de la position de la ligne de partage des eaux en fonctianaamplitude
relative constanted = 2). On constate qui courte distance, I'amplitude influe beaucoup sur la
partition. La zone assoeg par la partition temps-&Quence au logon de plus forte amplitudetstid
largement au-del de I'axet = 0 dans le demi plan < 0. Ceci est illuste en(b) pour la demi-
distance critique#y = 1.86) en dea de laquelle on neatécte plus qu’'une seule composante (signal
echantillonrga 13.6Hz). Ce n’est plus le cas pour les grandes distances (grdpfé, = 6) ou cette
fois le partage se fait approximativementa médiatrice (signakchantillonrga 4.2Hz).
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Fic. 3.10 — Comparaison entre le nombre de composantestettes par la partition temps-
frequence et celui dommpar les neéthodesa base de mesure d’informatiorCette figure regroupe
les réponses que donnent troiethodes diffentesa’la question :“combien y-a t'il de composantes
dans le signat(t) = exp(—t/2) + exp(—(t — t0)*/2) exp(ip) ?" pour diverses valeurs de la
distancet, et de la phase relative. En trait plein: information de BAyi d’ordre 3 calcute sur la
distribution de Wigner-Ville€q. (3.55). En trait pointillé: information de Shannon calaé’sur le
spectrogrammexd.(3.56). En niveau de gris: la ethode de partition pargallocation difErentielle
(blanc=1 composante, gris=2 composantes). La frergidonme par la partition temps-&uence
correspond approximativemeata courbe de niveau, 5 sur N5;.
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Extraction-reconstruction, application au débruitage

Nous nous irgfessons ica la reconstruction des déféntes composantes d’un signal. Il existe de
nombreuses ethodes pour reconstruire une partie de signal contenue dans un domaine du plan temps-
frequence. Ce probime esequivalenta celui de la syntbse d'un filtre temps-&guence de gabarit
fixe. Le filtrage de Weyl est une solution geatise un bon compromis entrespision de reconstruc-
tion et complexi¢”algorithmique [69]. C’est done l'aide de cette mthode que nous reconstruisons
les différentes parties du signal dans leur esaritation temporelle.

La Fig. 3.11 illustre ce que nous proposons sur un signal coenpesieux “chirps” lieaires de
taux de modulation diéifents et d’enveloppes gaussiennes d’amplitudesrdiftes. L'algorithme de
partition dtecte les deux composantes et les situe sur une carte tezgpegtiice. On gsSente ensuite
la reconstruction de chacun des deux “chirps”.

Disposer d’une carte tempsefililence estgalement utile pour leabtuitage de signaux titre
d’ exemple, on veut extraire un signal (une modulatiordiné de fequence d’enveloppe gaussienne
en I'occurence) noydans un bruit additif (blanc et gaussien). La carte peut nous sexlgctionner
la zone temps-&Quence qui correspond au signahetjeter celles qui sont asseeg au bruit. Par ce
biais, la carte temps+djuence nous permet, en quelque sorte, de trouver un filtrage non-stationnaire
bien adapt’au signal pour son extraction du bruit. En reconstruisant, avecd#sodes pSenges
dans le paragrapheguédent, ce que contientla zone “signal + bruit”, ehausse le rapport signal sur
bruit (RSB). Onevalue la qual#'du dgbruitage en mesurant le gain en RSB obtenespaitement.
C’est ce que nous montre la Fig. 3.12 pour un RSB initial variant entrelB et 10dB. Les simula-
tions que nous avongali€es nous indiquent que, pour un RSB de 'ordre-dea 0dB, I'atténuation
du bruit est d’envirorsdB.

La question cruciale reste tout demé de savoir reconrteé la zone “signal + bruit” sur la carte.
Dans I'exemple que nous proposons (que I'on doit cargidsimplement comme une illustration),
nous avons ogtpour un criere simple: nous choisissons parmi toutes les composaatestg’s
celles de plus grandenergie. Ce crére est bierevidemment voea lechec @S que le RSB initial
devient faible. Lorsqu’on augmente la puissance du bruit, la qeattétiergie augmente dans les
partitions “bruit seul” jusgua, pour certaines d'entre ellesgHsser celle de la partition “signal +
bruit”. Dans ce cas, le cate se trompe &vitablement de partition. On pourrait alors pensales
sophisticationstelles que I'utilisation de enies entropiques ou I'iatjration de connaissanaepriori
sur le signal si elles sont disponibles.

3.3.5 Fusion de partition

Lorsque deux signaux sont proches dans le plan tenggiérice, I'algorithme de partition devient
particulierement sensibla la relation de phase. Cela se manifeste par des coupures parasites comme
par exemple celle qui estggénee en Fig. 3.13 pour un etdnge de deux chirps. Pour donner une
intuition de ce qui se passe, ptas-nous dans le cas d’une &€ gaussienngvariance uné’pour
lequel le champ de vecteurs deatiocation @five exactement du potentilel| F.|. Pour certaines
relations de phase, il apparales maxima locaux secondaires dans le potentiel qui viennegeipi”
guelques particules eteei des partitions parasites. En particulier, cela est vrai esepce de bruit.

En effet, si I'on considre quez(t) = s(t) 4 b(t) provient de la perturbation du signglt) par un
bruit additifb(¢) de faible amplitude, le potentiel peut se mettre sous la forme suivante:

log|F,;| = log| Fs| + log|1 + F}/ Fy. (3.94)
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Fic. 3.11 — Extraction—reconstruction de chirpsa Taide de l'algorithme de partition temps-
frequence (a) signal, (b) spectre d€nergie,(c) spectrogramme(d) partition, (e) premiere compo-
sante (trait pointilB) et sa reconstruction (trait plein{f) deuxeéme composante (trait point) ‘et sa

reconstruction (trait plein).
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FiG. 3.12 — Débruitagea I'aide de I'algorithme de partition temps-&uencgvoir Sect. 3.3.4)(a)
spectrogramme d’uneeglisation bruige RSB = 0dB) et contour de la zone “signal” identié,
(b) moyenne eecart-type du gain en RSB en fonction du RSB ereeniti realisations de bruit
indépendantes pour chaque point).

A fort rapport signahbruit, i.e. lorsquéF; / F;| < 1, on développe au premier ordre le membre
de gauche dedquation peccdente

log| Fy| = log| Fy| + Re{F}/F,}, (3.95)

d’ou I'on conclut que le potentiel asseciu champ de vecteurs dmatiocation du signat (t) bruité
s’écrit comme la combinaison du potentiel obtenu avec le signal aealyoirlog| F;| et d’'une per-
turbation du bruitRe{ F},/ F, } qui causent I'apparition de maxima locaux et donc de composantes
parasites. Nous avons envigggusieurs solutions pour aca@ la robustesse de la partition au bruit,

et plus gréralement la robustesad’effet du battement de phase. Nous allons nower@gser main-
tenanta’la fusion de partition tempsefquence.

Cette approche s’appuie sur laggssi’d’équivalence entre chaq@dement de notre partition
(chacune desedions sur la carte tempsefflence) un signal eel. Plus pecigment, chaque res-
triction du spectrogramma [a zone correspondante deenpar 'algorithme de partition doétre
lui-méme un spectrogramme. Or, il s&xe que les partitions assees aux maxima parasites sont
géréralement de petites tailles. Par exemple, en Fig. 3.13, la compos$anpeavient d’une coupure
parasite duea un agencement particulier des phases des deux chirps. La zone qui lui esteassoci’
sur la carte de tempsefguence est de faible surface : le spectrogramedaita cette zone ne peut
pas correspondre au spectrogramme d’un signal qui exdstlement. Le but de cette section est de
trouver un criere pour reconnge les zones de la carte tempseftience non admissibles en termes
de distribution temps-&quence, puis de proposer un algorithme déggtion des partitions parasites
(typiguement, on aimerait fondre les composanteset it 3 en une seule) pour le recouvrement des
composantes qui leur sont effectivement assesi”

Discrimination des partitions non-admissibles

On adopte ici une&rarche heuristique. Nous faisons cing propositions derestjue I'ongpare
en deux catgories:

1. les crieres qui font intervenir tous les points de chaque partition (approche composante),
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FIG. 3.13 — Mise enévidence de coupure parasite dans la partition tempsefuence due au bat-
tement de phaseCette figure illustre I'influence sur la partition, du battement de phase entre deux
composantes (ici, deux modulationsdaires de fequence d’enveloppe gaussienne ou chirps). L'algo-
rithme de partition utilise le champ deecteurs deeaallocation du spectrogramnga). Le battement

de phase fait intervenir une coupure parasite qui scinde le chirp de plus petite amplitude en deux
parties (composantes'h et 2 sur la carte temps-drjuencgb)). Il est clair que la composante’ s

n'est pas admissible. C’est ce que confirme lesgifices que I'on observe entre, d’'une p#e),la
restriction du spectrogrammeela région qui lui est assoeg par I'algorithme et, d'autre par{d) le
spectrogramme de la reconstruction de la composat2epar la méthode @crite en Sect. 3.3.4.
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2. et ceux qui ne prennent en compte que les points desdrent{approche frorare).

Nous nous limiterona des mesures faites sur le spectrogramme, notre partition s’effeatpantir
de celui-ci.

e Approche composante
— Mesure d’encombrement.

Si, comme nous l'avons dit pdédemment, les partitions non pertinentes ont une faible surface
équivalente dans le plan tempgdience, elles ne respectent gdartiori les inégali€s de concentra-
tion que I'on peut formuler sur des distributiongdErgie temps-équence engy¥ral. L'idée naturelle
est alors de calculer, pour chacune desomposanteseatéctes pour le signal(t), une quantg’que
I'on comparera avec la borne dagspar I'irégali.

Soit 5, (t,w) = 1en(t,w)S(t,w)/ E,, la restriction du spectrogramme au domaifedu plan
temps-fEquence assaei lan'®™ composante etecEe par I'algorithme de partition. La fonction
1¢,, estlafonction indicatrice sur l&gionC’,. On a pris soin de normaliséf, a1 en normel, soit
E, = [[.. S(t,w)dtdw/(2), pour que I'on puisse l'intergter comme une densitle probabili:

La premere icBe consistea mesurer une surfa@glivalente par un moment du deexié ordre
conjoint en temps et endquence [60, 39]:

o= I ()« () Jpeate oo

out, = [[t9,(tw)dtdw/(27) etw, = [[wS,(t,w)dtdw/(27) sont les coordorees du point
moyen de la distributiof,,. Si 5, estle spectrogramme d’un signal quelconque, alecessairement

1
dy(z,n) > 7 (3.97)

La borne de lirquation est atteinte [60] si et seulement:§i), la ferétre d’observation est
gaussienne (ckq. (1.40)) et le signal asse@ ', est gaussien.

On peutegalement profiter deségaligs faisant intervenir les mesures d’information [70, 61] sur
les distributions temps-iquence (dja évoqilees en Sect. 3.3.1). On note:

dtd
I (S / S(t,w) log, S(t,w) “, (3.98)

I'information de Shannon calced sur la distributiort’ de normel; unité. Sih(t) est une feafre
gaussienne et §,, est le spectrogramme d’un signal arbitraire, on peut montrer que [61]

dy(x,n) = 2T ()=l (3.99)

(ou Iy est la quante#’d’'information minimum obtenue avec le spectrogramme d’un siggala la
fenétre) est toujours s@pieure ouegalea 1. Cette quantd’repgsente le nombre de composantes
portées pars,, (t,w), I'unite étant fixée par la feafre.

Notons bien que ces deux conditions d’admissibBibint ®cessaires, et que des distributions non
admissibles peuvent aussi lezrifier.

— Comparaison au signal reconstruit.
Le deuxime point de vue consisteconfronter la restrictios,, du spectrogramme, avec le spec-

trogrammeSff) de la composante reconstruﬁ%) par la méthode @crite en Sect. 3.3.4. Ceci revient
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approximativemerw faire la comparaison d&, avec son projetsur I'ensemble des spectrogrammes.
Si cette comparaison met ewiflence deux distributionsats differentes alors', (¢, w) n’est pas ad-
missible en tant que spectrogramme ; il faut rejeter la partition correspondante. Pour quantifier les

dissemblances entrg, et st on pefere ignorer les diffences qui peuvent appdraa l'intérieur
de (', et mesurer la proportion diergie deSff) a I'extérieur de’, :

1 dtdw
_ (r) _
d3(z,n) = o0 // S(tw) (1= 1, (tw)) =~ (3.100)
ou B\ = |27 ||* est I'énergie du signal reconstruit. On estime que, si cette proporépasse un

seuil arbitraire que I'on placera pour fixer leg@sa 10%, la partition n’est pas pertinente. La raison
de ce choix est que, si la partitidrf, est trop Etroite”, alorsSff) (t,w), étant contraint aux egali€s
d’encombrement dans le plan tempeefuence, va devoir ataler hors des frordies fixes par,.
C’est, par exemple, ce que I'on constate en Fig. 3.13.

On peut adapter la emie philosophie dans un contexte informationnel et mesurer kexelifte
des informations poggs pars, et Sff) :

da(,n) = 275 (S5))~1s(Sm)~1o (3.101)

Ceci revienta compter le nombre de composantes qu'il faudrait ajouter au signal virtuel de spec-
trogrammes,, pour obtenirng). S'il faut ajouter plus d’'une composante, il est alors probable que la
partitionC',, ne soit alors pas pertinente.

¢ Approche frongre : énergie le long de la coupure

Pour tout signal dhergie finie, le spectrogramme finit parcddire dans toutes les directions
du plan temps-&Quence pour s’annuler l'infini. Si on désire que chacune de nos partitions soit
admissible en tant que spectrogramme, il nous faut donc exiger que le spectrogramme ait une va-
leur régligeable sur chacune des framgs. Lidée n'est donc plus deevifier directemensi chaque
partition repesente ou non un signatel, mais pludt de valider chacune des coupures faites par
I'algorithme de partition.

Pour chaque couplé’, et C,,, de composantes adjacentes, on note l'interseqtipn, ff:mm)
entre le segment qui relie leur centres respe¢tifsw,,) et (¢,,,w.,) et leur frontere. Le rapport de

o]
I"energie mes&e en(t,, ;.. &mm) et de la moyenneapnétrique des maxima du spectrogramme dans
C, et(C,,

S Unms@nm)
VS by w0) S (L 0m)
nous indique, lorsqu'’il est petit, i.e., ifieura un seuil que I'on a fid arbitrairement pour I'exemple

a 0.5, que le spectrogrammedatoit suffisamment verg a la frontiere, et valide par coegjuent la
frontiere consi@fée. Dans le cas contraire, la coupure eftreet C,,, esta remettre en question.

d5($7 n, m)

(3.102)

Algorithme de fusion

Notre but est ici d'aggger au mieux les composantes non pertinentes dans une carte temps-
frequence. Plat"que d’agir sur la carte tempsefiuence elle-erhe, nous allonsa partir d’elle,
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construire un graphe sur lequel I'algorithme degation agira. La construction du graphe et I'al-
gorithme de fusion difffe selon I'approche que I'on consie.

e Approche composante: cgitesd, a dy.

Le graphe est constigidenceudgjui correspondent chacanuh centre tempsdjuence (et donc
a une composante de la partition). A chacun de ces noeuds, on associe la mesure d’adenissibilit”
de la composante idoine. La structure de ce graphe et fiaf I'information de voisinage (ou de
connexi€) dans le plan tempsdguence : deux centres sont coneeddi les egions temps-&quence
qui leur sont assoegs sont limitrophes. Enfin, la distance entre chaque nceud est simplement la dis-
tance euclidienne (en coordazes normalieés par les de€ et bande de la fetre, resp. en temps et
en frequence) dans le plan tempsdtience.

L'algorithme va modifier ce graphe pour en obtenir un nouveau @uentype) atous les noeuds
seront assoeia des composantes admissibles. La fusion est effeativessairement sur des compo-
santes connexes, et deefifence sur des composantes proches.

Le déroulement des @pations suit la trame suivante:

Algorithme de fusion (Approche composante) :

— Calcul du diagramme de connexit”
Pour toutes les branches du diagramme, et dans I'ordre croissant de leur longueur,
faire

calculer le criere d’admissibili€"pour les deux composantes de la branche courante,
si I'une des deux composantes, au moins, de la branche courante n’est pas admissible:

procdera la fusion des deux composantes de la branche courante,

réévaluer la mesure d’admissibéitie la nouvelle composante,

fixer son centre au milieu des deux centres de la branche courante,

réévaluer le graphe de connexitt €lectionner la branche de plus petite longueur,

sinon
— passen la branche suivante.
fin si
fin faire
e Approche frongre: critereds.
Pour cette approche, le graphe est similaire aeguiénta la difference que I'on n'associe plus

une valeur du créfe d’admissibili#€a chaque nceud maaschaque branche. Le traitement suit alors le
déroulement suivant:

Algorithme de fusion (Approche frontiere) :
— Calcul du diagramme de connexit”

Pour toutes les branches du diagramme,
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faire

calculer (par dichotomie) la position du poiit, ., , &mm),
évaluer le criere d’admissibili¢’de la branche courante,
si la branche courante n’est pas admissible:

— procddera la fusion des deux composantes,

— fixer le centre de la nouvelle composante au milieu des deux centres de la branche
courante,

sinon
— passea la branche suivante.
fin si

fin faire

Résultats, signaux syntlktiques

Nous avons testhos algorithmes sur deux types de signaux. Le premier, en Fig. 3.13 met en
évidence les problnmes I€s au battement de phase entre deux composantes, en I'occurence deux mo-
dulations liréaires de fguence (ou chirp) d’enveloppe gaussienne. L'interaction entre ces deux chirps
provoque I'apparition d’'une coupure parasite qui vient scinder un des deux chirps (celui de plus faible
amplitude) en deux. Nous donnons lesultats pour les cetesd; a d, uniqguement. Une analyse
rapide du tableau 3.1 montre que le eréd; n’est pas suffisamment contraignant poatetter les
mauvaises partitions. Cependant, les trois autresregtdonnent degsultats satisfaisants. En effet,
leur utilisation dans 'algorithme de fusion condaifagrégation des composantedret rf'2 et laisse
la composanted3 intacte. La partition obtenue en fin de traitement est donedeltat esere.

Le deuxeme exemple en Fig. 3.14 illustre I'action du bruit sur la partition tempgtfence. Le
signal est un chirp lieaire d’enveloppe gaussienne. Il est agoatin bruit blanc gaussien avec un
rapport signah bruit (quotient degnergieskegala +2dB. La partition dtecte six composantes. Il
est clair que la @Sence de bruit provoque trois coupures parasites qui vieneeotipér le signal en
tranches (composante®’ri,2,3 et 5). Les tableaux 3.2 et 3.3 regroupent les valeurs des ciagsrit”
pour les six composantegictes. On tire la mme conclusion que peedemment au sujet de la
surfaceequivalentea savoir son inefficaait Pour les trois créires de I'approchesgion, I'algorithme
de fusion (cf. Fig. 3.15) se trouveqgjér par le fait que les partitions dues au bruit solat fois non
admissibles en tant que spectrogramme, et proches des partitions du signal en distance euclidienne
normali€e (c’est par exemple vrai pour la configuration des nodudiet 5. La distance entrg et4
est inErieurea celle entred et 5). L'algorithme va donc avoir tendaneeassembler les partitions du
signal avec celles du bruit. Le aiteds, au contraire, fait bien la distinction entre frogm@s pertinente
et non pertinente et conduit aesultat que I'on attend.

Résultats, signaux eels

Dans le cadre d’'une collaboration avec Marianne Nardin (LIS, INPG, Grenoble), nous avons ap-
pliqué la partition temps-&Quence au probime de la caraetisation de modes de propagation d’'une
onde acoustique dans un guide d’ondes.

On dsire caradfiser la propagation dans un guide d’ondes qui est, en pratique, un canal qui
conduit de I'eau avec, au fond, une couclkdisientaire. Pour ce faire, on provoque une explosion
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Numéro Surface | Information| Energie | Information
de composante équivalente| de Shannon de Shannon
€q. (3.96) | éqg.(3.99) || éq.(3.100)| éq. (3.101)
Composanté 0.34 0.86 0.12 0.54
Composanté 0.21 0.41 0.36 1.49
Composant8 0.92 1.66 0.03 0.41
Borne tkeorique >0.16 >1 <0.1 <1
ou seuil acceptable

TAB. 3.1 — Ce tableau regroupe les valeurs des quatreergs d’admissibili’d’'une partition (intro-
duits en Sect. 3.3.5) pour chacune des trois composantes du sigsahgrén Fig. 3.13.

Numéro Surface | Information| Energie | Information
de composante équivalente| de Shannon de Shannon
€q. (3.96) | éqg.(3.99) || éq.(3.100)| éq. (3.101)
Composanté 0.61 1.31 0.04 0.49
Composanté 0.21 0.56 0.16 0.86
Composant8 0.40 0.90 0.09 0.60
Composantd 0.19 0.70 0.17 1.50
Composanté 0.51 1.14 0.05 0.52
Composanté 0.22 0.72 0.10 1.34
Borne tkeorique >0.16 >1 <0.1 <1
ou seuil acceptable

TAB. 3.2 — Ce tableau regroupe les valeurs des quatre premiergia# d’admissibili’d’'une parti-
tion (introduits en Sect. 3.3.5) pour chacune des six composantes du sigeahgren Fig. 3.14.

Numéro Energiea la

de branche coupuregq. (3.102)
Branchel : Comp.1 — Comp.2 0.94
Branche2: Comp.2 — Comp.3 0.90
Branche3 : Comp.3 — Comp.4 0.20
Branchet: Comp.3 — Comp.5 0.74
Branche5: Comp.3 — Comp.6 0.09
Branche6 : Comp.4 — Comp.5 0.11
Branche? : Comp.5 — Comp.6 0.15

Seuil acceptable <05
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TAB. 3.3 — Ce tableau regroupe les valeurs du er¢ d’admissibili€ d5s (approche frontre) d’'une
partition (introduit en Sect. 3.3.5) psenge en Fig. 3.14.
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FiG. 3.14 —Mise enévidence de coupure parasite dans la partition tempsginence due la pré-
sence de bruitLe signal, dont le spectrogramme est deram(a), est forn& d’un chip liréaire d’en-
veloppe gaussienne ajad un bruit blanc gaussierRSB = 2dB). (b) La présence de bruit cause
I'apparition de coupures parasites qui sectionnent en tranches la partition que I'on aimerait associer
au signal (composantes 1,2,3 et 5). Les centres de chacune des composantes sontasaaules

croix et sont relgs par le graphe de connegifvoir Sect. 3.3.5). Les points indiegid’un cercle sont

les (points de la grille temps4duence les plus proches de) intersections entre le segment qui relie
deux centres connexes et la framé entre les deux composantes qui leur sont asssci”

a la surface de l'eau i.e., ozmiet une impulsion en ee® du guide. On observe ensuite le signal
recu apes propagation. La nature du milieu et leseliffhteseflexions vont conduira ce que 'onde
de dEpart emprunte difffents trajets et soit modie” pendant ce trajet. Leglltat est que le signal
obseneg est compasde diférentes composantes, chacune @u@ mode de propagation particulier.

L'utilisation d’une distribution temps-&uence pour ce praitie est naturelle : les signaux ob-
senes sont non stationnaires et la repehtation temps-dguence permet une visualisation ieuiigte
de leur structure. Le signal est, en fait, une superposition de chirps comme l'indique clairement le
spectrogramme en figure 3.1&). Chacun de ces chirps correspadn mode de propagation.

Faire la partition temps-fuence pour isoler un de ces chirps est dangvalenta faire I'ana-
lyse de la propagation mode par mode. Ceci est utile si I'on veut faire I'estimation desgbi@sm”
(comme par exemple, la largeur de bande moyenne) du chirp dont oedeogsr ailleurs, une des-
cription théorique petise. On enelduit ainsi une caragtisation des modes de propagation puis, avec
I'ensemble des estimations obtenues pour chaque mode, I'extraction degasatn guide d’'ondes
(comme la profondeur du guide, le gradient de vitesse et de dehsitiilieu,. . . ).

Nous montrons en Fig. 3.16 I'extraction du quertne harmonique par la partition tempeeftience
suivie d'une fusion. Il est important de signaler que la fusiatéaeffectige “a la main” i.e., sans
I'aide des algorithmes pseng’s en Sect. 3.3.5 (nous ne disposons pas d’algorithme myatliation
automatique du graphe de connekit”
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FiG. 3.15 — Fusion de partition temps-fequence Cette figure rassemble les partitions obtenues
apres traitement de la partition en Fig. 3.14 par les algorithmes de fusion pesp@g Algorithme 1,
critere d,, (b) Algorithme 1, criere ds, (c) Algorithme 1, criered,, (d) Algorithme 2, criereds. Ce
dernier seulement donne une solution acceptable en regroupant les compdsante®t 5, toutes
clairement assoeés au signal.
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Fic. 3.16 — Application de la partition temps-gquence — Extraction de modes de propagation
d’'une onde acoustique dans un guide d’ond@®n observe le signal ce|, apres propagation d’'une

onde de choc (explosion de surface) dans un guide d’ondes (canal aquatique) pendant une distance de
14 km.(a) spectrogramme du signal obser\Ce signal est clairement comgodune superposition

de chirps qui correspondent, chacunun mode de propagation céfént.A I'aide de I'algorithme de
partition, on extrait un de ces chirps pour le caradser preci€ment et le comparex des attentes
théoriques.(b) Quatriéme harmonique extraét partir de la région indiq€e en pointilE en(a). (c)
Spectrogramme du signal extrait.

3.4 Conclusions sur la eallocation differentielle et la partition temps-
frequence

Une analogie aux sysies physiques suppeé par une descriptioregirétrique du champ de
réallocation nous a amem introduire une nouvelle version de kailocation la reallocation difé-
rentielle

A partir de cette nouvelle ethode, nous avons proosh algorithme qui permet d’obtenir un
découpage du plan tempsffience dans lequel chaque partie contient ce que nous appelons une
composantePour ce faire, nous utilisons une information directement issue du champ des vecteurs
de allocation du spectrogramme, lueme | a un certain potentiel. Chaque composante peut alors
étre décrite par un domaine tempffiience (un puits de potentiel) et un attracteur (minimum local
dans ce puits). Nousetiéctons donc autant de composantes qu'il existe de minima locaux dans le
potentiel prescrit. Nous montrons que cet algorithme peut s’applagliextraction de chacune des
composantes d'un signal, ainsi qudes prol#imes de dbruitage.

Nous positionnons notre algorithme par rapodfautre solution existentes: nous montrons que

— dans certaines conditions parti@rks, la rethode propase devienequivalente une partition
en polyghes de Voroniadu plan temps-Equence,

— la partition obtenue est ceteénte avec lesesultats dones par les rthodes bass sur des
mesures d’information dans le plan tempsgiuence.

Nous nous attachons ensuite aux diffieglliéesa’la pesence de plusieurs minima locaux (csis”
par exemple par la psence de bruit) dans une zone que l'intuition aurait meggumme une seule
et mMEme composante. Une partie du travail quit& accomplie sur laegularisation du champ des
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vecteurs degéallocation &té passé sous silence. L' est d’appliquer un traitement (unecogtion
comparable un lissage) sur le champ deatlocation desti@a aténuer les perturbations dues au bruit
(en en augmentant l@gulari€) et par consquenta limiter l'influence des minima locaux parasites
dans la partition. Le caraate marginal de I'espace des champs de vecteurgacation a fait

que cette approche s’est pour l'instant softir desChecs. Il reste cependant encore des voies de
recherche approfondir pour y donner solutionednmoins, pour le erhe probéme, nous proposons
une straggie alternative qui consiségfusionner les composantes non pertinentes de la partition. Nous
concluons finalement qu’entre tous les erits de dfection des mauvaises composantes engsag’
celui qui proedea I'examen du spectrogramme le long de la frergientre deux partitions conduit
aux meilleurs esultats.

3.5 Reallocation supervige

Dans les situations brg€'s (bruit large bande), laallocation telle qu’elle até introduite par Ko-
deraet al. [67] présente des incorwnients. En effet, elle eg des paquetsehergie concenes dans
les rgions assoeis au bruit uniguemengfions “bruit seul”) alors qu’on y aurait esg une distri-
bution lisse. De plus, alors qu'’il peatre proue que le spectrogramme d’un chirp estépdndant de
la fenétre d’observation, cela n’est plus vrai pour leslamges chirp+bruit. Dans cette section, nous
proposons une agtioration de laeallocation du spectrogramme qui

1. préserve une bonne concentration temgsHfience pour les signaux modsiién fequence,
2. n'applique pas le principe deallocation dans leggions “bruit seul”,
3. réduit la &Ependance de I'analysd’egard de la fegtfe d’analyse.

Nous pEsenterons dans un premier temps le principe de cettdicaation. Nous en discuterons
ensuite sa mise en ceuvre et ses performances.

3.5.1 Superviser la Eallocation
La méthode propcee se divise en dewstapes:

1. La premere consista discriminer lese@ions “signal+bruit” desagions “bruit seul” en extra-
yant de I'information du champ des vecteurs dalidcation. Le principe deatféction repose
sur I'observation suivante: lorsque la longueur de lafen@’analyse change, les vecteurs de
réallocation dans le voisinage d’un signatefministe obissent'une certaine loi @volution
tandis que, dans lesgions “bruit seul” leueVolution devient erratique. Plusgm&ment, pour
faire la discrimination, nous allons nous appuyer sur I'observation deplartition des angles
des vecteurs desgllocation pour diffrentes tailles de fetre. Pour donner une autre intesfa-
tiona la dmarche pSenge ici et en parlant abusivement, on pourrait dire que I'on compense le
fait que I'on dispose d’une seulealisation de bruit en observant le contemergtique dans le
plan temps-fequence du signal de difféntes fagns, i.e a'travers plusieurs fetres. On pour-
rait considrer les dif€rents vecteurs deallocation obtenus pour chacune destess utili€es
comme autant @preuves d’'une Bine variable @atoire. Notons bien que cet argument a pour
seule utilig de donner un nouveklairage aux idés dongeés ici.

2. La secondetape exploite comptément le contexte d’analyse multi-&#re. Elle consista °
mélanger la collection des spectrogrammes et des champs de vectesafi@ation assoes,
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qui ontété calcuks lors de ktape peEdente. Le but est deduire la @pendance de I'analyse
vis-a-vis de la longueur de la fetré et aussi de stabiliser le processuse@dlocation en faisant
la moyenne des vecteurs dmitfocation.

En congquence, la distribution tempsefjlience quigsulte de cette nouvelleatiiode est un glange
de spectrogrammes, modifpar la €allocation slectivement applicge dans lesagionsstiqueges en
tant que egions “signal+bruit”. C'est ce que nous appellerons “supervision”.

Etape 1. Detection : le chirp linéaire comme moele.

e Fonctions de denst’
Soit la modulation lieaire de fequences(t) = A exp(i3t?/2), nous avons €fa montg que le vec-
teur de gallocation adimensior™ (¢, w) du spectrogramme avec une &g gaussienneetit (cf.

(2.13))
f—t o—w\'  V2w-pt) 1\’
r(t,w) = (Ath’ Ao, ) = NN 5 (ﬁ, _ﬁ) . (3.103)
L'expression de I'anglé du vecteur degéllocation se @duit directement par :
tanf = Sho=w 1 (3.104)

Awyp, i—t ﬁ/\2

Si I'on considere# comme une fonction de et en supposant que est uniforn&@ment distri-
buée entre\,.;, et A, i.€., @ une dengittonstante dans cet intervalle, nous obtenons, pdans
l'intervalle image[f,,.:r, 0,42, 12 densie

(0) = C 1+ tan®6
re ~2y/]8] | tan®/29

ou (' est une constante de normalisation. Nous proposons d'utiliser (3.105) cosférence pour
I'identification de la proximi¢’d’un signal dans I'observation.

, (3.105)

¢ Critére de @tection

Nous effectuons en tout poirt,«w) du plan temps-Equence, une estimation empirique (his-
togramme) dee(#) a partir d’'une collection de champs de vecteurseidlocation assoesa des
fenétres de di#rentes longueurs. Une mesure de Kullback-Leibler est alorseypitisi comparer la
densit estinge/je (#) au mockle eneq. (3.105):

dlje-p0) = | () 0g 22 a0, (3.106)

Si cette distancegpasse un certain seuil (choisi sur des observations de bruigpaed!’inhiber
la réallocation.

Etape 2. Moyenne

Nous avonsa notre disposition une batterie de spectrogrammes assbdés feefres de lon-
gueurs vaees. Le proldime est alors de savoir comment les combiner pour en renforcer lesearact”
ristiques communes. Ceci reviemtmoyenner” les difrentes distributions, ce qui appelle la question
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du choix arbitraire de la moyenne. Cette question est en fait assérag et il peuefre montrer que
la £lection d’'une egle de moyenne sgifique est reéé avec le choim priori d’'une mesure de dis-
tance entre distributions tempsfrience (voir sur ce point [71]). Dans le contexte qui nowes@stSe,

la solution exige quelques approfondissements qui n’onefagit. L'approche que nous suivons ici
est plus pragmatique et consistsimplement faire la moyenne aritbtijue (qui correspond une
distanceL? entre distributions) des spectrogrammes dhite la n&me chose avec les vecteurs de
réallocation. On ne peut marier de marg colerente et avec une simple moyenne arigtinuie les
spectrogrammes et les vecteurs dalldcation calcds avec les &S grandes etés petites feettes.
On choisit de garder la simpligitde la moyenne choisie, mais de ne faire la moyenne que dans un
sous-ensemble des spectrogrammes et des vecteurs disponibles (en exclegiaades et lests”
petites ferires). Rappelons ici que le spectrogramme et lesadplrs deegdallocation peuventtfe

VU respectivement comme une moyenne et les cooemd’un centre de masseallgs sur la distri-
bution de Wigner Ville du signal dans un voisinage du plan temggtiehce. Nous nous restreignons
donca faire la moyenne de quardgvallgées sur des voisinages semblables du plan teregsidrice.

3.5.2 Mise en ceuvre et@sultats
Algorithme

La méthode que nous venons dectife conduie I'algorithme suivant:

1. calculer lesV spectrogrammes ferstre gaussienne aveé¢ longueurs de fegttes distribeés
uniformément, ainsi que le§ champs de vecteurs deallocation qui leur sont assesi,

2. faire la moyenne de¥ spectrogrammes et champs de vecteuredbacation comme geifié
en Sect. 3.5.1,

3. Pour chaque point du plan tempsédtience,

(a) estimer la dengtémpirique de I'angle des vecteurs @altdcation,

(b) calculer la distance de Kullback-Leibler (3.106) entre la dergdét'Eférence (3.105) et
son estinge,

(c) si cette distance est plus petite qu’un certain seedlllouer la valeur du spectrogramme
moyen avec le vecteur deallocation moyen. Dans le cas contraire, laisser sur place la
valeur du spectrogramme moyen.

Quelques images

La figure 3.17 illustre le fonctionnement de I'algorithme propdsins le cas du eénge d'un
chirp linéaire avec du bruit, le rapport sigreabruit (RSB)etant fixé a 10dB. La famille de fertres
utilisée est une suite de 30 fnés gaussiennesd. (1.40)) avec une taill® uniformément partie
entre),.;, = 1.8 et = 7. Les trois feeires de longueur les plus proches de la valeur centrale
de l'intervalle[ ..., Amaz) SONt €lectionges pour calculer les spectrogramme et vecteurgae r’
location moyens. Il est clair sur la carte de supervision (seuiledéstbn fixé a 0.5) que la proximé”
d'un chirp est @tecge dans une bande entourant la ligne égtience instantae’A I'exterieur de
cette bande, i.e., dans le bruit, oacitie majoritairement de ne pasafiouer. Cela se traduit sur la
distribution finale par une bonne regentation du signal @riergie est bien conceag autour du che-
min de féquence instantae’que sur la moyenne des spectrogrammeaidotes) et du bruit (dans les
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FiG. 3.17 — Réallocation supervigé d'un chirp linéaire.Chirp linéaire bruig, RSB = 10dB (voir
le texte pour les efails), (a) Moyenne arithratique des spectrogrammél) Moyenne arithrafique
des spectrogrammesallowgés, (c) Carte des distances de Kullback—Leibler: kegién noire (resp.
blanche) correspond aux pointsi ¢a supervision autorise (resp. inhibe) laallocation,(d) La dis-
tribution d’eénergie temps-&quenceesultante (la dynamique est daeénechelle logarithmique).

régions “bruit seul”, la distribution finale est une fonction lisse) relativement aux spectrogrammes et
spectrogrammesellolEs moyens.

Cet exemple est bassur un modle simple de signal monocomposante medet” fEquence,
mais la proedure peuefre gréraligea des situations plus compliges$ (signaux multicomposantes
moduks non litairement en &quencegtant admis que le metk reste valide localemeat’echelle
de chacune des fetres. Par exemple, la figure 3.18 montre la robustesse du processus de supervision
dans le caswle signal analysést un chirp en loi de puissance correspondant agleo@wtonien des
ondes gravitationnelles issues de la coalescence d'uersgsie deux objets astrophysiques massifs
[93] (sur ce point, on se reportera au chapitre 4). Les longueursdiesétres utili€es sont, cette
fois, réparties entre.,,,;, = 0.2 et \,,,,. = 6. On Electionne de la e fapn, trois ferires pour
les spectrogramme et vecteurs @alldcation moyens. Pour compenserchit au modle, on doit
augmenterdgerement le seuil deadéction (fixé maintenana 0.8). La @tection donne alors de bons
résultats mais ses performances sont di@sulorsques tend versd ou linfini: lorsqueg = 0,
frequence pure, (resp. — oo, impulsion, I'angle|d| passe brutalement de/2 (resp.0) a0 (resp.
7/2) quand la taille de fegtte augmente. Uachantillonnage &s fin de la gamme de longueurs de
fenétre est alorsecessaire pour que I'angledécrivent toutes les valeurs entretr /2. |l serait donc
important d’ajouter une prise en comptesilique de ses caegenérés par le dtecteur.

Performance

Nous proposons deux tests pewaluer I'efficaci€ de la gallocation superves.
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FiG. 3.18 —Réallocation supervigé d’un chirp en loi de puissanc€hirp en loi de puissance bruit”
RSB = 10dB (voir le texte pour les efails) (a) Moyenne arithrafique des spectrogrammeb)
Moyenne arithratique des spectrogrammesatioués,(c) Carte des distances de Kullback-Leibler:
la region noire (resp. blanche) correspond aux pointsl@ supervision autorise (resp. inhibe) la
reallocation,(d) La distribution dénergie temps-&Quence @sultante (la dynamique est dae®eén
échelle logarithmique).
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e Courbes COR

Les Caraafistiques Opfationnelles du 8epteur (COR) [96] de notregle de @cision ongeté
évallges et sont msenges en Fig. 3.19. On peut remarquer que pour un RSBieaffa —7dB, la
regle de eétection proposeé n’est pas meilleure qu’un tirageatoire. Chose plus importante, il séae”
gue la probabili¢’de fausse alarme est approximativemesgdiune valeur du seuil deedision.

o Criteres de qualié’de la repEsentation
Pour donner des informations suppiéntaires au sujet de la qualité la repesentation finale, la
Fig. 3.20 exhibe deux cetes:

1. Critere1. La difference entre €hergie totale du signal sans bruit et l8gtation de la distri-
bution temps-fequence (du signal breit1le long de la ligne de éduence instantae quantifie
comment le chirp initial est repsent.

2. Critere2. L'entropie de Shannon de la distributioredérgie 2D (normalee) quantifie la plati-
tude de la distribution dans lesgions “bruit seul”.

Ce qui est mis ervidence par ces deux &ies, est que l'utilisation de la supervision con@duitn
résultat interrediaire entre celui obtenu par les spectrogrammes conventionnel ou totaleatkengr”
La supervision assure donc un compromis entre ces deux situatioasestr”

3.5.3 Conclusions sur la supervision

Nous pesentons un prolongement de latimbde deeéllocation dont I'objectif principal est I'ob-
tention d’'une distribution tempséguence qui donne la fois une bonne regsentation du signal et
du bruit. Cette distribution est obtenue par un audit de la situation en chaque point tequesafré,
charg de dcider si oui ou non il est opportun deatlouer. La @cision s’effectue partir d’infor-
mation extraite des variations des vecteurseadlocation du spectrogramme lorsque la taille de la
fenétre d’analyse change. On profite pleinement du cadre mukstifiereh faisant agir cettealloca-
tion supervigesur une moyenne de spectrogrammes assadiles feerfres de tailles diéffentes.

Il serait important de comparer lessultats obtenus ici avec ceux obtenus par dethates
concurrentes comme, par exemple, les distribut@mnmseyau adaptatif radiallement gaussien [63]
ou plus Ecemment les distributions modié$ par degduations de diffusion dans le plan temps-
frequence [49]. Le positionnement par rapofoptimal du dstecteur de chirps que nous mettons en
ceuvre lors de Efape de supervision seragalement eCessaire.
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FiG. 3.19 — Performances de la supervision: Courbes CORes courbes COR sont assees aux
RSB = —7,0,7, 13 et20dB (de bas en haut). Les lignes en poiritElient les points obtenus avec
le méme seuil.
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FiG. 3.20 — Performance de la supervision: cetes de qualié’de la repgsentation(a) Critere 1
(voir 3.5.2),(b) Critere2 (voir 3.5.2). Ligne pleine: spectrogrammeailoué avec supervision, ligne
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