
Chapitre 3

Des extensions et des aḿeliorations à la
r éallocation

Ce chapitre contient une collection de contributions d´ediéesà la généralisation et `a l’amélioration
de la méthode de r´eallocation. L’unité de ce chapitre tient dans la mani`ere avec laquelles sont abord´ees
toutes ces contributions `a savoir : l’abandon de la distribution r´eallouée comme point de d´epartà tout
traitement suppl´ementaire et son remplacement par la distribution classique, i.e., non r´eallouée (dans
ce chapitre, le spectrogramme) accompagn´ee de son champ des vecteurs de r´eallocation. Par cons´e-
quent, toutes les propositions faites ici partent d’un point de vue en amont, i.e, avant r´eallocation, dont
l’objectif est l’extraction du maximum d’information des quantit´es dont on dispose. Les distributions
bilinéaires d’énergie temps-fr´equence comme le spectrogramme, sont bien connues. Il reste `a appro-
fondir notre connaissance du champ de r´eallocation et en tirer parti. Dans un premier temps, nous
décrirons la structure g´eométrique du champ de vecteurs de r´eallocation. Nous verrons comment il est
possible de l’associer `a des réseaux de courbes de niveau (Sect. 3.1.1), ou de lignes de plus grande
pente (Sect. 3.1.2), ce qui nous conduira naturellement `a introduire une nouvelle forme de r´eallocation
(Sect. 3.2). Fort de cette description g´eométrique et dot´e de cette nouvelle m´ethode, nous verrons que
l’on peut déduire des informations suppl´ementaires sur la structure mˆeme du signal (Sect. 3.3). Enfin,
nous exploiterons `a nouveau le champ des vecteurs de r´eallocation du spectrogramme, mais cette fois
lorsqu’on fait varier la fenˆetre, pour rem´edier au manque de robustesse des vecteurs de r´eallocation
établi au chapitre pr´ecédent et obtenir une distribution r´eallouée plus stable en pr´esence de bruit.

3.1 Géométrie du champ des vecteurs de ŕeallocation

Les champs de vecteurs de r´eallocation ne sont pas n’importe quels champs de vecteurs. Ils
obéissent `a des contraintes structurelles en relation avec celles qui asservissent la forme des densi-
tés d’énergie temps-fr´equence, plus pr´ecisément, celles qui d´eterminent l’admissibilit´e d’une fonction
quelconque deR2 en tant que distribution d’´energie temps-fr´equence. Ces contraintes se traduisent
par une g´eométrie particulière pour le champ des vecteurs de r´eallocation que nous allons d´ecrire ici.
Nous montrons `a ce sujet l’existence deux fonctions particuli`erement importantes puisque les vecteurs
de réallocation sont tangents aux courbes de niveau de la premi`ere, et aux lignes de plus grande pente
de la seconde. Ces travaux ont fait l’objet d’une publication [24].
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3.1.1 Phase ǵeométrique et courbes de niveau

L’opérateur de Weyl, pris dans sa d´efinition symplectique,

W (t; !) = exp
�
i(!t� t!)

�
; (3.1)

(où [th](x) = xh(x) et [!h](x) = �idh=dx sont les op´erateurs associ´es respectivement au temps
et à la fréquence) transforme le signalh en le translatant d’un retardt sur l’axe des temps et d’un
doppler! sur l’axe fréquentiel. Son action surh, [W (t; !)h](x) = h(x � t) exp i(!x� t!=2), fait
apparaˆıtre un terme de phase pure important, puisqu’il sym´etrise le traitement des variables temporelle
et fréquentielle. Si on d´efinit la FCT comme une corr´elation entre le signalx et les translat´ees de la
fenêtreh dans le plan temps-fr´equence parW (t; !), elle prend alors indiff´eremment une forme de
corrélation temporelle

Fx(t; !) =

Z
x(s)h�(s� t)e�i!s ds eit!=2; (3.2)

ou fréquentielle, qui s’obtient en rempla¸cant simplement dans l’´equation pr´ecédente chaque quantit´e
par sa duale par Fourier et en changeant les signes dans les exponentielles :

Fx(t; !) =

Z
X(�)H�(� � !)eit�

d�

2�
e�it!=2: (3.3)

La symétrie formelle s’étendégalement aux op´erateurs de r´eallocation (cf. ´eq. (1.32)) :

r̂(t; !) = (�t=2� @!'; �!=2 + @t')
t; (3.4)

qui se décomposent en un vecteur diagonal dans le plan temps-fr´equence ajout´e à un vecteur ortho-
gonal au gradient de la phase. L’´eq. (3.4) sugg`ere que les vecteurs de r´eallocation suivent des courbes
de niveau d’une fonction deR2 dansR, li éeà'(t; !). Ces courbes de niveau doivent n´ecessairement
être, comme le champ de vecteurs de r´eallocation, covariantes aux translations du signal dans le plan
temps-fréquence. Or, la phase'(t; !) ne respecte aucune de ces covariances.

En effet, si on note par[T sx](t) = [W (s; 0)x](t) = x(t� s), la version translat´ee en temps dex,
sa FCT s’écrit

FT sx(t; !) = Fx(t� s; !)e�i!s=2: (3.5)

Si s prend une valeur quelconque dansR, les phases deFT sx(t; !) et deFx(t � s; !) ne sont
égales qu’`a la condition! = 0. En cons´equence,'(t; !) n’est pas covariante aux translations en
temps du signal. Des ´equations similaires peuvent ˆetreécrites pour les translations en fr´equence.

Par cons´equent, nous cherchons une fonction2D qui liée à la phase mais qui doit s’affranchir
de la dépendance de la phase sur le choix de l’origine du plan temps-fr´equence. Pour r´esoudre notre
problème, nous introduisons une nouvelle fonction�(t0;!0)(t; !) que l’on appellephase g´eométrique.
La fonction�(t0;!0)(t; !) est la phase que nous mesurons au point temps-fr´equence de coordonn´ee
(t; !) si (t0; !0) est l’origine du référentiel. Déplacer l’origine en temps de0 à t0 signifie que la
valeur du signalx à la distancet de la nouvelle origine est donn´ee parx(t+ t0) = [W (�t0; 0)x](t).
De manière similaire, d´eplacer l’origine temps-fr´equence en(t0; !0) correspond `a remplacerx par
W (�t0;�!0)x. Donc1,

�(t0;!0)(t; !) = arghW (�t0;�!0)x;W(t; !)hi (3.6)

= arghx;W (t0; !0)W (t; !)hi: (3.7)

1. hx; yi = R
x(s)y�(s)ds désigne le produit scalaire canonique dansL2(R)etkxk =

phx; xi, la norme associ´ee.
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Puisque nous avons

[W (t0; !0)W (t; !)h](x)

=W (t0; !0)
�
h(x� t)ei!xe�it!=2

�
(3.8)

= h(x� (t+ t0))e
i[2(!+!0)x�(!+!0)(t+t0)+(t!0�t0!)]=2 (3.9)

= [W (t0 + t; !0 + !)h](x)ei[(t0;!0) (t;!)]=2; (3.10)

on peut exprimer�(t0;!0)(t; !) à l’aide de la forme symplectique[(t0; !0) (t; !)] = t!0 � t0!,

�(t0;!0)(t; !) = '(t+ t0; ! + !0)� [(t0; !0) (t; !)]=2; (3.11)

ce qui prouve directement que le vecteur de r´eallocation est tangent en(t0; !0) aux courbes de niveau
de�(t0;!0)(t; !) :

r̂(t0; !0) =
��@!�(t0;!0)(t; !); @t�(t0;!0)(t; !)

�tj(t;!)=(0;0): (3.12)

Ceci justifie l’appellation de phase “g´eométrique” pour la fonction�(t0;!0)(t; !), en ce qu’elle
fournit une interpr´etation géométrique locale du champ de vecteurs de r´eallocation au point(t0; !0).

3.1.2 Potentiel scalaire et lignes de plus grande pente

Réécrivons la FCTF (t; !) du signalx à l’aide du formalisme propos´e par Bargmann dans [10],
c’est-à-dire en utilisantF , fonction de la variable complexez = ! + it et de sa variable conjugu´ee
z�:

F (t; !) = F(z; z�) exp
��jzj2=4� : (3.13)

Les phases deF etF sontévidemment ´egales. En notant quelogF(t; !) = logjF(t; !)j+i'(t; !)
et en utilisant l’éq. (3.4), il est donc possible d’exprimer les vecteurs de r´eallocation avec les d´erivées
partielles deF :

t̂(t; !)� t = �t=2� Imf@!F=Fg (3.14)

= �t=2� Imf(@zF + @z�F)=Fg; (3.15)

!̂(t; !)� ! = �!=2 + Imf@tF=Fg (3.16)

= �!=2 + Ref(@zF � @z�F)=Fg: (3.17)

La dérivation delogF (t; !),

@tF=F = �t=2 + (i@zF � i@z�F)=F (3.18)

@!F=F = �!=2 + (@zF � @z�F)=F ; (3.19)

fait apparaˆıtre un couple d’´equations

Ref@tF=Fg = �t=2� Imf(@zF � @z�F)=Fg (3.20)

= @tjF j=jF j; (3.21)

Ref@!F=Fg = �!=2 + Ref(@zF + @z�F)=Fg (3.22)

= @!jF j=jF j; (3.23)

79



duquel, lorsqu’il est combin´e avec (3.15) et (3.17), on peut d´eduire :

r̂ = r logjF j � 2
�
Imf@z� logFg; Ref@z� logFg

�t
; (3.24)

où l’ égalité est valide surR2nf(t; !)jF (t; !) = 0g. L’opérateurr désigne le gradient dans le plan
r = (@t; @!)

t.
Ce résultat peut ˆetre interprété comme suit : ´etant donn´e la factorisation de Bargmann (3.13) de la

FCT, le champ de vecteurs de r´eallocation peut ˆetre décompos´e en deux termes, un premier qui n’est
autre que le gradient d’un potentiel scalaire (nomm´ementlogjF j) et un autre qui est une mesure de
la non-analyticité deF . Cette décomposition peut toujours ˆetre faite mais elle prend un int´erêt pour
certaines fenˆetres d’observation.

� Fenêtre gaussienne de variance unit´e
En effet, si la fenˆetre d’observationh est une gaussienne de variance unit´e (dont les isocontours

sont des cercles dans une repr´esentation de Wigner, fenˆetre “ronde” dans le plan temps-fr´equence),
i.e. si nous consid´erons la repr´esentation de Bargmann d’un espace d’“´etats coh´erents” [10], alorsF
est une fonction enti`ere dez, d’où @z�F = 0 (équations de Cauchy). Nous concluons que2

r̂(t; !) = r logjF j; (3.25)

ce qui prouve que, dans ce cas,le champ de vecteurs de r´eallocation dérive du potentiel scalaire
logjF j.

Ce résultat estimportant pour deux raisons :

1. Une cons´equence imm´ediate en est la description g´eométrique précise du champ̂r. En effet,
l’ éq. (3.25) prouve quetous les vecteurs de r´eallocation pointent tous dans la direction des
maxima du module de la FCT. Cet aspect est fondamental puisqu’il ouvre la porte `a des m´e-
thodes particulaires qui seront d´ecrites dans la suite de ce chapitre,

2. Si l’on compare les ´eqs. (3.4) et (3.25), on peut de plus remarquer que, `a une constante pr`es,la
phase'(t; !) est entièrement d´eterminée par le module, et vice-versa. Ce qui veut dire que le
spectrogramme correspondant (module carr´e de la FCT) porte autant d’information que la FCT
(à valeur complexe).

Ces deux arguments apportent une justification `a l’utilisation de méthodes de traitement d’images (re-
cherche de composantes connexes, de contours, de lignes de partage des eaux) sur le spectrogramme
(considéré comme une image) pour l’analyse du signal.

� Fenêtre arbitraire
Dans les autres cas (fenˆetre arbitraire), un terme suppl´ementaire

g(t; !) = �2(Imf@z� logFg; Ref@z� logFg)t; (3.26)

vient modifier la direction indiqu´ee par la ligne de plus grande pente de� logjF j. On peut donner une
expression plus simple de ce terme en ´ecrivant la FCT en fonction des variables complexesz etz�

F(t; !) =

Z
x(s) h�

�
s � z � z�

2

�
e�i(z+z

�)s=2 ds e(z
2
�z�2)=8ezz

�=4; (3.27)

2. Remarquons que l’´equivalent de l’éq. (3.25) pour l’imager dans le plan complexe dêr (cf. éq. (1.26)), d´efinie comme
fonction des variables complexesz etz� prend une forme tr`es compacte, parfois utilepour les calculs :r = 2i

p
2@z logjF j.
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puis en dérivant son logarithme par rapport `az�. On reconnaˆıt alors le quotient de FCT suivant

@z� log(F) = � i

2

F dh=dt+th

F
; (3.28)

d’où on peut d´eduire le vecteur

g(t; !) =

 
Re

(
F dh=dt+th

F

)
; �Im

(
F dh=dt+th

F

)!t

: (3.29)

� Influence de la fenˆetre surg(t; !).
Si la fenêtre d’observationest gaussienne de variance�2 quelconque,h(t) = ��1=4=

p
�e�t

2=(2�2)

alors la colinéarité entredh=dt et th(t) autorise la r´eécriture de l’éq. (3.28) selon les deux formes
équivalentes

@z� log(F) = � i

2

�
1� 1

�2

�
F th

F
= � i

2
(�2 � 1)

F dh=dt

F
; (3.30)

avec lesquelles, compte tenu des ´eqs. (1.37) et (1.38), on prouve la proportionnalit´e du terme suppl´e-
mentaireg(t; !) à une version anamorphos´ee du vecteur de r´eallocation

g(t; !) = (�� 1=�)

�
t̂� t

�
; �(!̂ � !)

�t
: (3.31)

Il est clair dans l’éq. précédente que la pr´epondérance deg(t; !) dans la d´ecomposition (3.24)
s’accroit quand la fenˆetre devient large (� tend vers+1) ou étroite (� tend vers0), et ce par la pr´e-
sence du coefficient(�� 1=�) en facteur. Ce r´esultat sugg`ere que l’importance du terme suppl´emen-
taireg augmente lorsque la fenˆetre d’observation et sa transform´ee de Fourier deviennent diff´erentes
l’une de l’autre ; autrement dit, lorsque l’on analyse le signal de mani`ere “inhomogène” en temps et
en fréquence. Pour argumenter cette intuition, remarquons d’abord que la norme du vecteurg,

kgk2 = 1

4

�����F
dh=dt+th

F

�����
2

; (3.32)

est d’autant plus faible queF dh=dt+th prend de petites valeurs. Soith(t), une fenêtre de norme unit´e,
khk2 = 1 dont la durée�t = kth(t)k et la largeur de bande�! = kdh=dtk existent et sont ´egales
et x(t), un signal quelconque d’´energie unit´e. On noteh�(t) =

p
�h(�t), la fenêtre obtenue par une

dilatation deh d’un facteur� en maintenant l’´energieà 1. On se propose de chercher la valeur de�
qui minimise celle dejF dh�=dt+th� j2. L’in égalité de Cauchy-Schwarz nous fournit un majorant��F dh�=dt+th�(t; !)

��2 � kxk2kdh�=dt+ th�k2; (3.33)

qui après développement

kdh�=dt+ th�k2 = kdh�=dtk2 + kth�k2 + 2hth�(t); dh�=dti; (3.34)

s’évalue par int´egration par parties,



dh�dt + th�






2

= �t2� + �!2
� � 1: (3.35)
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Il suffit ensuite d’utiliser les expressions des dur´ee�t� = �t=� et largeur de bande�!� = ��!
de la fenêtre dilatéeh�(t) en fonction de la fenˆetre de référence pour obtenir la majoration suivante :��F dh�=dt+th�(t; !)

��2 � �t2=�2 + �2�!2 � 1: (3.36)

On notef(�2), la fonction majorante dans le membre de gauche. Sa d´erivéef 0(�2) = ��t2=�4+
�!2 s’annule en�2 = �!=�t = 1, minimum def . On en conclut qu’`a forme de fenˆetre d’obser-
vation donnée, le terme suppl´ementaireg est de norme minimale lorsqu’on observe le signal sans
privil égier ni le temps, ni la fr´equence. Inversement lorsque les r´esolutions en temps et en fr´equence
deviennent tr`es différentes l’une de l’autre, la norme de ce terme suppl´ementaire devient de plus en
plus grande.

Si � = 1, l’ éq. (3.36) s’écrit

jF dh=dt+th(t; !)j2 � �t2 +�!2 � 1; (3.37)

et dépend donc du choix de la fenˆetreh(t). Parmi tous ceux qui sont possibles, le majorant atteint une
valeur minimale, pour la gaussienne `a variance unit´e, cas unique o`u il s’annule, ce que nous avons
déjà trouvé plus directement.

Les Figs. 3.1 et 3.3 compl`etent cette argumentation en montrant la d´ecomposition (3.24) sur un
chirp linéaire pour différentes fenˆetres gaussiennes (pour la premi`ere figure) et triangulaire (pour la
deuxième). En conclusion, la norme deg dépend de deux crit`eres :

1. le produit dur´ee-bande�t2h�!
2
h, qui mesure l’encombrement de fenˆetre conjointement en

temps et en fr´equence. Ce produit d´epend naturellement du type de fenˆetre employ´ee et est
minimum pour les gaussiennes,

2. le rapport dur´ee/bande�t2h=�!
2
h qui mesure les diff´erences de tailles entreh(t) etH(!). Pour

un type de fenˆetre donn´e, la norme est minimale si la dur´ee et la bande d’analyse sont ´egales.

La fenêtre qui réalise simultan´ement ces deux crit`eres est la fenˆetre gaussienne “ronde” pour
laquelle la norme deg est uniformément nulle. Remarquons parall`element que la fonctionF , que
fait apparaˆıtre la factorisation de Bargmann, s’´eloigne de l’analyticit´e (au sens o`u les conditions de
Cauchy deviennent de moins en moins vraies) au fur et `a mesure que l’un de ses crit`eres s’écarte de
la valeur obtenue avec la fenˆetre gaussienne de variance unit´e.

� En résumé
Nous venons montrer que le champ de vecteurs de r´eallocation peut ˆetre décrit géométriquement

par deux ensembles de courbes : d’une part, les courbes de niveaux d’une fonction, la phase g´eo-
métrique, liéeà la phase de la FCT, et d’autre part, les lignes de plus grande pente d’une fonction
li ée au module de la FCT, qui alors peut s’interpr´eter comme un potentiel dont le champ de r´eallo-
cation dérive (sous certaines condition, exactement). C’est ce dernier point que nous allons exploit´e
maintenant.

3.2 Réallocation différentielle

3.2.1 Principe

Le fait qu’un lien existe entre le champ de vecteurs de r´eallocation et un potentiel scalaire sug-
gère de consid´erer un syst`eme dynamique dont le fonctionnement serait gouvern´e par ce potentiel.
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FIG. 3.1 – Décomposition de Bargmann du champ de vecteurs de r´eallocation pour une fenˆetre
gaussienne.Le champ de vecteurs de r´eallocation peut se d´ecomposer (cf. ´eq (3.24)) en la somme
du gradient du potentiellog jF (t; !)j et d’un terme suppl´ementaireg(t; !). Nous avons montr´e que
g(t; !) est prépondérant lorsque la fenˆetre et sa transform´ee de Fourier sont de tailles (resp. dur´ee
et largeur de bande) diff´erentes l’une de l’autre. C’est ce que montre ce tableau de figures o`u, à
chaque ligne, on effectue la d´ecomposition(3.24)pour la fenêtre correspondante en Fig. 3.2. La ligne
centrale correspond au cas o`u on observe le signal (ici, un chirp lin´eaire d’enveloppe gaussienne,
s(t) = e�(1�i)t

2=2) identiquement en temps et en fr´equence (fenˆetre gaussienne `a variance unité). Le
termeg(t; !) s’annule alors uniform´ement. On dissym´etrise cette situation particuli`ere en rétrécis-
sant (première ligne) ou en ´elargissant (troisième ligne) la fenˆetre. Le termeg(t; !) n’est alors plus
négligeable devantr log jF (t; !)j.
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FIG. 3.2 – Fenêtres utilisées en Fig. 3.1.Cette figure pr´esente les trois fenˆetres gaussiennes utilis´ees
pour la Fig. 3.1. Leur distributionde Wigner-Ville sont indiqu´ees sur la ligne du haut par deux courbes
de niveau. La fenˆetre en(b) est une gaussienne de variance unit´e, seule fonction superposable `a sa
transformée de Fourier. Sa distribution de Wigner-Ville est `a symétrie circulaire dans le plan temps-
fréquence, d’o`u l’appellation de fenˆetre “ronde”.

En partant de cette perspective, on propose d’introduire une m´ethode deréallocation différentielle
[24] qui généralise la version originale. Dans la m´ethode originale de la r´eallocation, chaque valeur
du spectrogramme est d´eplacée d’une quantit´e finie, éventuellement grande, sans tenir compte des
régions du plan temps-fr´equence qu’elle traverse. L’id´ee est maintenant d’assimiler chaque point du
plan temps-fr´equence `a une particule dont le mouvement est compl`etement d´eterminé par sa position
initiale et par sa vitesse que l’on fixe en tout point ´egale au vecteur de r´eallocation correspondant.
Chaque valeur du spectrogramme est alors d´eplacée par sauts infinit´esimaux et de fa¸con continue
jusqu’à convergence vers un ´equilibre.

Plus formellement, consid´erons le champ de vecteurs de r´eallocation comme un champ de vitesse
qui contrôle le mouvement de chaque contribution temps-fr´equenceF (t; !), assimiléeà une particule
de position de d´epart, le point(t; !). Nous obtenons les ´equations du mouvement suivantes,

8>>>>>><
>>>>>>:

t(0) = t

!(0) = !

dt(s)=ds = t̂
�
t(s); !(s)

�� t(s)

d!(s)=ds = !̂
�
t(s); !(s)

�� !(s);

(3.38)

qui définissent le processus que l’on appelleraréallocation différentielle.
Dans le cas fenˆetre gaussienne `a variance unit´e, ces ´equations prennent une forme particuli`ere liée

au fait que le champ de vecteurs de r´eallocation d´erive d’un potentiel scalaire (cf. ´eq. (3.25))

�
t(0); !(0)

�
= (t; !)

d(t; !)t

ds
= r logjF j: (3.39)
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FIG. 3.3 – Décomposition de Bargmann du champ de vecteurs de r´eallocation pour une fenˆetre
triangulaire. Cette figure est identique `a la Fig.3.1, exception faite que la fenˆetre est cette fois trian-
gulaire (cf. 3.4). La ligne centrale est associ´eeà la fenêtre triangulaire dont la dur´ee est ´egaleà la
largeur de bande. Cette fenˆetre n’est pas de produit dur´ee-bande minimum (comme c’´etait le cas pour
la gaussienne). Le vecteurg(t; !) n’a plus de raison de s’annuler. N´eanmoins au sein de cette famille
de fenêtre, elle conduit `a un termeg(t; !) de normeL2 minimale.
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FIG. 3.4 –Fenêtres utilisées en Fig. 3.3.Cette figure pr´esente les trois fenˆetres triangulaires utilis´ees
pour la Fig.3.3 avec, sur la ligne du haut, leur distribution de Wigner-Ville indiqu´eeà l’aide de deux
courbes de niveau.

Le système dynamique ainsi d´ecrit est un syst`eme purement dissipatif dans lequel chaque particule
converge vers les maxima delogjF j. Nous reviendrons plus en d´etail sur ce point.

Si la fenêtre est quelconque, la pr´esence d’un terme suppl´ementaire dans la d´ecomposition (3.24)
du champ de vecteurs de r´eallocation ne nous permet pas de conclure directement sur la nature de la
dynamique.

La réallocation différentielle peut ˆetre vue comme un post-traitement des “images” temps-fr´equence
à base d’EDP. Dans cette famille de traitements, il existe d´ejà un algorithme similaire. En effet, les
méthodes “arˆete et squelette”3 qui extraient les lignes de maxima dans les transformations de Ga-
bor (ou les d´ecompositions en ondelettes) en explorant le plan temps-fr´equence (ou temps-´echelle)à
l’aide d’une recherche it´erative le long d’une direction n´ecessairement parall`eleà l’axe des temps ou
des fréquences. Dans le cas de la fenˆetre gaussienne `a variance unit´e, la réallocation différentielle peut
s’interpréter comme une g´enéralisation d’un tel algorithme dans la mesure o`u la recherche s’effectue
sans contrainte de direction. En effet, nous avons montr´e ici que la réallocation différentielle utilisait
alors le plus court chemin pour aller chercher l’“arˆete”.

3.2.2 Points fixes par la ŕeallocation

Le rôle despoints fixesc’est-à-dire les points qui se r´eallouent en eux-mˆemes, est crucial. On peut
les classer en trois cat´egories :

1. point fixe stable: toutes les particules comprises dans un certain voisinage de ce point convergent
vers ce point,

2. point fixe col: on ne peut converger vers ce point qu’en empruntant certaines trajectoires,

3. point fixe instable: aucune particule ne vient finir sa trajectoire en ce point, exception faite de
celle dont la position initiale est ce point exactement.

3. Les méthodes “arˆete et squelette” [33, 53] sont pr´esentées en Sect. 1.4.
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Dans le cas de la fenˆetre gaussienne `a variance unit´e, les particules temps-fr´equence se meuvent
sur un potentiel. Le fait que ce potentiel soit le logarithme du spectrogramme (et donc pas n’importe
quelle fonction 2D) va contraindre la nature des points fixes et leur position. C’est ce qui va nous
intéresser maintenant. Nous allons pr´eciserégalement ce qu’il advient au lien qui unit les points fixes
aux extrema du potentiellogjF j lorsque la fenˆetre est gaussienne, mais n’est plus “ronde” (`a variance
quelconque).

Points fixes et maxima delogjF j
Un point fixe par la r´eallocation est un point o`u le vecteur de r´eallocation est nul, soit

t̂(t; !)� t = Re

�
F th

F

�
= 0 !̂(t; !)� ! = �Im

(
F dh=dt

F

)
= 0: (3.40)

Si la fenêtre est gaussienne,h�(t) = ��1=4=
p
�e�t

2=(2�2), il devient simple de caract´eriser ces
points. Les fenˆetresth�(t) etdh�=dt étant proportionelles, l’´eq. (3.40) implique

Re

(
F dh�=dt

F

)
= Im

�
F th�

F

�
= 0: (3.41)

Les grandeurs complexesF th�(t)(t; !) et F dh�=dt(t; !) sont donc nulles au point fixe. En uti-
lisant le fait que@ logjF j = Ref@F=Fg (la dérivée partielle op´erant sur le temps ou la fr´equence
indiff éremment) et les relations suivantes

@tF = �F dh�=dt + i!F=2 @!F = �iF th� � itF=2; (3.42)

qui s’obtiennent simplement par d´erivation de l’éq. (1.3), le gradient delogjF j s’exprime avec des
quotients de FCT

@t logjF j = �Re
(
F dh�=dt

F

)
(3.43)

@! logjF j = Im

�
F th�

F

�
; (3.44)

nuls aux points fixes selon l’´eq. (3.40). Les points fixes sont donc ´egalement les points o`u s’annule le
gradient delogjF j. En ces points, le termeg(t; !) dans la d´ecomposition (3.24) s’annule `a son tour,
nécessairement.

Il y a donc identité entre le lieu des points fixes par la r´eallocation pour les FCT de Gabor et celui
des extrema du module de la FCT (ou du spectrogramme).

Géométrie des maxima delogjF j
Cette identité est très importante puisqu’il existe des r´esultats forts concernant la structure des

courbes de maxima du module de la FCT, qui s’appliquent donc d´esormais aux ensembles de points
fixes par la réallocation. En effet, sih(t) = h1(t) est gaussienne “ronde” (´etats coh´erents), on peut
montrer [91] que les maxima de la FCT peuvent s’aligner uniquement selon deux types de courbes

1. les droites qui correspondent aux modulations lin´eaires de fr´equence d’enveloppe constante,
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2. les cercles qui correspondent aux fonctions d’Hermite,

sinon ils forment un ensemble de points isol´es. Cela limite donc consid´erablement les agencements
possibles de points fixes par la r´eallocation.

Il est possible d’´etendre ces r´esultats aux FCT calcul´ees avec une fenˆetre gaussienne de variance
quelconque en invoquant la correspondance entre les FCT

Fh�
x (t; !) = Fh

x1=�
(�t; !=�); (3.45)

oùx1=�(t) = x(t=�)=
p
�, qui se démontre par un simple changement de variable (cf. Sect. 1.2.4). Les

résultats de [91] appliqu´es sur le membre de droite de l’´eq. (3.45) o`u la fenêtre d’analyse est ad´equate,
sont alors transf´erés sur le membre de gauche. La famille de courbes d’extrema autoris´ees pourF h�

x

inclut donc des droites, des ellipses d’excentricit´e�2, ou des points isol´es.

Stabilit é des points fixes, attracteurs

Les points fixes stables sont centraux pour la dynamique engendr´ee par la r´eallocation diffé-
rentielle puisqu’ils constituent les points d’´equilibre vers o`u convergent toutes les particules temps-
fréquence : nous les qualifierons donc d’attracteurs. On peut se poser la question de savoir si le terme
supplémentaire ne vient pas entraver cette convergence. La r´eponse peut ˆetre donn´ee par le calcul du
produit scalaire entre le vecteur de r´eallocation et celui de la direction de la plus grande pente

r̂ � r logjF j =
�
Re

�
F th

F

�
;�Im

�
F dh

F

��t
�
�
�Re

�
F dh

F

�
; Im

�
F th

F

��t
; (3.46)

qui, dans le cas `a fenêtre gaussienne qui nous int´eresse, se r´eduit alorsà

r̂ � r logjF j = 1

�2

���F th
���2 : (3.47)

Ce produit scalaire est donc toujours positif. L’angle entrer̂ etr logjF j reste compris entre��=2
et�=2 ce qui garantit queg ne perturbe pas la course des particules vers les points fixes.

La réallocation différentielle va s´electionner parmi tous les extrema, seulement ceux o`u l’ équilibre
est stable. Pour prouver la stabilit´e d’un point fixe, il suffit de trouver le signe de la partie r´eelle des
valeurs propres de la matrice d´erivée du champ de r´eallocation,D(r̂). Dans le cas gaussien `a variance
unité, cela revient `a étudier le spectre de la matrice

D(r̂)(t; !) =

�
@2t logjF j @2t! logjF j
@2!t logjF j @2! logjF j

�
; (3.48)

qui, au point fixe o`u @tjF j = @! jF j = 0, est aussi ´egale

D(r̂)(t; !) =
1

jF j2
�
@2t jF j @2t!jF j
@2!tjF j @2!jF j

�
: (3.49)

La stabilité est donc directement li´eeà la courbure locale du module de la FCT. Nous ne pouvons
conclure sur la stabilit´e des points fixes pour tous les signaux. En revanche, il est montr´e dans [91]
que si le point en question appartient `a une droite ou `a un cercle de points fixes, il est n´ecessairement
un maximum local dejF j (la concavité delogjF j y est tournée vers le bas), ce qui prouve la stabilit´e
de cette position d’´equilibre. En ce qui concerne les extrema isol´es, il est possible que certains d’entre
eux correspondent `a des pointscol ou à des minima locaux en lesquels l’´equilibre est instable.
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� En résumé
En s’appuyant sur les r´esultats de la section pr´ecédente et sur une analogie aux syst`emes phy-

siques, nous avons introduit une nouvelle m´ethode de r´eallocation, la réallocation différentielle, géné-
ralisation de la version classique. Nous avons ´etudié quelques unes de ses propri´etés. En particulier,
nous montrons l’importance des points fixes par la r´eallocation qui s’interprètent comme des at-
tracteurs vers lesquels convergent asymptotiquement toutes les contributions temps-fr´equence ainsi
réallouées. Nous ´etablissons, dans le cas `a fenêtre gaussienne, la correspondance entre ces points
fixes et les extrema locaux du spectrogramme.

3.3 Partition

3.3.1 Différentes approches

De nombreux probl`emes de traitement du signal comme le d´ebruitage, la classification de signaux,
etc., peuvent se reformuler dans le contexte de l’analyse temps-fr´equence par la recherche d’un moyen
de partager le plan temps-fr´equence en zones marquant chacune des composantes d’un signal et per-
mettant leur extraction de mani`ere indépendante. Dessiner une carte temps-fr´equence, c’est essentiel-
lement décomposer le signal en composantes modul´ees en fr´equence et/ou en amplitude.

Cette question n’est pas nouvelle et vouloir y donner une r´eponse d´efinitive est un d´efi perdu
d’avance. En effet, pour apporter une solution `a ce problème, il faut donner une d´efinitionà ce qu’est
une composante d’un signal. Le concept de composante, mˆeme si on peut en avoir une intuition
assez pr´ecise, est compl`etement ambigu. Si on le maintient au rang d’id´ee philosophique, aucune
preuve math´ematique n’est possible. Il faut alors le formaliser ; il perd alors, in´evitablement, de son
universalité. On dresse une liste de quelques contributions relatives `a ce problème. Le propos n’est
pas l’exhaustivit´e mais plutˆot d’insister sur les diverses conceptions que l’on peut avoir de la nature
d’une composante.

Cohérence de phase sous l’enveloppe

Dans cette approche, on applique au signal le mod`ele explicite suivant (d´ejà évoqué au chapitre 1)

x(t) =
NX
n=1

An(t)e
i�n(t); (3.50)

où l’amplitudeAn(t) présente de faibles variations par rapport `a celles de la phase�n(t). Les diffé-
rences entre les m´ethodes attach´eesà cette approche sont dans la mani`ere de traduire cette derni`ere
phrase. Une composante du signal est donc clairement d´ecrite comme une modulation de fr´equence
oscillant de fa¸con régulière sous une enveloppe aux variations lentes.

Cette idée aété exploitée par exemple en traitement de la parole dans [76] sous le nom de “mod`ele
sinuso¨ıdal” en imposant `a l’amplitude d’être linéaire par morceaux et `a la dérivée de la phase d’ˆetre
cubique par morceaux.

Pour les m´ethodes “arˆete et squelette” [33, 53] qui l’utilise ´egalement, chaque composante est dite
“asymptotique”, ce qui se traduit par la contrainte suivante sur la phase et l’amplitude���� 1An

dAn

dt

�����
����d�ndt

���� : (3.51)
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Cette hypoth`ese permet par la suite d’invoquer le principe de phase stationnaire (pour le calcul
des transform´ees temps-fr´equence ou temps-´echelle, cf. Sect. 1.4).

Cette approche atteint ses limites lorsque l’on essaie d’analyser une impulsion, ou plus g´ené-
ralement lorsque l’enveloppe varie tr`es rapidement. Il faut alors faire appel `a l’“asymptotisme” en
fréquence [33, 53], version duale du pr´ecédent, qui contraint les variations relatives de l’amplitude
et de la phase de la transform´ee de Fourier du signal de la mˆeme mani`ere qu’enéq. (3.51). Pour les
signaux qui m´elangent les deux types de comportement, le probl`eme est alors de savoir quand passer
d’un modèleà l’autre, dans l’hypoth`ese que ce passage soit possible.

Encombrement dans le plan temps-fŕequence

Aucun modèle n’est, cette fois, appliqu´e au signal. On s’appuie sur le fait que, dans le plan temps-
fréquence, les signaux ne peuvent pas ˆetre arbitrairement concentr´es simultan´ement en temps et en
fréquence. C’est ce que traduit par exemple l’in´egalité bien connue d’Heisenberg-Gabor. L’id´ee est de
faire une mesure de l’encombrement du signal dans le plan temps-fr´equence puis de comparer cette
mesure `a celle obtenue avec un signal de r´eférence (celui d’encombrement minimum). Le nombre de
composantes pr´esentes dans le signal se d´eduit dans le principe, de la mani`ere suivante : si l’encom-
brement mesur´e est, par exemple, le double de l’encombrement de r´eférence, alors on conclut qu’il y a
deux composantes dans le signal. La difficult´e principale réside dans la recherche d’une bonne mesure
de l’encombrement. Les approches les plus prometteuses sont bas´ees sur l’évaluation de la quantit´e
d’information portée par une distribution d’´energie temps-fr´equence de la classe de Cohen consid´erée
comme une densit´e de probabilit´e (à deux dimensions).

Nous allons nous int´eresser, en particulier, `a deux mesures d’information : `a l’information de
Rényi d’ordre 3 sur la distribution de Wigner-Ville4 (cf. éq. (1.2)) [7, 6]

IWR3(x) = �1

2
log2

ZZ
W 3

x (t; !)
dtd!

2�
; (3.52)

et également `a l’information de Shannon port´ee par le spectrogramme [98]

ISSH(x) = �
ZZ

Sx(t; !) log2 Sx(t; !)
dtd!

2�
; (3.53)

où dans les deux casx(t) est un signal d’´energie unit´e.
Ces fonctionnelles peuvent s’interpr´eter comme des mesures de concentration puisque, par ana-

logie à la théorie des probabilit´es, une variable al´eatoire présentant une densit´e de probabilit´e très
concentrée (“piquée”) est porteuse de peu d’information. On peut montrer [6] par ailleurs qu’elles
possèdent la propri´eté de compter les composantes. En effet, si un signal est la somme dex(t) et de
y(t) = x(t��t) exp(i�!t), son translat´e en temps et en fr´equence, alors pour�t et�! suffisament
grands [6]

IWR3(x+ y) = IWR3(x) + 1 ; ISSH(x+ y) = ISSH (x) + 1: (3.54)

Il existe néanmoins des diff´erences entre ces solutions qui peuvent faire pr´eférer l’une plutôt que
l’autre. En effet, la premi`ereIWR3(x) hérite de la distribution de Wigner-Ville de quelques propri´etés
d’invariance (en particulier, par les changements d’´echelle et par les modulations et convolutions par
les chirps linéaires) que ne poss`ede pas la deuxi`emeISSH(x).

4. Il est important de noter que cette premi`ere mesure n’est pas toujours d´efinie [6].
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Les quantités d’information (3.52) et (3.53) sont exprim´ees en nombre de bits que l’on peut
convertir en nombre de composantes (ou dimension de R´enyi [6]) respectivement par :

NW
R3(x) = 2I

W
R3(x)�I

W
R3(h); (3.55)

où h(t) est le signal d’information minimale (`a savoir n’importe quelle modulation lin´eaire de fré-
quence, d’enveloppe gaussienne) et par :

NS
SH(x) = 2I

S
SH(x)�ISSH(h); (3.56)

où h(t) est la fenêtre d’observation (et, dans ce cas, le seul signal d’information minimum).
Remarquons cependant que ces m´ethodes nous donne au final le nombre de composantes pr´esentes

dans le signal mais aucune information n’est donn´ee sur leur position, ni mˆeme de leur structure.

3.3.2 Une proposition baśee sur la ŕeallocation différentielle

Notre contribution [21] `a ce problème se distingue des autres dans la mesure o`u elle définit la
notion de composante indirectement par un outil de repr´esentation du signal, le champ de vecteurs de
réallocation du spectrogramme, plutˆot que par des arguments physiques comme pr´ecédemment.

Fort des résultats obtenus en Sect. 3.2, il devient naturel de d´ecrire le signal dans le plan temps-
fréquence en termes d’attracteurs, de bassins d’attraction et de lignes de partage des eaux. Une vari´eté
de caract´erisation des signaux peut ˆetre déduite d’un tel param´etrage. Pour pr´eciser la terminologie,
on appelle lebassin d’attractionle plus grand voisinage de points `a partir desquels il y a convergence
vers un point fixe stable. Un bord s´eparant deux bassins ne peut ˆetre affecté à l’un ou l’autre de
ces bassins. Les bords regroupent tous les endroits depuis lesquels on converge vers un point fixe
col, ou vers l’infini. Notons que l’ensemble de ces lignes, habituellement appel´eeslignes de partage
des eaux, est de mesure nulle. La r´eunion de tous les bassins d’attraction recompose le plan temps-
fréquence dans son entier. Le partage du plan temps-fr´equence en zones distinctes, chacune associ´ee
à une composante, peut donc ˆetre obtenu par ce biais. Conform´ementà l’intuition, une composante se
trouve ainsi d´ecrite par uncentretemps-fréquence (l’attracteur) et undomaineessentiel d’existence
dans le plan (le bassin d’attraction).

Si on utilise une fenˆetre gaussienne, les composantes que l’on d´etecte sont des ensembles de points
connexes (on peut tracer une ligne continue entre chacun de ces points et l’attracteur) contenant un
maximum local du spectrogramme (ou plusieurs `a condition qui s’alignent de mani`ere dense, le long
d’une droite, ou d’une ellipse).̀A l’int érieur d’une composante, on peut imaginer le spectrogramme
comme un “dˆome” d’énergie. En cela, cette m´ethode proc`ede de la mˆeme philosophie que celle expo-
sée dans [84].

3.3.3 Algorithme pour la partition

La mise en œuvre du calcul de la partition temps-fr´equence passe par plusieurs ´etapes.

La r éallocation différentielle en pratique

On calcule lespoints de réallocation asymptotiques, i.e., les coordonn´ees de la position de chaque
particule en fin de trajectoire en int´egrant le syst`eme d’équations différentielles (´eq. (3.38)) liant la
position de la particule `a son champ de vitesse. Chaque trajectoire est ´evaluée numériquement par
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une méthode Runge-Kutta d’ordre 2 `a pask fixe dont la précision est enO(k3). Si tn et !n repré-
sentent respectivement les coordonn´ees temporelles et fr´equentielles de la particule au cours de son
mouvement, on a

(�tn; �!n)
t = (tn; !n)

t + k r̂(tn; !n) (3.57)

(tn+1; !n+1)
t = (tn; !n)

t + k=2
�
r̂(tn; !n) + r̂(�tn; �!n)

�
; (3.58)

l’arrêt de l’itérationétant déterminé par un critère spécifique. Il ne s’agit pas en effet d’arrˆeter la
progression de l’algorithme alors que la particule est encore loin de sa position asymptotique. R´e-
ciproquement, il est inutile d’it´erer la méthode de Runge-Kutta si la convergence est d´ejà effective.
Le critère d’arrêt que nous proposons nous garantit que l’approximation que nous obtenons est dans
un carré d’arêted (donnée5) centré sur la valeur asymptotique vraie. Ce crit`ere est obtenu en faisant
l’hypothèse d’une approximation quadratique locale du potentiel (ce qui revient `a approcher locale-
ment le signal par une modulation lin´eaire de fréquence d’enveloppe gaussienne). Si le potentiel est
quadratique, cela implique que son gradient est lin´eaire. Donc les ´equations différentielles (3.38) de la
réallocation différentielle admettent au voisinage de la position asymptotique,(t1; !1) une solution
exponentielle `a savoir

tn = t1 + (t0 � t1) exp(�n=T ) (3.59)

!n = !1 + (!0 � !1) exp(�n=
); (3.60)

où T et
 sont les temps (algorithmiques) de relaxation qui r`eglent la vitesse de convergence vers la
valeur asymptotique selon chaque axe.

On veut un critère simple qui nous indique lorsque

jtn � t1j < d j!n � !1j < d: (3.61)

Concentrons-nous sur la variable temps, et observons sa variation locale

jtn � tn�1j =
��(t0 � t1) exp(�n=T )�� j1� exp(1=T )j: (3.62)

En comparant `a (3.59), on voit apparaˆıtre la distance `a la valeur asymptotique

jtn � t1j = jtn � tn�1j
j1� exp(1=T )j: (3.63)

On obtient une estimation d’un param`etreT généralement inconnu, en notant que le rapport de
deux variations successives est constant et ´egalà

jtn�1 � tn�2j
jtn � tn�1j = exp(1=T ); (3.64)

résultat que l’on reporte dans ´eq. (3.63), pour obtenir une forme exploitable de la premi`ere inéquation
dans (3.61)

jtn � tn�1j��1� jtn�1 � tn�2j=jtn � tn�1j
�� < d: (3.65)

5. Pour garantir une convergence acceptable, on fixed à une valeur n´egligeable par rapport au pas de la grille du plan
temps-fréquence. Pour un plan ´echantillonné au pas unit´e en temps et en fr´equence, un bon choix estd = 10�2. Choisir
une valeur plus petite augmente, bien sˆur, le temps de convergence, donc le temps de calcul.
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Ces calculs sont directement transposables `a la variable fréquence. Le crit`ere complet prend la
forme de deux conditions `a respecter simultan´ement :8<

:
jtn � tn�1j2 > d

���jtn � tn�1j � jtn�1 � tn�2j
���

j!n � !n�1j2 > d
���j!n � !n�1j � j!n�1 � !n�2j

���: (3.66)

Notons qu’il nécessite seulement la connaissance de trois points de calculs successifs.

Pré-traitement

Il s’agit d’effectuer le tri parmi les op´erateurs de r´eallocation asymptotiques de mani`ereà repérer
les positions exactes des attracteurs. Le nombre de points ´etantà ce stade g´enéralement tr`es grand,
on effectue un premier passage que l’on appellepré-traitement. Il consisteà regrouper tous les points
situés à une distance inf´erieureà

p
2d, i.e., la diagonale d’un carr´e de côté d. Tous les points qui

convergent vers la mˆeme valeur asymptotique sont r´esumés en un seul (que l’on fixe ´egal à leur
barycentre). Notons que cette ´etape concerne en premier lieu aux signaux modul´es en amplitude pour
lesquels les points de r´eallocation asymptotiques forment un ensemble de points isol´es.

Classification ascendante híerarchique

Il nous faut maintenant associer les points qui appartiennent `a la même ligne de modulation de
fréquence. Un algorithme plus complexe (d’o`u l’importance de la r´eduction du nombre de points
réalisée lors de l’étape pr´ecédente), la Classification Ascendante Hi´erarchique [11] (CAH),va nous
le permettre. La CAH des points de r´eallocation pr´etraités nous fournit une structure arborescente (le
dendogramme) o`u sont ordonn´es les points suivant la distance qui les s´epare. Il suffit alors d’appliquer
un seuil (égalà d + D, la distance maximale entre deux attracteurs appartenant `a la même ligne de
modulation de fr´equence dans le pire des cas, o`u D est le pas de la grille de discr´etisation du plan
temps-fréquence) dans le dendogramme pour mettre ensemble tous les points qui s’alignent sur une
même ligne6 du plan. Chaque classe ainsi obtenue est alors affili´eeà une même composante.

Carte temps-fréquence.

La dernièreétape consiste `a affecterà tous les ant´ecédents des points de r´eallocation asympto-
tiques le num´ero de la composante correspondante.

3.3.4 Quelques exemples

L’algorithme que nous proposons peut servir de point de d´epart à de nombreuses applications
en traitement du signal. La classification de signaux, leur reconnaissance, l’estimation de param`etres
peuvent s’appuyer sur la partition temps-fr´equence. Voici quelques exemples d’illustration aux objec-
tifs multiples : les premiers sont d´ediésà la comparaison de cet algorithme avec d’autres, le dernier
montre comment il peut s’appliquer au d´ebruitage de signaux.

6. Nous savons, qu’en th´eorie, les ensembles denses d’attracteurs ne peuvent ˆetre que des droites ou des ellipses. La
CAH devrait donc ˆetre destin´eeà traiter ces deux cas. Mais, en pratique, les contributions ne convergent pas compl`etement
vers leur position asymptotique (erreur d’arrondi, convergence trop lente). Par cons´equent, il arrive parfois que l’on se
retrouve avec un ensemble de contributions amass´ees le long du ligne (pas n´ecessairement une droite ou un cercle) du plan
alors qu’elles auraient dˆu toutesêtre regroup´ees en un seul point. Lors de cette ´etape, on rattrape les erreurs commises en
affectantà toutes ces contributions la mˆemeétiquette.
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Partition de Voronoı̈ du plan temps-fréquence

Le but de ce premier exemple, plutˆot de l’ordre de l’exercice, est de donner un ´eclairage sur le
résultat de la partition. On consid`ere le signalx(t), somme deN atomes gaussiens de variance unit´e
xn(t) = ��1=4 exp((t� tn)2=2+ i!nt) aux centres temps-fr´equence(tn; !n) suffisamment ´eloignés
les uns des autres (nous donnerons plus loin une signification `a ces derniers mots)

x(t) =
NX
n=1

xn(t): (3.67)

(Notons que la r´eférence de phase de chacun de ces atomes se situe en leur centretn.)
La FCT d’un tel signal se d´eduit par linéarité,F (t; !) =

PN
n=1 Fn(t; !). Sih(t), la fenêtre d’ob-

servation, est gaussienne, son champ de vecteurs de r´eallocationr̂ s’obtient par une g´enéralisation
pourN signaux de l’éq. (2.22). Plus pr´ecisément, l’image complexe der (champ de vecteurs norma-
lisé défini enéq. (1.39)) s’écrit

r =
NX
n=1

Fn
F
rn: (3.68)

On se place en(t; !) au voisinage de(tj ; !j) et (tk; !k) de tel sorte que pourn 6= j et n 6=
k, jFn(t; !)j � kxk2. En ce point, tout se passe comme si le champ de r´eallocation résultait de
l’interaction des atomesj etk

r � Fj
Fj + Fk

rj +
Fk

Fj + Fk
rk: (3.69)

Si la fenêtreh(t) est “ronde” (de variance unit´e), le calcul explicite der pour un tel signal peut
être ramen´e, par une translation suivie d’une rotation dans le plan temps-fr´equence, `a celui plus simple
de la sommey(t) = y1(t) + y2(t) de deux atomesy1(t) = ��1=4 exp(�(t + t0)2=2) et y2(t) =
��1=4 exp(�(t� t0)

2=2) centrés sur l’axe des temps, de part et d’autre de l’origine. Remarquons que
cetteéquivalence est possible uniquement parce que la distributionde Wigner Ville des atomes et celle
de la fenêtre sont invariantes par toute rotation dans le plan temps-fr´equence.

Le calcul der suit la même trame que pour le signal `a deux impulsions et commence `a l’éq. (2.22)

r =
r1

1 + F2=F1
+

r2
1 + F1=F2

; (3.70)

où le quotient des FCT s’obtient avec (2.10)

F1=F2(t; !) = exp(�t0(t� i!)): (3.71)

On en déduit que le champ de r´eallocation dey s’écrit

r =
1

1+ exp(t0(t� i!))

�
! + i(t+ t0)

�
�p2

+
1

1 + exp(�t0(t � i!))

�
! + i(t� t0)

�
�p2

; (3.72)

ou bien, réduit sous une forme plus compacte,

r̂ =

�
� t

2
+
t0
2

sinh(t0t)

cosh(t0t) + cos(t0!)
; �!

2
� t0

2

sin(t0!)

cosh(t0t) + cos(t0!)

�t

: (3.73)
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Les points fixes par la r´eallocation sont les points tels que

! = �t0 sin(t0!)

cosh(t0t) + cos(t0!)
; t = t0

sinh(t0t)

cosh(t0t) + cos(t0!)
: (3.74)

Nous allons s´eparer la recherche syst´ematique de ces points en deux ´etapes : d’abord, le long des
axes du plan temps-fr´equence, puis dans le reste du plan.

� Axe des temps,! = 0.
La premièreéquation de (3.74) est v´erifiée sur cet axe. La deuxi`emeéquation qui devient

t = t0
sinh(t0t)

cosh(t0t) + 1
; (3.75)

possède un nombre diff´erent de solutions selon la valeur det0. Si t0 �
p
2, l’ éq. (3.75) admet une

seule solution ent = 0 (la fonctionsinh(t0t)=(cosh(t0t) + 1) croit plus lentement quet au voisinage
de0). Les deux logons sont trop proches pour pouvoir ˆetre distingu´es avec la fenˆetreh ; on détectera
alors une seule composante. Dans le cas contrairet0 >

p
2 (condition deRayleigh), l’ éq. (3.74) admet

trois solutions:0 et un couple de solutions non alg´ebriques de signe oppos´e t1 (dont la valeur proche
det0 peutêtreévaluée numériquement) et�t1.

Ces solutionssont de natures diff´erentes, ce que l’on peut v´erifier en calculant la d´erivée du champ
de vecteurs de r´eallocation

@t(t̂� t) = �1

2

�
1� t20

1 + cos(t0!) cosh(t0t)�
cosh(t0t) + cos(t0!)

�2
�
; @t(!̂ � !) = � t0

2

sin(t0!) sinh(t0t)�
cosh(t0t) + cos(t0!)

�2
(3.76)

@!(t̂� t) = @t(!̂ � !); @!(!̂ � !) = �1

2

�
1 + t20

1 + cos(t0!) cosh(t0t)�
cosh(t0t) + cos(t0!)

�2
�
: (3.77)

Des simplifications interviennent sur l’axe! = 0 :

@!(!̂ � !) = �1

2

�
1 +

t20
cosh(t0t) + 1

�
@t(t̂ � t) = �1

2

�
1� t20

cosh(t0t) + 1

�
; (3.78)

de plus, les d´erivées crois´ees s’annulent. On peut conclure directement que@!(!̂�!) est strictement
négatif,cosh(t0t) + 1 étant toujours positif.

Au point(t1; 0), il en est de mˆeme pour l’autre d´erivée@t(t̂� t) = �(1� t0t1= sinh(t0t1)) dans
la mesure o`u sinh est toujours au-dessus de la premi`ere bissectrice des axes. En ce point, la matrice
dérivée dêr est définie négative ; c’est donc un maximum. On peut faire le mˆeme raisonnement pour
(�t1; 0).

Au point (0; 0), la situation est diff´erente dans la mesure o`u @t(t̂ � t) = �(1 � t20=2)=2 est
strictement positive sous la condition de Rayleigh (t0 >

p
2) ce qui rend donc ce point instable (point

col).

� Axe des fr´equences,t = 0.
La deuxièmeéquation de (3.74) est v´erifiée sur cet axe. La premi`ereéquation qui s’´ecrit

! = �t0 sin(t0!)

1 + cos(t0!)
; (3.79)
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admet, quelque soitt0, une infinité de solutions. Sur l’axet = 0, l’ équilibre est instable : la matrice
dérivée du champ de vecteurs de r´eallocation est diagonale et la d´erivée partielle

@t(t̂� t) = �1

2

�
1� t20

cos(t0!) + 1

�
; (3.80)

est minorée en tout point par une quantit´e positive@t(t̂ � t) > �(1� t20=2)=2 > 0 si t0 >
p
2. Tous

les points solutions sont donc des points cols.

� Reste du plan,t 6= 0 et! 6= 0.
L’existence d’un extremum dans le reste du plan est soumise `a la condition n´ecessaire

f(t; !) = t sin(t0!) + ! sinh(t0t) = 0; (3.81)

obtenue en faisant le quotient, membre `a membre des deux ´eqs (3.74). Pour un tempst > 0 fixé, la
dérivée partielle@!f = t0t cos(!t0) + sinh(t0t) est strictement positive dans la mesure o`u sinh(t)
est toujours au-dessus de la premi`ere bissectrice sit > 0. La fonctionf(t; !) est donc strictement
croissante `a t fixé. Puisquef(t; 0) = 0, f(t; !) ne s’annule pas ailleurs. On peut faire le mˆeme
raisonnement pour un tempst < 0. La condition nécessaire (3.81) est donc v´erifíée uniquement sur
les axest = 0 ou! = 0, excluant de cette fa¸con l’existence d’extrema ailleurs.

Il existe donc deux maxima parmi tous les extrema. Il est int´eressant de savoir quelles sont les par-
ticules qui vont converger vers l’un ou l’autre, autrement dit comment la partition se fait. Les champs
de vecteurs de r´eallocation et les spectrogrammes associ´esà chacun de cas envisag´es précédemment
sont montrés en Fig. 3.5.

A partir de (3.73), on peut v´erifier que, conform´ementà l’intuition, t = 0 est la ligne de partage
des eaux selon laquelle s’effectue la d´ecoupe du plan temps-fr´equence. Une ligne de partage des eaux
d’un potentielV est une ligne de champ compos´ee de points(t; !) stationnaires et instables selon au
moins une directionu. Plus précisément, les points d’une ligne de partage des eaux doivent respecter
trois conditions, soit

9u 2 R2;
@V

@u
= 0 (3.82)

@2V

@u2
> 0 (3.83)

rV ^ (dt; d!)t = 0; (3.84)

où (dt; d!)t est la tangente `a la ligne de partage des eaux au point(t; !) (notons bien que, pour une
analogie avec des syst`emes physiques, le sens de la gravit´e est ici invers´e) etu ^ v désigne le produit
vectoriel des vecteursu etv.

L’ éq. (3.82) impose que le point(t; !) soit un extrema local et par cons´equent une position d’´equi-
libre selon la direction donn´ee paru. L’instabilité de cet ´equilibre est fixée par l’éq. (3.83). La ligne
de partage des eaux est la seule ligne de champ (ligne tangente en tout point `a la ligne de plus grande
pente) parmi l’ensemble de points d´efinis par les deux conditions pr´ecédentes, ce que s´electionne l’éq.
(3.84).

En ce qui concerne notre probl`eme, regardons ent = 0 et en choisissant la directionu = (1; 0)t,
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ce que deviennent ces ´equations

@(logjF j)=@u(0; !) = r̂:u = t̂(0; !) = 0 (3.85)

@2(logjF j)=@u2(0; !) = (1; 1)uut@r̂ > 0 si t0 >
p
2 (voir éq. (3.80)) (3.86)

r(logjF j)(0; !)^ (0; 1)t = r̂ ^ (1; 0)t = 0; (3.87)

où @r̂ est la matrice d´erivée du champs de vecteurs de r´eallocation.
La ligne t = 0 est donc une ligne de partage des eaux. L’algorithme pratique une coupure `a la

médiatrice entre(t0; 0) et (�t0; 0), centres effectifs des deux logons. Il s´epare donc le plan temps-
fréquence en deux ensembles : l’un qui regroupe les points plus proches de(t0; 0) que de(�t0; 0), et
son réciproque. Formul´e de cette mani`ere, ce que fait l’algorithme de partition est donca posteriori
identiqueà ce qu’on obtiendrait en pratiquant la partition du plan temps-fr´equence par des polygˆones
de Vorono¨ı 7 [86] associésà chacun des centres des logons.

On vient d’établir l’équivalencea posteriorientre deux m´ethodes de partition du plan temps-
fréquence, ce que l’on peut v´erifier sur la Fig. 3.6 pour un signal compos´e de trois logons gaussiens
centrés, en(�t0; 0), (t0; 0) et (0; t0), sommets d’un triangle isoc`ele. La Fig. 3.7 illustre que l’´equiva-
lence fonctionne toujours dans le cas plus g´enéral où les logons sont en nombre plus important et sont
positionnés en(tn; !n) choisis aléatoirement (densit´e uniforme sur[�t0; t0]� [�t0; t0]) dans le plan
temps-fréquence.

Si la fenêtre n’est plus de variance unit´e, l’équivalence avec la partition de Vorono¨ı semble tou-
jours possible en modifiant la distance entre points du plan temps-fr´equence.́Elargir ou rétrécir la
fenêtre “ronde” revient `a appliquer au plan temps-fr´equence une anamorphose. Pour conserver la su-
perposition des fronti`eres fournies par l’algorithme de partition sur celles donn´ees par les polygˆones de
Voronoı̈, il s’agit alors de changer la d´efinition de la distance pour l’adapter au plan temps-fr´equence
anamorphos´e.

Influence de l’amplitude relative sur la partition

L’ éloignement n’est pas le seul param`etre qui affecte la capacit´e à séparer deux composantes.
Entrentégalement en ligne de compte, leur amplitude relative et leur relation de phase.

On reprend le probl`eme précédentà deux logons en y ajoutant de nouveaux degr´es de libert´e.
On autorise maintenant des amplitudes et des phases `a l’origine arbitraires. Le traitement gagne alors
considérablement en complexit´e.

Regardons d’abord l’influence de l’amplitude en conservant la r´eférence de phase de chaque logon
en leur centre. Notre signaly(t) est maintenant la somme dey1(t) = exp(�(t + t0)

2=2) et y2(t) =
a exp(�(t� t0)2=2) , où a 2 R+�. Le calcul des op´erateurs de r´eallocation suit une trame identique
au casa = 1, à la différence qu’un terme enlog(a) vient s’insérer dans l’exponentielle de l’´eq. (3.71)
qui devient

F1=F2(t; !) = exp
�� log a� t0(t� i!)

�
: (3.88)

Les vecteurs de r´eallocation s’écrivent alors

r̂ =

�
� t

2
+
t0
2

sinh(t0t + log a)

cosh(t0t+ log a) + cos(t0!)
; �!

2
� t0

2

sin(t0!)

cosh(t0t + log a) + cos(t0!)

�t
: (3.89)

7. SoitP = fpngn=1::N un ensemble de N points du plan, le polygˆone de Vorono¨ı associéà un pointpi deP est le lieu
du plan qui contient tous les points plus proches depi que desN � 1 autres points deP .
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FIG. 3.5 – Spectrogramme et champ de vecteurs de r´eallocation de la somme de deux logons gaus-
siens.Cette figure répertorie les diff´erentes situations possibles pour la structure du spectrogramme
(fenêtre d’observation gaussienne `a variance unité) du signal compos´e de deux logons distants det0
défini en Section 3.3.4.(a) Au dessous de la distance critique de

p
2, le spectrogramme ne pr´esente

qu’un seul maximum (le champ de vecteur de r´eallocation ne s’annule qu’en un seul point)(0; 0).(b)
Ceci est toujours vrai au point critiquet0 =

p
2. (c) Au dessus de cette distance, le spectrogramme

admet trois extrema, dont deux maxima. Il devient possible de s´eparer les deux logons. (Le champ
des vecteurs de r´eallocation n’est pas repr´esenté en vraie grandeur pour faciliter la lecture. Signaux
échantillonnésà 5Hz)
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FIG. 3.6 – Partition temps-fréquence `a base de r´eallocation et partition de Vorono¨ı : trois logons
gaussiens. Les algorithmes de partitiondu plan temps-fr´equence `a base de r´eallocation et de partition
du plan temps-fr´equence par des polygˆones de Vorono¨ı aboutissent pour le signal jouet (´eq. (3.67),
N = 3) formé de trois logons centr´es en(t1; !1) = (�3; 0), (t2; !2) = (+3; 0) et (t3; !3) = (0;+3)
à des résultats identiques. Il s’agit ici d’une simple v´erification car nous savons que ce signal respecte
les hypoth`eses des approximations introduites en Section 3.3.4.(a) spectrogramme,(b) champ des
vecteurs de r´eallocation et lignes de partage des eaux,(c) partition temps-fréquence (niveau de gris)
et partition (lignes frontière). (Signaléchantillonnéà 5Hz)
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FIG. 3.7 – Partition temps-fréquence `a base de r´eallocation et partition de Vorono¨ı : cinq logons
gaussiens. On compare sur cette figure, pour un signal (spectrogramme en(a)) compos´e de5 logons
positionnés aux points(tn; !n) choisis aléatoirement (densit´e uniforme sur[�5; 5]� [�5; 5]), la par-
tition temps-fréquence obtenue avec la r´eallocation (zones en niveaux de gris dans(b)) et la partition
par les polygˆones de Vorono¨ı (lignes frontières dans(b)). Les limites trouv´ees par les deux m´ethodes
se superposent exactement. (Signal ´echantillonnéà 5Hz)
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Les points fixes de la r´eallocation respectent les deux conditions suivantes

t = t0
sinh(t0t + log a)

cosh(t0t+ log a) + cos(t0!)
; (3.90)

! = �t0 sin(t0!)

cosh(t0t + log a) + cos(t0!)
: (3.91)

Nous n’en effectuerons pas l’´etude compl`ete. Il est cependant important de savoir comment l’am-
plitude influe sur la capacit´e de séparation des deux composantes. Pour cela, nous nous concentrerons
sur l’axe des temps. Sur cet axe, l’´eq. (3.91)étant toujours v´erifiée, le syst`eme se r´eduit de deux
conditions de stationnarit´eà une seule :

f(t) = t� t0
sinh(t0t+ log a)

cosh(t0t+ log a) + 1
= 0: (3.92)

L’ étude des variations de la fonctionf(t) montre qu’elle admet trois z´eros distincts sous la condition
de Rayleigh,t0 >

p
2, à laquelle s’ajoute une contrainte sur l’amplitude relative(1=a0) < a < a0,

où l’amplitude critique s’exprime de la mani`ere suivante

a0 =
exp(t0

p
t20 � 2)

t20 � 1 + t0
p
t20 � 2

: (3.93)

Similairement au casa = 1, deux de ces z´eros sont des maxima et attracteurs, le dernier situ´e
entre les deux pr´ecédents, est un point col. Il indique la position de la ligne de partage des eaux
qui est, cette fois, plus difficile `a obtenir : elle est une solution non triviale de l’´eq. (3.92) qu’il faut
résoudre num´eriquement. C’est ce qu’illustrent les figures 3.8 et 3.9.

Méthodes s’appuyant sur une mesure d’information

Lorsque les composantes sont proches, leur s´eparation devient extrˆemement d´elicate. L’ambigu¨ıté
est telle qu’il est parfois possible d’envisager plusieurs solutions physiquement acceptables et n´ean-
moins, totalement diff´erentes. Qui plus est, `a faibleéloignement, la relation de phase devient cruciale :
il est naturellement plus difficile de s´eparer des composantes en phase qu’en quadrature. Aucune r´e-
ponse d´efinitive ne pouvant nous servir de r´eférence, on se propose de faire une comparaison entre
notre algorithme et celui propos´e dans [7, 6] qui est bas´e sur les mesures d’information. Nous nous
servirons des deux mesures d’information expos´ees en Sect. 3.3.1 `a savoir l’information de R´enyi
d’ordre 3 sur la distribution deIWR3(x) définie enéq. (3.52) et l’information de Shannon port´ee par le
spectrogrammeISSH(x) définie enéq. (3.53).

Dans les deux cas, on convertit le r´esultat obtenu exprim´e en bits vers une unit´e homogèneà un
nombre de composante par les ´eqs. (3.55) et (3.56).

Les comparaisons entre les mesures d’information et notre m´ethode sont faites en Fig. 3.10 sur un
signal compos´e de deux logons dont on fait varier la distance et la phase relative (amplitudes ´egales
et constantes). Les r´esultats sont tr`es comparables. En particulier, la fronti`ere entre les configurations
distance-phase o`u il y séparation des logons par la partition et celle o`u elle n’est pas r´ealisée, se
superpose assez bien `a la courbe de niveau1; 5 deNS

SH(x).
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FIG. 3.8 – Influence de l’amplitude relative et de la distance sur la partition temps-fr´equence : dis-
tance constante, amplitude variable.Si le signal est compos´e de deux logons d’amplitude diff´erentes
(cf. 3.3.4), la partition ne sectionne plus le plan temps-fr´equence `a la médiatrice des centres des deux
logons, mais en `a un tempst1 qui varie non linéairement en fonction de la demi-distancet0 et de
l’amplitude relativea. Les graphes(a) et (b) montrent, respectivement pour une distance courte et
longue, l’évolution det1 en fonction dea choisi dans[1; a0] (la deuxième moitié de la gamme de va-
leurs admissibles poura, [1=a0; 1], donne des r´esultats sym´etriques). Dans le premier cas (t0 = 2), la
partition est très sensible `a l’amplitude relative (t1 varie quasi linéairement en fonction dea). À titre
d’exemple, on a superpos´e en(c) le spectrogramme du signal (´echantillonné à 13Hz environ) pour
a = 2 et la ligne de partage des eaux (en pointill´e). Dans le deuxi`eme cas (t0 = 5), l’amplitude cri-
tiquea0 devient très grande. Dans des gammes d’amplitude raisonnable (ici,a décrit [1; 100]), il est
remarquable que la diff´erence d’amplitude n’influe plus sur la partition. Tout se passe alors comme si
les deux logons ´etaient de mˆeme amplitude. Le graphe(d) en montre un exemple poura = 10 (signal
échantillonnéà 5Hz). Les deux logons ´etant d’amplitude tr`es différente, le spectrogramme est indiqu´e
par des courbes de niveaux (f50; 10; 1g en trait continu,f0; 5; 0:1; 0:001g en trait mixte).
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FIG. 3.9 – Influence de l’amplitude relative et de la distance sur la partition temps-fr´equence :
amplitude constante, distance variable.Cette figure compl`ete la Fig. 3.8 en pr´esentant, en(a)et pour
le même signal, l’évolution de la position de la ligne de partage des eaux en fonction det0 à amplitude
relative constante (a = 2). On constate qu’`a courte distance, l’amplitude influe beaucoup sur la
partition. La zone associ´ee par la partition temps-fr´equence au logon de plus forte amplitude, s’´etend
largement au-del`a de l’axet = 0 dans le demi plant < 0. Ceci est illustré en(b) pour la demi-
distance critique (t0 = 1:86) en deça de laquelle on ne d´etecte plus qu’une seule composante (signal
échantillonnéà 13:6Hz). Ce n’est plus le cas pour les grandes distances (graphe(c), t0 = 6) où cette
fois le partage se fait approximativement `a la médiatrice (signaléchantillonnéà 4:2Hz).
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FIG. 3.10 – Comparaison entre le nombre de composantes d´etectées par la partition temps-
fr équence et celui donn´e par les méthodes `a base de mesure d’information.Cette figure regroupe
les réponses que donnent trois m´ethodes diff´erentes `a la question :“combien y-a t’il de composantes
dans le signalx(t) = exp

��t2=2� + exp
��(t � t0)2=2

�
exp(i')?” pour diverses valeurs de la

distancet0 et de la phase relative'. En trait plein : information de R´enyi d’ordre 3 calculée sur la
distribution de Wigner-Ville (´eq. (3.55)). En trait pointillé : information de Shannon calcul´ee sur le
spectrogramme (´eq.(3.56)). En niveau de gris : la m´ethode de partition par r´eallocation différentielle
(blanc=1 composante, gris=2 composantes). La fronti`ere donnée par la partition temps-fr´equence
correspond approximativement `a la courbe de niveau1; 5 surNS

SH .
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Extraction-reconstruction, application au débruitage

Nous nous int´eressons ici `a la reconstruction des diff´erentes composantes d’un signal. Il existe de
nombreuses m´ethodes pour reconstruire une partie de signal contenue dans un domaine du plan temps-
fréquence. Ce probl`eme est ´equivalentà celui de la synth`ese d’un filtre temps-fr´equence de gabarit
fixé. Le filtrage de Weyl est une solution qui r´ealise un bon compromis entre pr´ecision de reconstruc-
tion et complexité algorithmique [69]. C’est donc `a l’aide de cette m´ethode que nous reconstruisons
les différentes parties du signal dans leur repr´esentation temporelle.

La Fig. 3.11 illustre ce que nous proposons sur un signal compos´e de deux “chirps” lin´eaires de
taux de modulation diff´erents et d’enveloppes gaussiennes d’amplitudes diff´erentes. L’algorithme de
partition détecte les deux composantes et les situe sur une carte temps-fr´equence. On pr´esente ensuite
la reconstruction de chacun des deux “chirps”.

Disposer d’une carte temps-fr´equence est ´egalement utile pour le d´ebruitage de signaux.̀A titre
d’ exemple, on veut extraire un signal (une modulation lin´eaire de fréquence d’enveloppe gaussienne
en l’occurence) noy´e dans un bruit additif (blanc et gaussien). La carte peut nous servir `a sélectionner
la zone temps-fr´equence qui correspond au signal et `a rejeter celles qui sont associ´ees au bruit. Par ce
biais, la carte temps-fr´equence nous permet, en quelque sorte, de trouver un filtrage non-stationnaire
bien adapt´e au signal pour son extraction du bruit. En reconstruisant, avec les m´ethodes pr´esentées
dans le paragraphe pr´ecédent, ce que contient la zone “signal + bruit”, on r´ehausse le rapport signal sur
bruit (RSB). Onévalue la qualit´e du débruitage en mesurant le gain en RSB obtenu apr`es traitement.
C’est ce que nous montre la Fig. 3.12 pour un RSB initial variant entre�15dB et 10dB. Les simula-
tions que nous avons r´ealisées nous indiquent que, pour un RSB de l’ordre de�5 à0dB, l’atténuation
du bruit est d’environ5dB.

La question cruciale reste tout de mˆeme de savoir reconnaˆıtre la zone “signal + bruit” sur la carte.
Dans l’exemple que nous proposons (que l’on doit consid´erer simplement comme une illustration),
nous avons opt´e pour un critère simple : nous choisissons parmi toutes les composantes d´etectées
celles de plus grande ´energie. Ce crit`ere est bien ´evidemment vou´e à léchec d`es que le RSB initial
devient faible. Lorsqu’on augmente la puissance du bruit, la quantit´e d’énergie augmente dans les
partitions “bruit seul” jusqu’`a, pour certaines d’entre elles, d´epasser celle de la partition “signal +
bruit”. Dans ce cas, le crit`ere se trompe in´evitablement de partition. On pourrait alors penser `a des
sophistications telles que l’utilisationde crit`eres entropiques ou l’int´egration de connaissancesa priori
sur le signal si elles sont disponibles.

3.3.5 Fusion de partition

Lorsque deux signaux sont proches dans le plan temps-fr´equence, l’algorithme de partition devient
particulièrement sensible `a la relation de phase. Cela se manifeste par des coupures parasites comme
par exemple celle qui est pr´esentée en Fig. 3.13 pour un m´elange de deux chirps. Pour donner une
intuition de ce qui se passe, pla¸cons-nous dans le cas d’une fenˆetre gaussienne `a variance unit´e pour
lequel le champ de vecteurs de r´eallocation d´erive exactement du potentiellogjFxj. Pour certaines
relations de phase, il apparaˆıt des maxima locaux secondaires dans le potentiel qui viennent pi´eger
quelques particules et cr´eer des partitions parasites. En particulier, cela est vrai en pr´esence de bruit.
En effet, si l’on consid`ere quex(t) = s(t) + b(t) provient de la perturbation du signals(t) par un
bruit additifb(t) de faible amplitude, le potentiel peut se mettre sous la forme suivante :

logjFxj = logjFsj+ logj1 + Fb=Fsj: (3.94)
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FIG. 3.11 – Extraction–reconstruction de chirps `a l’aide de l’algorithme de partition temps-
fr équence. (a) signal, (b) spectre d’énergie,(c) spectrogramme,(d) partition, (e) première compo-
sante (trait pointillé) et sa reconstruction (trait plein),(f) deuxième composante (trait pointill´e) et sa
reconstruction (trait plein).
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FIG. 3.12 – Débruitageà l’aide de l’algorithme de partition temps-fr´equence(voir Sect. 3.3.4).(a)
spectrogramme d’une r´ealisation bruitée (RSB = 0dB) et contour de la zone “signal” identifi´ee,
(b) moyenne et ´ecart-type du gain en RSB en fonction du RSB en entr´ee (10 réalisations de bruit
indépendantes pour chaque point).

À fort rapport signal `a bruit, i.e. lorsquejFb=Fsj � 1, on développe au premier ordre le membre
de gauche de l’´equation pr´ecédente

logjFxj � logjFsj+ RefFb=Fsg; (3.95)

d’où l’on conclut que le potentiel associ´e au champ de vecteurs de r´eallocation du signalx(t) bruité
s’écrit comme la combinaison du potentiel obtenu avec le signal seul, `a savoirlogjFsj et d’une per-
turbation du bruitRefFb=Fsg qui causent l’apparition de maxima locaux et donc de composantes
parasites. Nous avons envisag´e plusieurs solutions pour accroˆıtre la robustesse de la partition au bruit,
et plus généralement la robustesse `a l’effet du battement de phase. Nous allons nous int´eresser main-
tenantà la fusion de partition temps-fr´equence.

Cette approche s’appuie sur la n´ecessit´e d’équivalence entre chaque ´elément de notre partition
(chacune des r´egions sur la carte temps-fr´equence) `a un signal r´eel. Plus pr´ecisément, chaque res-
triction du spectrogramme `a la zone correspondante donn´ee par l’algorithme de partition doit ˆetre
lui-même un spectrogramme. Or, il s’av`ere que les partitions associ´ees aux maxima parasites sont
généralement de petites tailles. Par exemple, en Fig. 3.13, la composante no 3 provient d’une coupure
parasite due `a un agencement particulier des phases des deux chirps. La zone qui lui est associ´ee
sur la carte de temps-fr´equence est de faible surface : le spectrogramme r´eduit à cette zone ne peut
pas correspondre au spectrogramme d’un signal qui existe r´eellement. Le but de cette section est de
trouver un critère pour reconnaˆıtre les zones de la carte temps-fr´equence non admissibles en termes
de distribution temps-fr´equence, puis de proposer un algorithme d’agr´egation des partitions parasites
(typiquement, on aimerait fondre les composantes no 2 et no 3 en une seule) pour le recouvrement des
composantes qui leur sont effectivement associ´ees.

Discrimination des partitions non-admissibles

On adopte ici une d´emarche heuristique. Nous faisons cinq propositionsde crit`eres que l’on s´epare
en deux cat´egories :

1. les critères qui font intervenir tous les points de chaque partition (approche composante),
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FIG. 3.13 – Mise enévidence de coupure parasite dans la partition temps-fr´equence due au bat-
tement de phase.Cette figure illustre l’influence sur la partition, du battement de phase entre deux
composantes (ici, deux modulations lin´eaires de fréquence d’enveloppe gaussienne ou chirps). L’algo-
rithme de partition utilise le champ devecteurs de r´eallocation du spectrogramme(a). Le battement
de phase fait intervenir une coupure parasite qui scinde le chirp de plus petite amplitude en deux
parties (composantes no1 et 2 sur la carte temps-fr´equence(b)). Il est clair que la composante no2
n’est pas admissible. C’est ce que confirme les diff´erences que l’on observe entre, d’une part,(c) la
restriction du spectrogramme `a la région qui lui est associ´ee par l’algorithme et, d’autre part,(d) le
spectrogramme de la reconstruction de la composante no2 par la méthode d´ecrite en Sect. 3.3.4.
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2. et ceux qui ne prennent en compte que les points des fronti`eres (approche fronti`ere).

Nous nous limiterons `a des mesures faites sur le spectrogramme, notre partition s’effectuant `a partir
de celui-ci.

� Approche composante
� Mesure d’encombrement.

Si, comme nous l’avons dit pr´ecédemment, les partitions non pertinentes ont une faible surface
équivalente dans le plan temps-fr´equence, elles ne respectent pasa fortiori les inégalités de concentra-
tion que l’on peut formuler sur des distributionsd’´energie temps-fr´equence en g´enéral. L’idée naturelle
est alors de calculer, pour chacune desN composantes d´etectées pour le signalx(t), une quantit´e que
l’on comparera avec la borne donn´ee par l’inégalité.

Soit Sn(t; !) = 1Cn(t; !)S(t; !)=En, la restriction du spectrogramme au domaineCn du plan
temps-fréquence associ´e à lanième composante d´etectée par l’algorithme de partition. La fonction
1Cn est la fonction indicatrice sur la r´egionCn. On a pris soin de normaliserSn à1 en normeL1, soit
En =

RR
Cn

S(t; !) dtd!=(2�), pour que l’on puisse l’interpr´eter comme une densit´e de probabilit´e.
La première idée consiste `a mesurer une surface ´equivalente par un moment du deuxi`eme ordre

conjoint en temps et en fr´equence [60, 39] :

d1(x; n) =

ZZ ��
t � �tn
�th

�2

+

�
! � �!n
�!h

�2�
Sn(t; !)

dtd!

2�
; (3.96)

où �tn =
RR
t Sn(t; !) dtd!=(2�) et �!n =

RR
! Sn(t; !) dtd!=(2�) sont les coordonn´ees du point

moyen de la distributionSn. SiSn est le spectrogramme d’un signal quelconque, alors n´ecessairement

d1(x; n) � 1

2�
: (3.97)

La borne de l’inéquation est atteinte [60] si et seulement sih(t), la fenêtre d’observation est
gaussienne (cf. ´eq. (1.40)) et le signal associ´eàCn est gaussien.

On peutégalement profiter des in´egalités faisant intervenir les mesures d’information [70, 61] sur
les distributions temps-fr´equence (d´ejà évoquées en Sect. 3.3.1). On note :

ISH(S) = �
ZZ

S(t; !) log2 S(t; !)
dtd!

2�
; (3.98)

l’information de Shannon calcul´ee sur la distributionS de normeL1 unité. Sih(t) est une fenˆetre
gaussienne et siSn est le spectrogramme d’un signal arbitraire, on peut montrer que [61]

d2(x; n) = 2ISH(Sn)�I0 ; (3.99)

(où I0 est la quantit´e d’information minimum obtenue avec le spectrogramme d’un signal ´egalà la
fenêtre) est toujours sup´erieure ou ´egaleà 1. Cette quantit´e représente le nombre de composantes
portées parSn(t; !), l’unit é étant fixée par la fenˆetre.

Notons bien que ces deux conditions d’admissibilit´e sont nécessaires, et que des distributions non
admissibles peuvent aussi les v´erifier.

� Comparaison au signal reconstruit.
Le deuxième point de vue consiste `a confronter la restrictionSn du spectrogramme, avec le spec-

trogrammeS(r)
n de la composante reconstruitex(r)n par la méthode d´ecrite en Sect. 3.3.4. Ceci revient
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approximativement `a faire la comparaison deSn avec son projet´e sur l’ensemble des spectrogrammes.
Si cette comparaison met en ´evidence deux distributions tr`es différentes alorsSn(t; !) n’est pas ad-
missible en tant que spectrogramme ; il faut rejeter la partition correspondante. Pour quantifier les
dissemblances entreSn etS(r)

n , on préfère ignorer les diff´erences qui peuvent apparaˆıtre à l’intérieur
deCn et mesurer la proportion d’´energie deS(r)

n à l’extérieur deCn :

d3(x; n) =
1

E
(r)
n

ZZ
S(r)
n (t; !)

�
1� 1Cn(t; !)

� dtd!
2�

; (3.100)

où E
(r)
n = kxrnk2 est l’énergie du signal reconstruit. On estime que, si cette proportion d´epasse un

seuil arbitraire que l’on placera pour fixer les id´eesà10%, la partition n’est pas pertinente. La raison
de ce choix est que, si la partitionCn est trop “étroite”, alorsS(r)

n (t; !), étant contraint aux in´egalités
d’encombrement dans le plan temps-fr´equence, va devoir s’´etaler hors des fronti`eres fixées parCn.
C’est, par exemple, ce que l’on constate en Fig. 3.13.

On peut adapter la mˆeme philosophie dans un contexte informationnel et mesurer la diff´erence
des informations port´ees parSn etS(r)

n :

d4(x; n) = 2ISH
�
S
(r)
n

�
�ISH(Sn)�I0 : (3.101)

Ceci revientà compter le nombre de composantes qu’il faudrait ajouter au signal virtuel de spec-
trogrammeSn pour obtenirx(r)n . S’il faut ajouter plus d’une composante, il est alors probable que la
partitionCn ne soit alors pas pertinente.

� Approche frontière : énergie le long de la coupure
Pour tout signal d’´energie finie, le spectrogramme finit par d´ecroı̂tre dans toutes les directions

du plan temps-fr´equence pour s’annuler `a l’infini. Si on désire que chacune de nos partitions soit
admissible en tant que spectrogramme, il nous faut donc exiger que le spectrogramme ait une va-
leur négligeable sur chacune des fronti`eres. L’idée n’est donc plus de v´erifier directementsi chaque
partition représente ou non un signal r´eel, mais plutˆot de valider chacune des coupures faites par
l’algorithme de partition.

Pour chaque coupleCn et Cm de composantes adjacentes, on note l’intersection(
�

tn;m;
�

!n;m)
entre le segment qui relie leur centres respectifs(tn; !n) et (tm; !m) et leur frontière. Le rapport de

l’ énergie mesur´ee en(
�

tn;m;
�

!n;m) et de la moyenne g´eométrique des maxima du spectrogramme dans
Cn etCm

d5(x; n;m) =
S(

�

tn;m;
�

!n;m)p
S(tn; !n)S(tm; !m)

; (3.102)

nous indique, lorsqu’il est petit, i.e., inf´erieurà un seuil que l’on a fix´e arbitrairement pour l’exemple
à 0.5, que le spectrogramme d´ecroit suffisamment vers0 à la frontière, et valide par cons´equent la
frontière consid´erée. Dans le cas contraire, la coupure entreCn etCm està remettre en question.

Algorithme de fusion

Notre but est ici d’agr´eger au mieux les composantes non pertinentes dans une carte temps-
fréquence. Plutˆot que d’agir sur la carte temps-fr´equence elle-mˆeme, nous allons, `a partir d’elle,
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construire un graphe sur lequel l’algorithme d’agr´egation agira. La construction du graphe et l’al-
gorithme de fusion diff`ere selon l’approche que l’on consid`ere.

� Approche composante : crit`eresd1 à d4.
Le graphe est constitu´e denœudsqui correspondent chacun `a un centre temps-fr´equence (et donc

à une composante de la partition). A chacun de ces noeuds, on associe la mesure d’admissibilit´e
de la composante idoine. La structure de ce graphe est fix´ee par l’information de voisinage (ou de
connexité) dans le plan temps-fr´equence : deux centres sont connect´es si les r´egions temps-fr´equence
qui leur sont associ´ees sont limitrophes. Enfin, la distance entre chaque nœud est simplement la dis-
tance euclidienne (en coordonn´ees normalis´ees par les dur´ee et bande de la fenˆetre, resp. en temps et
en fréquence) dans le plan temps-fr´equence.

L’algorithme va modifier ce graphe pour en obtenir un nouveau (du mˆeme type) o`u tous les nœuds
seront associ´esà des composantes admissibles. La fusion est effective n´ecessairement sur des compo-
santes connexes, et de pr´eférence sur des composantes proches.

Le déroulement des op´erations suit la trame suivante :

Algorithme de fusion (Approche composante) :

– Calcul du diagramme de connexit´e

Pour toutes les branches du diagramme, et dans l’ordre croissant de leur longueur,

faire

calculer le critère d’admissibilité pour les deux composantes de la branche courante,

si l’une des deux composantes, au moins, de la branche courante n’est pas admissible :

– procéderà la fusion des deux composantes de la branche courante,

– réévaluer la mesure d’admissibilit´e de la nouvelle composante,

– fixer son centre au milieu des deux centres de la branche courante,

– réévaluer le graphe de connexit´e et sélectionner la branche de plus petite longueur,

sinon

– passer `a la branche suivante.

fin si

fin faire

� Approche frontière : critèred5.
Pour cette approche, le graphe est similaire au pr´ecédentà la différence que l’on n’associe plus

une valeur du crit`ere d’admissibilitéà chaque nœud mais `a chaque branche. Le traitement suit alors le
déroulement suivant :

Algorithme de fusion (Approche fronti ère) :

– Calcul du diagramme de connexit´e

Pour toutes les branches du diagramme,
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faire

calculer (par dichotomie) la position du point(
�

tn;m;
�

!n;m),

évaluer le critère d’admissibilité de la branche courante,

si la branche courante n’est pas admissible :

– procéderà la fusion des deux composantes,

– fixer le centre de la nouvelle composante au milieu des deux centres de la branche
courante,

sinon

– passer `a la branche suivante.

fin si

fin faire

Résultats, signaux synth́etiques

Nous avons test´e nos algorithmes sur deux types de signaux. Le premier, en Fig. 3.13 met en
évidence les probl`emes liés au battement de phase entre deux composantes, en l’occurence deux mo-
dulations linéaires de fr´equence (ou chirp) d’enveloppe gaussienne. L’interaction entre ces deux chirps
provoque l’apparition d’une coupure parasite qui vient scinder un des deux chirps (celui de plus faible
amplitude) en deux. Nous donnons les r´esultats pour les crit`eresd1 à d4 uniquement. Une analyse
rapide du tableau 3.1 montre que le crit`ered1 n’est pas suffisamment contraignant pour d´etecter les
mauvaises partitions. Cependant, les trois autres crit`eres donnent des r´esultats satisfaisants. En effet,
leur utilisation dans l’algorithme de fusion conduit `a l’agrégation des composantes no1 et no2 et laisse
la composante no3 intacte. La partition obtenue en fin de traitement est donc le r´esultat esp´eré.

Le deuxième exemple en Fig. 3.14 illustre l’action du bruit sur la partition temps-fr´equence. Le
signal est un chirp lin´eaire d’enveloppe gaussienne. Il est ajout´e à un bruit blanc gaussien avec un
rapport signal `a bruit (quotient des ´energies) ´egalà +2dB. La partition détecte six composantes. Il
est clair que la pr´esence de bruit provoque trois coupures parasites qui viennent d´ecouper le signal en
tranches (composantes nos 1,2,3 et 5). Les tableaux 3.2 et 3.3 regroupent les valeurs des cinq crit`eres
pour les six composantes d´etectées. On tire la mˆeme conclusion que pr´ecédemment au sujet de la
surfaceéquivalente, `a savoir son inefficacit´e. Pour les trois crit`eres de l’approche r´egion, l’algorithme
de fusion (cf. Fig. 3.15) se trouve pi´eger par le fait que les partitions dues au bruit sont `a la fois non
admissibles en tant que spectrogramme, et proches des partitions du signal en distance euclidienne
normalisée (c’est par exemple vrai pour la configuration des nœuds3, 4 et 5. La distance entre3 et 4
est inférieureà celle entre3 et 5). L’algorithme va donc avoir tendance `a assembler les partitions du
signal avec celles du bruit. Le crit`ered5, au contraire, fait bien la distinction entre fronti`eres pertinente
et non pertinente et conduit au r´esultat que l’on attend.

Résultats, signaux ŕeels

Dans le cadre d’une collaboration avec Marianne Nardin (LIS, INPG, Grenoble), nous avons ap-
pliqué la partition temps-fr´equence au probl`eme de la caract´erisation de modes de propagation d’une
onde acoustique dans un guide d’ondes.

On désire caract´eriser la propagation dans un guide d’ondes qui est, en pratique, un canal qui
conduit de l’eau avec, au fond, une couche s´edimentaire. Pour ce faire, on provoque une explosion
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Numéro Surface Information Énergie Information
de composante équivalente de Shannon de Shannon

éq. (3.96) éq. (3.99) éq. (3.100) éq. (3.101)
Composante1 0.34 0.86 0.12 0.54
Composante2 0.21 0.41 0.36 1.49
Composante3 0.92 1.66 0.03 0.41
Borne théorique � 0.16 � 1 � 0.1 � 1
ou seuil acceptable

TAB. 3.1 – Ce tableau regroupe les valeurs des quatre crit`eres d’admissibilit´e d’une partition (intro-
duits en Sect. 3.3.5) pour chacune des trois composantes du signal pr´esenté en Fig. 3.13.

Numéro Surface Information Énergie Information
de composante équivalente de Shannon de Shannon

éq. (3.96) éq. (3.99) éq. (3.100) éq. (3.101)
Composante1 0.61 1.31 0.04 0.49
Composante2 0.21 0.56 0.16 0.86
Composante3 0.40 0.90 0.09 0.60
Composante4 0.19 0.70 0.17 1.50
Composante5 0.51 1.14 0.05 0.52
Composante6 0.22 0.72 0.10 1.34
Borne théorique � 0.16 � 1 � 0.1 � 1
ou seuil acceptable

TAB. 3.2 – Ce tableau regroupe les valeurs des quatre premiers crit`eres d’admissibilit´e d’une parti-
tion (introduits en Sect. 3.3.5) pour chacune des six composantes du signal pr´esenté en Fig. 3.14.

Numéro Énergieà la
de branche coupure, ´eq. (3.102)
Branche1 : Comp.1! Comp.2 0.94
Branche2 : Comp.2! Comp.3 0.90
Branche3 : Comp.3! Comp.4 0.20
Branche4 : Comp.3! Comp.5 0.74
Branche5 : Comp.3! Comp.6 0.09
Branche6 : Comp.4! Comp.5 0.11
Branche7 : Comp.5! Comp.6 0.15
Seuil acceptable � 0.5

TAB. 3.3 – Ce tableau regroupe les valeurs du crit`ere d’admissibilitéd5 (approche frontière) d’une
partition (introduit en Sect. 3.3.5) pr´esentée en Fig. 3.14.
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FIG. 3.14 –Mise enévidence de coupure parasite dans la partition temps-fr´equence due `a la pré-
sence de bruit.Le signal, dont le spectrogramme est donn´e en(a), est formé d’un chip linéaire d’en-
veloppe gaussienne ajout´e à un bruit blanc gaussien (RSB = 2dB). (b) La présence de bruit cause
l’apparition de coupures parasites qui sectionnent en tranches la partition que l’on aimerait associer
au signal (composantes no 1,2,3 et 5). Les centres de chacune des composantes sont marqu´es par des
croix et sont reliés par le graphe de connexit´e (voir Sect. 3.3.5). Les points indiqu´es d’un cercle sont
les (points de la grille temps-fr´equence les plus proches de) intersections entre le segment qui relie
deux centres connexes et la fronti`ere entre les deux composantes qui leur sont associ´ees.

à la surface de l’eau i.e., on ´emet une impulsion en entr´ee du guide. On observe ensuite le signal
reçu après propagation. La nature du milieu et les diff´erentes r´eflexions vont conduire `a ce que l’onde
de départ emprunte diff´erents trajets et soit modifi´ee pendant ce trajet. Le r´esultat est que le signal
observé est compos´e de différentes composantes, chacune due `a un mode de propagation particulier.

L’utilisation d’une distribution temps-fr´equence pour ce probl`eme est naturelle : les signaux ob-
servés sont non stationnaires et la repr´esentation temps-fr´equence permet une visualisation imm´ediate
de leur structure. Le signal est, en fait, une superposition de chirps comme l’indique clairement le
spectrogramme en figure 3.16-(a). Chacun de ces chirps correspond `a un mode de propagation.

Faire la partition temps-fr´equence pour isoler un de ces chirps est donc ´equivalentà faire l’ana-
lyse de la propagation mode par mode. Ceci est utile si l’on veut faire l’estimation des param`etres
(comme par exemple, la largeur de bande moyenne) du chirp dont on poss`ede, par ailleurs, une des-
cription théorique précise. On en d´eduit ainsi une caract´erisation des modes de propagation puis, avec
l’ensemble des estimations obtenues pour chaque mode, l’extraction des param`etres du guide d’ondes
(comme la profondeur du guide, le gradient de vitesse et de densit´e du milieu,: : : ).

Nous montrons en Fig. 3.16 l’extraction du quatri`eme harmonique par la partition temps-fr´equence
suivie d’une fusion. Il est important de signaler que la fusion a ´eté effectuée “à la main” i.e., sans
l’aide des algorithmes pr´esentés en Sect. 3.3.5 (nous ne disposons pas d’algorithme pour l’´evaluation
automatique du graphe de connexit´e).
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FIG. 3.15 – Fusion de partition temps-fr´equence.Cette figure rassemble les partitions obtenues
après traitement de la partition en Fig. 3.14 par les algorithmes de fusion propos´es.(a) Algorithme 1,
critèred2, (b) Algorithme 1, critèred3, (c) Algorithme 1, critèred4, (d) Algorithme 2, critèred5. Ce
dernier seulement donne une solution acceptable en regroupant les composantes1, 2, 3 et 5, toutes
clairement associ´ees au signal.
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FIG. 3.16 – Application de la partition temps-fr´equence – Extraction de modes de propagation
d’une onde acoustique dans un guide d’onde.On observe le signal re¸cu après propagation d’une
onde de choc (explosion de surface) dans un guide d’ondes (canal aquatique) pendant une distance de
14 km.(a) spectrogramme du signal observ´e. Ce signal est clairement compos´e d’une superposition
de chirps qui correspondent, chacun, `a un mode de propagation diff´erent.À l’aide de l’algorithme de
partition, on extrait un de ces chirps pour le caract´eriser précisément et le comparer `a des attentes
théoriques.(b) Quatrième harmonique extrait `a partir de la région indiquée en pointillé en(a). (c)
Spectrogramme du signal extrait.

3.4 Conclusions sur la ŕeallocation différentielle et la partition temps-
fr équence

Une analogie aux syst`emes physiques support´ee par une description g´eométrique du champ de
réallocation nous a amen´e à introduire une nouvelle version de la r´eallocation :la réallocation diffé-
rentielle.

À partir de cette nouvelle m´ethode, nous avons propos´e un algorithme qui permet d’obtenir un
découpage du plan temps-fr´equence dans lequel chaque partie contient ce que nous appelons une
composante. Pour ce faire, nous utilisons une information directement issue du champ des vecteurs
de réallocation du spectrogramme, lui-mˆeme lié à un certain potentiel. Chaque composante peut alors
être décrite par un domaine temps-fr´equence (un puits de potentiel) et un attracteur (minimum local
dans ce puits). Nous d´etectons donc autant de composantes qu’il existe de minima locaux dans le
potentiel prescrit. Nous montrons que cet algorithme peut s’appliquer `a l’extraction de chacune des
composantes d’un signal, ainsi qu’`a des probl`emes de d´ebruitage.

Nous positionnons notre algorithme par rapport `a d’autre solution existentes : nous montrons que

– dans certaines conditions particuli`eres, la m´ethode propos´ee devient ´equivalente `a une partition
en polygônes de Vorono¨ı du plan temps-fr´equence,

– la partition obtenue est coh´erente avec les r´esultats donn´es par les m´ethodes bas´ees sur des
mesures d’information dans le plan temps-fr´equence.

Nous nous attachons ensuite aux difficult´es liéesà la présence de plusieurs minima locaux (caus´ee
par exemple par la pr´esence de bruit) dans une zone que l’intuition aurait marqu´ee comme une seule
et même composante. Une partie du travail qui a ´eté accomplie sur la r´egularisation du champ des
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vecteurs de r´eallocation a ´eté pass´ee sous silence. L’id´ee est d’appliquer un traitement (une op´eration
comparable `a un lissage) sur le champ de r´eallocation destin´eà atténuer les perturbations dues au bruit
(en en augmentant la r´egularité) et par cons´equentà limiter l’influence des minima locaux parasites
dans la partition. Le caract`ere marginal de l’espace des champs de vecteurs de r´eallocation a fait
que cette approche s’est pour l’instant sold´e par des ´echecs. Il reste cependant encore des voies de
recherche `a approfondir pour y donner solution. N´eanmoins, pour le mˆeme problème, nous proposons
une strat´egie alternative qui consiste `a fusionner les composantes non pertinentes de la partition. Nous
concluons finalement qu’entre tous les crit`eres de d´etection des mauvaises composantes envisag´es
celui qui procèdeà l’examen du spectrogramme le long de la fronti`ere entre deux partitions conduit
aux meilleurs r´esultats.

3.5 Réallocation superviśee

Dans les situations bruit´ees (bruit large bande), la r´eallocation telle qu’elle a ´eté introduite par Ko-
deraet al. [67] présente des inconv´enients. En effet, elle cr´ee des paquets d’´energie concentr´es dans
les régions associ´ees au bruit uniquement (r´egions “bruit seul”) alors qu’on y aurait esp´eré une distri-
bution lisse. De plus, alors qu’il peut ˆetre prouvé que le spectrogramme d’un chirp est ind´ependant de
la fenêtre d’observation, cela n’est plus vrai pour les m´elanges chirp+bruit. Dans cette section, nous
proposons une am´elioration de la r´eallocation du spectrogramme qui

1. préserve une bonne concentration temps-fr´equence pour les signaux modul´es en fréquence,

2. n’applique pas le principe de r´eallocation dans les r´egions “bruit seul”,

3. réduit la dépendance de l’analyse `a l’égard de la fenˆetre d’analyse.

Nous présenterons dans un premier temps le principe de cette am´elioration. Nous en discuterons
ensuite sa mise en œuvre et ses performances.

3.5.1 Superviser la ŕeallocation

La méthode propos´ee se divise en deux ´etapes :

1. La première consiste `a discriminer les r´egions “signal+bruit” des r´egions “bruit seul” en extra-
yant de l’information du champ des vecteurs de r´eallocation. Le principe de d´etection repose
sur l’observation suivante : lorsque la longueur de la fenˆetre d’analyse change, les vecteurs de
réallocation dans le voisinage d’un signal d´eterministe ob´eissent `a une certaine loi d’´evolution
tandis que, dans les r´egions “bruit seul” leur ´evolution devient erratique. Plus pr´ecisément, pour
faire la discrimination, nous allons nous appuyer sur l’observation de la r´epartition des angles
des vecteurs de r´eallocation pour diff´erentes tailles de fenˆetre. Pour donner une autre interpr´eta-
tion à la démarche pr´esentée ici et en parlant abusivement, on pourrait dire que l’on compense le
fait que l’on dispose d’une seule r´ealisation de bruit en observant le contenu ´energétique dans le
plan temps-fr´equence du signal de diff´erentes fa¸cons, i.e. `a travers plusieurs fenˆetres. On pour-
rait considérer les différents vecteurs de r´eallocation obtenus pour chacune des fenˆetres utilisées
comme autant d’´epreuves d’une mˆeme variable al´eatoire. Notons bien que cet argument a pour
seule utilité de donner un nouvel ´eclairage aux id´ees donn´ees ici.

2. La seconde ´etape exploite compl`etement le contexte d’analyse multi-fenˆetre. Elle consiste `a
mélanger la collection des spectrogrammes et des champs de vecteurs de r´eallocation associ´es,
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qui ontété calculés lors de l’étape pr´ecédente. Le but est de r´eduire la dépendance de l’analyse
vis-à-vis de la longueur de la fenˆetre et aussi de stabiliser le processus de r´eallocation en faisant
la moyenne des vecteurs de r´eallocation.

En conséquence, la distribution temps-fr´equence qui r´esulte de cette nouvelle m´ethode est un m´elange
de spectrogrammes, modifi´e par la réallocation s´electivement appliqu´ee dans les r´egionsétiquetées en
tant que régions “signal+bruit”. C’est ce que nous appellerons “supervision”.

Étape 1. D́etection : le chirp linéaire comme mod̀ele.

� Fonctions de densit´e
Soit la modulation lin´eaire de fréquences(t) = A exp(i�t2=2), nous avons d´ejà montré que le vec-
teur de réallocation adimensionn´er(t; !) du spectrogramme avec une fenˆetre gaussienne s’´ecrit (cf.
(2.13))

r(t; !) =

�
t̂ � t

�th
;
!̂ � !

�!h

�t
=

p
2(! � �t)

�(1=�4+ �2)

�
�; � 1

�2

�t
: (3.103)

L’expression de l’angle� du vecteur de r´eallocation se d´eduit directement par :

tan � =
�th
�!h

!̂ � !

t̂ � t
= � 1

��2
: (3.104)

Si l’on considère� comme une fonction de� et en supposant que� est uniformément distri-
buée entre�min et �max i.e., a une densit´e constante dans cet intervalle, nous obtenons, pour� dans
l’intervalle image[�min; �max], la densité

��(�) =
C

2
pj�j

����1 + tan2 �

tan3=2 �

���� ; (3.105)

où C est une constante de normalisation. Nous proposons d’utiliser (3.105) comme r´eférence pour
l’identification de la proximité d’un signal dans l’observation.

� Critère de détection
Nous effectuons en tout point(t; !) du plan temps-fr´equence, une estimation empirique (his-

togramme) de��(�) à partir d’une collection de champs de vecteurs de r´eallocation associ´esà des
fenêtres de différentes longueurs. Une mesure de Kullback-Leibler est alors utilis´e pour comparer la
densité estimée�̂�(�) au modèle enéq. (3.105) :

d(�̂�; ��) =

Z
�̂�(�) log

�̂�
��

d�: (3.106)

Si cette distance d´epasse un certain seuil (choisi sur des observations de bruit), on d´ecide d’inhiber
la réallocation.

Étape 2. Moyenne

Nous avons `a notre disposition une batterie de spectrogrammes associ´esà des fenˆetres de lon-
gueurs vari´ees. Le probl`eme est alors de savoir comment les combiner pour en renforcer les caract´e-
ristiques communes. Ceci revient `a “moyenner” les différentes distributions, ce qui appelle la question
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du choix arbitraire de la moyenne. Cette question est en fait assez g´enérale et il peut ˆetre montrer que
la sélection d’une r`egle de moyenne sp´ecifique est reli´ee avec le choixa priori d’une mesure de dis-
tance entre distributions temps-fr´equence (voir sur ce point [71]). Dans le contexte qui nous int´eresse,
la solution exige quelques approfondissements qui n’ont pas ´eté fait. L’approche que nous suivons ici
est plus pragmatique et consiste `a simplement faire la moyenne arithm´etique (qui correspond `a une
distanceL2 entre distributions) des spectrogrammes et `a faire la même chose avec les vecteurs de
réallocation. On ne peut marier de mani`ere cohérente et avec une simple moyenne arithm´etique les
spectrogrammes et les vecteurs de r´eallocation calcul´es avec les tr`es grandes et tr`es petites fenˆetres.
On choisit de garder la simplicit´e de la moyenne choisie, mais de ne faire la moyenne que dans un
sous-ensemble des spectrogrammes et des vecteurs disponibles (en excluant les tr`es grandes et les tr`es
petites fenˆetres). Rappelons ici que le spectrogramme et les op´erateurs de r´eallocation peuvent ˆetre
vu respectivement comme une moyenne et les coordonn´ees d’un centre de masse ´evalués sur la distri-
bution de Wigner Ville du signal dans un voisinage du plan temps-fr´equence. Nous nous restreignons
doncà faire la moyenne de quantit´esévaluées sur des voisinages semblables du plan temps-fr´equence.

3.5.2 Mise en œuvre et ŕesultats

Algorithme

La méthode que nous venons de d´ecrire conduit `a l’algorithme suivant :

1. calculer lesN spectrogrammes `a fenêtre gaussienne avecN longueurs de fenˆetres distribu´ees
uniformément, ainsi que lesN champs de vecteurs de r´eallocation qui leur sont associ´es,

2. faire la moyenne desN spectrogrammes et champs de vecteurs de r´eallocation comme sp´ecifié
en Sect. 3.5.1,

3. Pour chaque point du plan temps-fr´equence,

(a) estimer la densit´e empirique de l’angle des vecteurs de r´eallocation,

(b) calculer la distance de Kullback-Leibler (3.106) entre la densit´e de référence (3.105) et
son estim´ee,

(c) si cette distance est plus petite qu’un certain seuil, r´eallouer la valeur du spectrogramme
moyen avec le vecteur de r´eallocation moyen. Dans le cas contraire, laisser sur place la
valeur du spectrogramme moyen.

Quelques images

La figure 3.17 illustre le fonctionnement de l’algorithme propos´e dans le cas du m´elange d’un
chirp linéaire avec du bruit, le rapport signal `a bruit (RSB)étant fixé à 10dB. La famille de fenˆetres
utilisée est une suite de 30 fenˆetres gaussiennes (´eq. (1.40)) avec une taille� uniformément répartie
entre�min = 1:8 et �max = 7. Les trois fenˆetres de longueur les plus proches de la valeur centrale
de l’intervalle[�min; �max] sont sélectionnées pour calculer les spectrogramme et vecteurs de r´eal-
location moyens. Il est clair sur la carte de supervision (seuil de d´ecision fixé à 0.5) que la proximit´e
d’un chirp est d´etectée dans une bande entourant la ligne de fr´equence instantan´ee.À l’ext érieur de
cette bande, i.e., dans le bruit, on d´ecide majoritairement de ne pas r´eallouer. Cela se traduit sur la
distribution finale par une bonne repr´esentation du signal (l’´energie est bien concentr´ee autour du che-
min de fréquence instantan´ee que sur la moyenne des spectrogrammes r´ealloués) et du bruit (dans les
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FIG. 3.17 – Réallocation supervis´ee d’un chirp linéaire.Chirp linéaire bruité,RSB = 10dB (voir
le texte pour les d´etails),(a) Moyenne arithm´etique des spectrogrammes,(b) Moyenne arithm´etique
des spectrogrammes r´ealloués,(c) Carte des distances de Kullback–Leibler : la r´egion noire (resp.
blanche) correspond aux points o`u la supervision autorise (resp. inhibe) la r´eallocation,(d) La dis-
tribution d’énergie temps-fr´equence r´esultante (la dynamique est donn´ee enéchelle logarithmique).

régions “bruit seul”, la distribution finale est une fonction lisse) relativement aux spectrogrammes et
spectrogrammes r´ealloués moyens.

Cet exemple est bas´e sur un mod`ele simple de signal monocomposante modul´e en fréquence,
mais la proc´edure peut ˆetre généraliséeà des situations plus compliqu´ees (signaux multicomposantes
modulés non linéairement en fr´equence) ´etant admis que le mod`ele reste valide localement `a l’échelle
de chacune des fenˆetres. Par exemple, la figure 3.18 montre la robustesse du processus de supervision
dans le cas o`u le signal analys´e est un chirp en loi de puissance correspondant au mod`ele newtonien des
ondes gravitationnelles issues de la coalescence d’un syst`eme de deux objets astrophysiques massifs
[93] (sur ce point, on se reportera au chapitre 4). Les longueurs des47 fenêtres utilisées sont, cette
fois, réparties entre�min = 0:2 et �max = 6. On sélectionne de la mˆeme façon, trois fenˆetres pour
les spectrogramme et vecteurs de r´eallocation moyens. Pour compenser l’´ecart au mod`ele, on doit
augmenter l´egèrement le seuil de d´etection (fixé maintenant `a 0.8). La détection donne alors de bons
résultats mais ses performances sont diminu´ees lorsque� tend vers0 ou l’infini : lorsque� = 0,
fréquence pure, (resp.� ! 1, impulsion, l’anglej�j passe brutalement de�=2 (resp.0) à 0 (resp.
�=2) quand la taille de fenˆetre augmente. Un ´echantillonnage tr`es fin de la gamme de longueurs de
fenêtre est alors n´ecessaire pour que l’angle� décrivent toutes les valeurs entre0 et�=2. Il serait donc
important d’ajouter une prise en compte sp´ecifique de ses cas d´egénérés par le d´etecteur.

Performance

Nous proposons deux tests pour ´evaluer l’efficacité de la réallocation supervis´ee.
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FIG. 3.18 –Réallocation supervis´ee d’un chirp en loi de puissance.Chirp en loi de puissance bruit´e,
RSB = 10dB (voir le texte pour les d´etails) (a) Moyenne arithm´etique des spectrogrammes,(b)
Moyenne arithm´etique des spectrogrammes r´ealloués,(c) Carte des distances de Kullback–Leibler :
la région noire (resp. blanche) correspond aux points o`u la supervision autorise (resp. inhibe) la
réallocation,(d) La distribution d’énergie temps-fr´equence r´esultante (la dynamique est donn´ee en
échelle logarithmique).
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� Courbes COR
Les Caract´eristiques Op´erationnelles du R´ecepteur (COR) [96] de notre r`egle de d´ecision ontété

évaluées et sont pr´esentées en Fig. 3.19. On peut remarquer que pour un RSB inf´erieurà�7dB, la
règle de d´etection propos´ee n’est pas meilleure qu’un tirage al´eatoire. Chose plus importante, il s’av`ere
que la probabilit´e de fausse alarme est approximativement li´eeà une valeur du seuil de d´ecision.

� Critères de qualit´e de la représentation
Pour donner des informations suppl´ementaires au sujet de la qualit´e de la repr´esentation finale, la

Fig. 3.20 exhibe deux crit`eres :

1. Critère1. La différence entre l’´energie totale du signal sans bruit et l’int´egration de la distri-
bution temps-fr´equence (du signal bruit´e) le long de la ligne de fr´equence instantan´ee quantifie
comment le chirp initial est repr´esenté.

2. Critère2. L’entropie de Shannon de la distribution d’´energie 2D (normalis´ee) quantifie la plati-
tude de la distribution dans les r´egions “bruit seul”.

Ce qui est mis en ´evidence par ces deux crit`eres, est que l’utilisation de la supervision conduit `a un
résultat interm´ediaire entre celui obtenu par les spectrogrammes conventionnel ou totalement r´ealloué.
La supervision assure donc un compromis entre ces deux situations extrˆemes.

3.5.3 Conclusions sur la supervision

Nous présentons un prolongement de la m´ethode de r´eallocation dont l’objectif principal est l’ob-
tention d’une distribution temps-fr´equence qui donne `a la fois une bonne repr´esentation du signal et
du bruit. Cette distribution est obtenue par un audit de la situation en chaque point temps-fr´equence,
chargé de décider si oui ou non il est opportun de r´eallouer. La d´ecision s’effectue `a partir d’infor-
mation extraite des variations des vecteurs de r´eallocation du spectrogramme lorsque la taille de la
fenêtre d’analyse change. On profite pleinement du cadre multi-fenˆetre en faisant agir cette r´ealloca-
tion superviséesur une moyenne de spectrogrammes associ´esà des fenˆetres de tailles diff´erentes.

Il serait important de comparer les r´esultats obtenus ici avec ceux obtenus par des m´ethodes
concurrentes comme, par exemple, les distributions `a noyau adaptatif radiallement gaussien [63]
ou plus récemment les distributions modifi´ees par des ´equations de diffusion dans le plan temps-
fréquence [49]. Le positionnement par rapport `a l’optimal du détecteur de chirps que nous mettons en
œuvre lors de l’´etape de supervision serait ´egalement n´ecessaire.
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FIG. 3.19 – Performances de la supervision : Courbes COR.Ces courbes COR sont associ´ees aux
RSB = �7, 0, 7, 13 et 20dB (de bas en haut). Les lignes en pointill´e relient les points obtenus avec
le même seuil.
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FIG. 3.20 – Performance de la supervision : crit`eres de qualit´e de la représentation.(a) Critère1
(voir 3.5.2),(b) Critère2 (voir 3.5.2). Ligne pleine : spectrogramme r´ealloué avec supervision, ligne
pointillée : spectrogramme moyen, ligne mixte : spectrogramme r´ealloué moyen
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