Chapitre 2

Quelques exemples de champs de
vecteurs de eallocation

Nous avons @$eng dans le chapitre peédent le principe de la ethode deeallocation. Il s’agit
maintenant détudier pecigment les quants matematiques qu’elle met en jeu. La section 2fef-
torie, pour le spectrogramme, un certain nombre de situatioiesocalculs analytiques peuvesité
compktement mees sans abouta des expressions d'une complexi€dhibitoire. On se concentre
ensuite sur le plan tempsshelle. La section 2.2 est, en effet, consaet 1a ©allocation du scalo-
gramme de singulaes lolderiennes avec comme application directe, la mesure de I'exposast de r”
gularité localea partir du scalogrammeallolg. On revient, en section 2.3, au plan temgstrénce
en notant toutefois que les calculs qui y sont accomplis, soagliatement transposables au plan
tempsechelle. On traite dans cette section dgute statistique des vecteurs dalltdcation du spec-
trogramme en @sence de bruit.

2.1 Spectrogramme

Cette sectionaunit une collection de quelques situationsilogst possible d’obtenir une expres-
sion alggbrique pour les vecteurs deallocation. Nous aborderons uniquement le aasaderstre
d’observation est gaussienne, seule situatiopaur des signaux non triviaux, leseypteurs degdl-
location sEcrivent simplement.

Pour pesenter lesasultats de maaire compacte, il est utile de rendre sans dimension les gesntit”
que nous calculons. Nous nousdré$serons donc au vecteur épldicement = ((t —t)/Aty,, (& —
w)/Awp)? normalis par la dueeAty, et la bande\w;, de la fergtreh(t). On sumera ce vecteur par
son image dans le plan complexe, quiasit (cf. €q. (1.39)),

f—t o-w 1 Fth i Fih/dt
= ; = Red— 1\ _ I 2.1
" Aty e Awyp, Aty ¢ { F } Awyp, o { F (1)

Dans le cas qui nous importe, lorsque ladeah(¢) est gaussienne commefdiie dans kEq.
(1.40), I'nmager du vecteur degéllocation se simplifie en un simple quotient de FCT,

1 Fth

ou la du€e de la feafre esegaleaAt), = A/v/2.
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On se propose de donner pour chacun des six sighaux test suivants, I'expressioiojatgde la
FCT F(¢,w), du spectrogrammé (¢, w), du champ de vecteur deaflocationr(¢,w) et du spectro-
gramme €allow 5 (¢, w). Les cing premiers calculs ne sont que de simples remises en forme de ceux
effecti8s dans [68, 4]. Le dernier exemple, signal ferd€ deux impulsions ou de sa version duale
(deux sinusades), est une contribution originale.

2.1.1 Impulsion

Le signalz(t) = 6(t — to) est une impulsion efy.

F(t,w) = 2 1/4)\=1/2,~(to—1)?/(2\?) g —iwto pitw/2 S(t,w) = a1/2 )\~ 1= (to—t)? /N

) (2.3)
r(t,w) = V2(to— 1)/ S(t,w) = &(t—to).

Le point(t,w) est dpla& en(ty,w) en empruntant le plus court chemin enftev) et la droite
t = to. Autrement dit, tous les vecteurs dmtocation pointent vers l'instant de I'impulsion, comme
illustré en Fig. 2.1.5.

2.1.2 Frequence

Le signalz(t) = 0! est une fequence emwy.

F(t,w) _ 21/27T1/4/\1/26—(w0_w)2A2/2€iw0te—itw/2 S(t,w) — 2_17r1/2/\e_(‘”0—w)2/\2

r(t,w) = V2 wo—w) S(t,w) = 6w —wo)/(2m).
(2.4)

C’est le cas dual par Fourier duguédent. Tous les vecteurs dmatfocation indiquent cette fois la
frequencevy analy®e, et ce, paralementa I'axe des fequences c’esd-dire par le chemin le plus
court entre(t,w) et la droitew = wyq (cf. Fig. 2.1.5).

2.1.3 Logon Gaussien

Le signalz(t) = n~1/47—1/2¢=/(27%) est un logon gaussien ceatau point(0, 0) du plan
temps-fEquence. On notdt, = 7/v2 etAw, = 1/(v/2T), les duge et bande du signal &t =

\/Athmx/(m% + At2).

T 2+ N7 A - 17

F(t =V —— T o2 1 T2 ST T .

( ,W) \/_ A2—|—T2 exp( 2(A2—|—T2) )eXp (ZQ(AQ_I_TQ)tw) (2 5)
A2 2 w2 A2 — At?

= 2/At, AL, A - T AL '

VAL exp( 1 (Athmx - Awhmx)) o (ZN% + Az tw) o
A2 [ g2 w?

St w) = 440 exp( 2 (Athmx " Awhwa)) 0
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T(t,W) = —m

2 N a2t . w
(t—l—lT w)_ A (Atx—l_lwa) (2.8)

S(tw) = 2AL, AL, A?
)T (Aw, — A2Awy) (AL, — AZAL,)

A% (AL, 12 L Aw, w? (2.9)
PA\T2 Al (AL, + A2A1)? T Awy (Bwy + A2Aw)2 ) ) '

Danslecass =1 =1,

F(t,w) = exp (—t —Zw ) S(t,w) = exp (—t —;w ) (2.10)
rt,w) = — (t+iw) V2 S(t,w) = dexp(—2(t* + w?)), (2.11)

la réallocation fait subir au paquet gaussien initial une hoetH(illustee en Fig. 2.1.5) de centre
(0,0), le centre du logon, et d’un rappdrt2 (contraction).

2.1.4 Modulation linéaire de frequence

Le signalz(¢) est une modulation liedire de fequence ou “chirp” ligaire :z (1) = ¢#°/2

27~ 1/2 1 Ot —w 2
)= S (‘w () ) @12
r(t,w) = m(g —i/AD) (w - B) S(t,w) = (ﬂQ‘if“‘(’Q;)i?(l/Q). (2.13)

Dans le cas. = § = 1 (voir Fig. 2.1.5), on obtient

S(t,w) =72 exp (—@) (2.14)

r(t,w) =V2/2(1 — i) (w - 1). (2.15)

Tous les vecteurs deallocation pointent exactement sur la ligne egfrénce instantaelv = /t.
On retrouve ici, pour le spectrogramme et dans un cas particulier, la @ogé localisation parfaite
des distributionsegéllolges (@montee dans un cadreegéral en section 1.18) pour les signaux sur
lesquels la distribution de Wigner-Ville est parfaitement loeais”

2.1.5 Modulation linéaire de frequence, d’enveloppe gaussienne
Le signalz(¢) est une modulation liedire de fequence d’enveloppe gaussienngl) = ¢=(1/7*=i0)1*/2,
Ce moctle ggrérala partir duquel les signauxgmdents peuvent seduire (soit directement, soit de
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manigre asymptotique) est trai€n dtail dans [68].
x1/2

N+ T2 + 52

exp(_(l//\2+1/1T2)2+ﬂ2 ((ﬁ2+ T A21T2) Bt (Al " T12)w T ))

S(t,w) =

(2.16)
) = T ((‘ (747t ) i) o (i (w4 ) “)'
2.17)

Danslecad’ = A= 5 =1,

3t2 + 2w% — 2tw
S(t,w) = 2\/;exp ( 5 ) (2.18)

r(t,w) = V2((=3+ i)t + (1 - 20)w)/5 (2.19)
S(t,w) = 2V5m exp(— (T2 — Stw + 3w?)), (2.20)

la réallocation esulte en une transformation qui combine les effets d’hoetitet de regroupement
autour de la ligne de éjuence instantae’(voir en Fig. 2.1.5).

2.1.6 Somme de deux impulsions ou de deuxéquences

Dans le cas 0il est naturel d&crire le signal comme la somme de deux termg$ = x;(t) +
z2(t) que I'on appeller@omposantefparce que c’est en ajoutant deux signauxeddfits que I'on a
construitz (), ou bien parce que I'on observe kstiltat de deux mrionenes physiques distincts), le
calcul du champ deegllocation devient plus difficile. La nature nondaife (et plus que biliggire) de
r fait qu’il ne s'écrit pas comme une simple superpositiondet r, (les quanties d'indicel, resp.2,
feront Bférence dans la suite, au signa| resp.z»). Il ne peut non plus se mettre sous la forme d’'une
somme de trois termes (deux “auto-termes” et un terme d’eremties) comme c’est le cas pour les
distributions bilirgaires. Mais, si I'on invoque la lgdrig de la FCT

1 Fih 4+ PP

= "= 2.21
Aty T EE (221)
le champ de vecteur deallocation s’exprime sous la forme d’'une somme poéel der, etr,
Fl F}
1 2 (2.22)

= F{L—I—F2}LT1+F1}L—|—F2}LT27

ou les poids sona valeurs complexes eegéndent du signal (conduisantine modificatiom la fois
en module et argument). La somme de ces poide@alea 1, ce qui autorise une intergedtion de
cette ogration en termes de moyenne arigtigle.

Il est intéressant de traiter en particulier les cas duaux de deux impulsions ou dguerices
successives. Ces deux exemples vont nous renseigner en effet esoll#ion, i.e., la capaeitde
separation, que I'on peut esger d’'un spectrogrammealloLg.
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FIG. 2.1 —Champ des vecteurs desallocation pour quelques signaux tesbn a regroug’ici les
graphes des champs deallocation pour 'ensemble des sighaux jouets choisis (voir texte). Chaque
fleche relie le point de calct, ), coté encoche, au point deallocation(t, &), coté pointe.
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Considrons tout d’abord le signal compode deux impulsionseparties de part et d’autre at °
égale distancg), de I'origine des temps. La combinaison @égs. (2.3) et (2.22) abouttl'expression
suivante pour le champ deallocation

Va2t - 1)/ —V3(to + 1)/A

T@’w)::1-+exp((—2hMA)@/A—FiAw))ﬁ_1-%€XP<CHO/A)@/A'%iAw))

(2.23)

Notons que les quotients dansd’. (2.23) ne sont pas partowgfahis. Les termes auethomina-
teur peuvent en effet s’annuler en des pointdes nunetrateurs sontefinis et non nuls. Ceci arrive
nécessairement sous la conditios 0, i.e., au milieu des deux impulsions, points en lesquels

t
r(0,w) = \/§XO tan(tow). (2.24)
Le champ deedéllocation diverge aux points deefflencev, = kr/(2tp) ol k € Z. On peut
alors se poser la question du bien feret de la validie’matlgmatique de la ethode deeéllocation.
Le calcul de la FCTF* (¢, w) du signal total au tempis= 0

F'0,w) = FI0,w) + F10,w) = 2 VAN 2=15/(2X) g wip), (2.25)
1 2

montre qu’en chacun des points singuliers le spectrogramme, c’estdire la quantia réallouer,

s’annule (c’est d’ailleurs pourquoile champ @aliocation y est inefini). Il n'est alors pasedessaire

de disposer d’'une valeur deplacement lorsqu’il n’y a riea déplacer. Il reste @anmoins prolama-

tique qu’autour de ces points critiques, le champeddlocation admette de grandes valeurs, ce qui est

difficilement acceptable aussi bien d’'un point de vue conceptuel que d’un point de vue algorithmique.
La divergence du champ deallocation est rapprocher de celle ladiguence instantae’(d-

finie comme la dfivée de la phase du signal analytique) sur un signal éodenla somme de deux

frequences [28]. On peut, en effet, montrer qubdd#emenentre les deux &quences entnaé dans

certains cas la divergeneel'infini de la fréequence instantae; ce qui interdit son intergiation en

tant que feEquence locale. Ce que nous observons dans notre cas, est 'effet (dual) du battement entre

les deux impulsions sur le temps de retard de groupfinicomme la dfivée de la phase de la trans-

formée de Fourier du signal analytique). Rappelons questaigur degallocation en temps au point

(t,w) est aussegal au temps de retard de groupe du signal mudtipdif la feetre centee au point

(t,w). Linfluence du battement se fait d’autant moins sentir, que les impulsions sont distantes l'une

de l'autre, ce que I'on peut montrer en reformulaegl’(2.23)a I'aide de fonctions trigonosatfiques

V2 tanh(tot/A?) + i tan(tow)
rt,w) = by ( 1+ itanh(fot/A?) tan(tow) ) ’

(2.26)

puis en faisant tendredlbignement entre les deux impulsions relatla taille de la featre d’obser-
vationty /A vers l'infini,

to—1

r(t,w) ~ V2 . sit > 0 (2.27)
r(t,w) ~ \/i_tOA_t sit < 0, (2.28)

expressiora comparer avecdd. (2.3) dans le cas d’une impulsion isel”
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Réciproquement, lorsque les deux impulsions se rapprochent, il devient alors impossidgpeade s”
rer les dewet€nements, comme le corrobore la convergence lorgguetend vers O du champ de
réallocation vers

—t
r(t,w) &~ \/57, (2.29)
expression du champ deaflocation d’'une impulsion ise€a I'instantty, = 0 (&q. (2.3)). Ces di#-
rents comportements sont illusgrén Fig. 2.2.

De manere duale, on peut s'iatésser au champ deallocation de la superposition de deux

exponentielles complexes pkes syrefriquement autour de ladfiquence nulle, e, et en—wy.

V2i(wo — w)A —/2i(wo + w)A
1+ exp(—2woA(wA —it/A)) 1+ exp(2woA(wA —it/A))

r(t,w) = (2.30)

Ces calculs sord comparer avec les figures, esultats obtenus pourektde de “agfe” lors de
l'interaction (ou battement) entre deux sinwdas [33].

2.2 Scalogramme

Dans le cas tempsehelle, il esegalement possible de donner I'expression analytique exacte de
certains champs deallocation. C’est ce qui est fait dans [4] pour les cing premiers signaux test
précdents avec le scalogramm®ndelette de Morlet. Nous allons adopter ici un autre point de vue.

Les techniques tempsehelle sont connues poetré bien adaggsa 'analyse des singulaes.

Ceci est d"au fait que les distributions tempshelle (comme le scalogrammeagissent avec un
fort contrastea’la pesence d’'un comportement singulier (pris au sens de discoesndit’signal

ou de ses @livées successives) qui, une foetelt, est facilement caramisd par une mesure de la
croissance locale de la distribution le long @ekélles. Il est raisonnable de penser que, dans le cas du
scalogramme, le contraste soitelinfé par I'utilisation de la rathode deegallocation. Il nous resta
montrer que la caraetisation de la singulasgtfeste toujours possible avec le scalogrameadia(g.

C’est ce que I'on se propose de faire dans cette section et dans le cas d’'une sandal&fitder
isolée et pour une ondelette de Klauder.

2.2.1 Estimation de I'exposant de llder a I'aide du scalogramme
Famille de singularités Hlderiennes

La régularig holderienne est un raffinement de la notion deat#fitiabilig qui permet I'extension
de cette dermirea certaines fonctions singaties (e.g., les fonctions discontinues ou dont &s/dés
successives sont discontinues). 8firdfion prend sa source dans urengralisation du dveloppe-
ment de Taylor qui €¢rit pour une fonctiory € CN+1(0), i.e., f et ses @fivées jusqua’l'ordre
N + 1 sont continues efi

N
VieQ  f(1) =) et 1N O(), (2.31)

n=0

ol Q est un voisinage d& c, = " (0)/n! et|O(t)| < sup,eq [FNHD(s)|/(N + 1)
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FiIG. 2.2 —Graphe du champ de vecteurs deaflocation d’une suite de deux impulsionBifferentes
configurations sont @sentes en fonction de la distande= 2t entre les deux impulsions. Pour les
détails, voir en Sect. 2.1.€olonne de gaucheimpulsions proches relativemeatla taille A de la
ferétre d’observation (iciA = 1). Il en résulte un spectrogramme (deeie ligne), un champ de
vecteurs deeallocation (en troime ligne) et un spectrogrammeatioué (quatreme ligne) proches

de ceux que I'on aurait obtenu en analysant une seule impulS@ionne du centre d est de I'ordre

de la taille de la fepfre,d =~ A. On voit apparafre sur 'axet = 0 les points o le champ de
vecteur de eallocation diverge. La valeur déa été choisie pour que ces points soieapaiés d’'une
distance=galea 2 en uni€s normaliges (ce sont les points maegid’'uno dans le graphe du champ

de vecteurs) dans la direction degfuences. lls correspondent aux endroitsl® Spectrogramme
s’annule. Les faibles quangit’énerggtiques qui viennent s’ajouter sur le spectrogramrealloué
(représent” avec une dynamique logarithmique contrairement aux autres) entre les deux impulsions
s’interprétent comme des interEnces entre les deux impulsio@alonne de droite la distanced

est, cette fois, suffisamment grande pour qu’il n'y ait plus d’interaction entre les champs de vecteurs
de réallocation des deux impulsions. Tout se passe comme si le champ de vectezaBodation

(idem pour le spectrogramme et le spectrogrameadlole) du signal total €sultait de la somme des
champs de chaque impulsion prispa@ment.
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En pro&dant dans un ere esprit, une fonctiofi € C*(0) de Bgulari€ holderienner € R
est une fonction pour laquelle une approximation locale par un patgnd’ordreegalt a N = |v/|
est possiblea la difference que sa validitést conwlée par un moome impliquant une puissance
éventuellement non ewtieé det [74]

N
VEeQ  f(H) =) et +1 0(1), (2.32)

n=0

ou O(t) est borre sur.

Dans ce cadre, il devient naturel de séréSsem la fonctionz () = |t|¥, prototype deegularig
hélderienner en 0, ou v est unelément deR\Z. On appelle ce genre de fonction, usiagularité
holderienned’exposanty. Le prolongement de laedinition d’'une singularg’holderienne pour les
valeurs engfes dev qui n'onta priori aucune raison @ftte exclues, n’est pas trivial. On opte pour
une dfinition du signal en Equence. On peut montrer que, powéel non entier, la transforee’de
Fourier dez (¢) estégale? au sens des distributioag51]

X(w)=20(v+ 1) (=sin(vr/2)) |w|™""" v eR\Z. (2.33)

e Entiers naturels impairsz =1, 3, 5, ...

Pour lesv entiers impairs positifs, cettequation reste valable par prolongement analytique.
Pour ces indices, notons que la singukaést obtenue par un retournement du demi-plan0, qui
transforme une fonction impairé réguliére en une fonction paité” singuliere.

e Entiers naturels pairsy =0, 2, 4,. ..

Lorsquer = 0, z(¢) est une constante sRrsauf erf) ou elle n’est pas éfinie. La fonction: n’est
donc pas singudire au sens que nous nous sommessfixin aimerait associar = 0 une singularig”
gui présente uneatroissance spectrale en loi de puissance dedménce avec un exposant pour
rester conforma 1'eq. (2.33). LEchelonsgn(¢) est un candidat naturel ce remplacement puisqu'il
procede du nefne principeehon@& plus haut (retournement du demi-plar: 0) mais transformant,
cette fois, une fonction paire en une fonction impaire siregeliOn gnéralise ce proad® a tous
les ordress entiers pairs positifs en employant la fonctieft) = sgn(¢)|t|* dont la transforraé de
Fourier respecte lagtroissance egpge

X(w) =20 (=)= siv=2,4,. .. (2.34)
Notons que cetteduation est, en fait, valable pour tous les entiers naturedsiy.

e Entiers relatifs pairsv = —2, —4, —6, ...
Pour les entiersetatifs pairs, ortablit le prolongement dedd. (2.33) en invoquant le fait que
I'opérateur d’inversion par Fourier n’est autre que son corguge qui nehea [51]
T

X(w)= m(—w/%rv—l. (2.35)

e Entiersrelatifsimpairsvy = —1, -3, —5,...
Il suffit de se convaincre que, pour les entieegatifs impairs, la distribution de Dirac et ses

1. La notation| « | désigne la partie ergie dec.
2. lIl'y a convergence au sens des fonctions [74] si et seulememsgicompris entre-1 et0.
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dérivées d’'ordre pair sont les signaux que nous chercaame constante multiplicativegs: en effet,
I'eq. (2.35) donnedalement la forme de la transfoesnde Fourier de(t) = «/(jv + 1]1)6™)(¢).

En résung, la forme temporelle du signal que nous emploierons, change selon la valeur de I'indice
v tandis que sa transfoem’de Fourier conserve la formergrale

X(w) = Ay w7, (2.36)
ou le facteur d’amplitude vaut:
A, =20(v+1)(—sin(vr/2)) siv e R-1Z,
A, =2(v!) (—=1)r+1)/2 siv € Net (2.37)
A, =a(=1)""?)|lv +1]! SiveZ~

Nous avons introduit 'exposamten tant qu’'exposant deditier. Dans la mesureumous avons
engende’dans le domainedtjuentiel, la famille de singulaei$’que nous proposons, on peut s'inter-
roger sur la nature effective posterioride I'exposant et en particulier sur le fait qu'il repsente
ou non la egularie locale de la fonction au sens delHér. Nous epondrons par I'affirmative. En
effet, dans des espaces de signaux au comportement singulier simple (sighauxisatisrescom-
portant des singulags isoEes) comme ceux que nous venons d’introduire, le lien entre exposant de
décroissance spectrale ebldér est maintenant bieztabli. Le formalisme est cependant critiquable
pour les exposants deditler régatifs qui cessitent desedeloppements maghiatiques sophisti-
gués [57] dans lesquels nous n’entrerons pas. Nous nous satisferons deefiottiod en féquence
de la famille des singulass isoEes. Notons par ailleurs que parmi toutes les singakartii sont
envisageables, nous avorgestionre celles dont la transforee”de Fourier est phase constante sur
R.

Transform ée en ondelettes d’'une singularé holderienne

Compte tenu de ce que nous venons de montrer, la transéoem ondelettes 'echelleq et au
tempsb

iwb d_w
2’

TV (a,b) = /X(w)\/aql*(aw)e (2.38)
d’un tel signal s’interpete comme I'action de la distribution (2.36) sur une fonction test (i) est
une fonctiona décroissance rapide sl et s’annule suffisamment vite énpour lever toutes les

divergences de la fonctianintégrer, alors on peut faire la sommation

) ds

Td’(a,b): /Ay|w|a\/5\11*(aw)ew o (2.39)

*

+oo .
= A_ a0t/ ( / (1) W (w) e~ b/@) dw/(zﬂ)) : (2.40)
0

olla = —v — 1 et éécrire I'éq. (2.40) en faisant appaira la cErivée fractionnairé d’ordre o de ),
[53]

TY(a,b) = A_q_ya~ /D@ (_p/q). (2.41)

3. On dfinit la cérivée fractionnaire d'ordre deg comme suit 5™ (z) = [F™ (iw)*G(w)e'“™ 4.
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On peut @duire de [Eq. (2.41), deux caramtistiques importantes de la structure du scalogramme
(module care’deT¥ (a, b)) d’'une singulari¢’ holderienne. D’une part, il est clair que touteriérgie
est concentté dans le support de(®)(—b/a)| qui définit dans le plan tempsehelle un domaine
conique ceng’sur la ligneh = 0 que I'on appelledne d'influencale la singulari¢” D’autre part, au
pointb = 0, la relation [47]

log (|7 (a, 0)|?) = log (|4, v~ (0)*) + (2v + 1) log(a), (2.42)

entre scalogramme et I'exposant deléEr» de la singularié’rend possible la mesure depar celle

de la pente locale du scalogramme le long eeselles dans un diagramme log-log. En pratique, les
points singuliers pouvartie multiples et de positions inconnwepriori, on pro@dea la mesure de
I'exposantr sur chaque ligne de maxima (ou lignes detej du scalogramme [75].

2.2.2 Estimation de I'exposant de lder a I'aide du scalogramme galloué

L'id'ee sous-jacenta l'utilisation du scalogrammeeallowg pour I'estimation de I'exposant de
Holder est que les @pateurs degdallocation du scalogramme (efg. 1.79)

. T . awy
b:b—l—aRe{W} a__lm{Td¢/dt/T¢}7 (2.43)

(wo est la fEquence centrale de I'ondelett® vont concentrer I'information contenue dans tne”
d’influence, par corexjuent augmenter le contraste de laespritation, ce qui permettra vraisembla-
blement de rendre les stegfies d’extraction de lignes deeteS plus robustes au bruit. La difficalt”
vient du fait qu’en modifiant le scalogramme pardali6cation, on perd la relation (2.42), fondamen-
tale pour la mesure de I'exposantNous allons, pour une ondelette partiendi, montrer que nous
pouvons trouver une relation similaiag2.42) pour le scalogrammeailowg. Sansesoudre comggh
tement le prol@ime de la dfection et de la caramtisation de singulagtviale scalogrammesalloLg,

les calculs faits ici montrent que I'intuition depart est thériguement acceptable maaslent des
problemes de simulations nweriques, en particulier dchantillonnage du plan tempstielle.

Transformée en ondelettes de Klauder d’'une singularé hdlderienne

La conditionsine qua nora la Bsolution de notre probime est le choix des ondelettes de Klauder
[65],

(2.44)

ol Cjs., = (29)0+Y21 (B + 1)//27T (26 + 1) est la constante de normalisatiar’@nergie uni

Ces ondelettes sont centrales pour lesatpositions temps etchelle continus, au emie titre

gue les gaussiennes pour lescdmpositions tempsdguence (ce sont par exemple les signaux d’en-
combrement minimum dans le plan temgxdiélle). L'utilisation des ondelettes de Klauder vont nous
permettre ici d'obtenir I'expression analytique de toutes les grandeurs utiles (scalogramme, champ de
vecteurs degéallocation, scalogrammeallolg). Leur transforreé de Fourier est

2T

Koy (w) = Cﬁ,wm

WU (W), (2.45)
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ou U(-) est I'echelon de Heaviside, sous les conditions d’existeéhce —1/2 ety > 0. Elles ap-
partiennent dona 'ensemble des fonctions tests, identiguement nulleBRsua décroissance rapide

a l'infini sur R**. Le contdle de la @croissance dé&'s - (w) en0 s'effectue par le paraetre 5 par
lequel il est donc possible de garantir la convergence degiale dans €g. (2.40). Les ondelettes de
Klauder pour lesquelles+ 5 > —1 vérifient donc les hypotses de validéde I'€q. (2.41). De plus,

la dérivation fractionnaire est une egation qui laisse invariante la famille des ondelettes de Klauder,

en effet:
0= (5) \/ e 0. (2.46)

la validité de cetteequatioretant soumise aux deuxagaligs
B>—1/2 a+8>-1/2, (2.47)

qui président I'existence decgaw) etra+3,. Cette propete nous permet d’obtenir la transfoeméen
ondelettes (2.41), avet = «3 ., sans faire appel [a dErivee fractionnaire,

I'2(e 1) 1
Tﬁﬁ’”(“’b):f‘—a—l(?w)_a\/ (F((Q;gi);)r )\/_ame,w

Ce qui nous donne aveely. (2.44) une expression algique exacte de (2.41)

(—b/a). (2.48)

a+p+1)

I'( .
T8 (a,b) = A_y_q(27a)PT1/2 a — ib)~(ati+1), 2.49
(a,b) 1(2va) F(25+1)(7 ) (2.49)
d’ou I'on peut d&duire le scalogramme par quadration,
2
Sre(a,b) = A%, (27@)25+1—F (atp+1) lya — ib|~2etB+D), (2.50)

I'26+1)

Opérateurs de réallocation du scalogramme d’une singularié holderienne

La famille des ondelettes de Klaudeepenhteegalement la caraetistique de rester stable \és-"
vis de la @rivation et de la multiplication pat i.e., des ondelettes de Klauder, transfees par ces
opérations, peuventeatrire comme une combinaisondaitre d’ondelettes de Klauder,

digq/dt =i/ (27)V/(28 4 3) (28 + 2)Kg414(1) (2.51)

whg (1) = i74 ) 2;7?1/@5_17%15) — 1yRg~(1). (2.52)

Chacune de cesquations est contrainte par une paire ejaligs similairesa’(2.47); nous en
ferons le bilan en fin de calcul. Lorsqu’elles sont coneleisiavec Bq. (1.79)

bla,b) = b+ vay/ 2;? 1Im {T;i;v } (a,b) (2.53)

. B 2vawq ol THB+1, .
et = ¢2(ﬁ+1)(2ﬁ+1)R { Tren }( %), (2:54)
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(Re™1{.} doitétre compris comme/Re{-}) et avec I€q. (2.49) (sous les conditions d’application de
cette formule)

— 2 [ 1 T+s JTEIED,
bla,b)=b+ va Qﬂ—llm{Q’ya F(Qﬂ—l)r(a—l-ﬁ+1)(7 b)} (2.55)

I'2 1
ilah) = 2090 pet ] gyq Lot IR VERITY L gl 56
V200 + 126 +1) [(25+3) Ma+p+1)
elles nous permettent deduire les expressions desepateurs degdllocation qui seaduisenta’
A o
b(a,b) = b 2.57
(a7 ) Q _I_ ﬁ ( )

. wo  (ya)?+0?
aa,b) = . (2.58)

a+G+1 va

Pour finir le calcul, on peut remplacep par son expression en fonction des pagtes idoines
wy = 0+°° ElKp(6)2dE/(2m) = (B + 1/2)/~. Ce raisonnement est valide soesefve quer
et 7 respectent les contraintes de vakditimuEes de toutes lesgjuations utilisés (convergence de
l'int'egrale des transforees en ondelettes, existence des ondelettes de Klauder) gauseant en les
deux irggali€s suivantes

8>1/2 a+ 8> 1/2. (2.59)

Remarque 2.1Remarquons que pour = 0, b est uniforn€ment nul, ce qui corrobore dans un cas
particulier la propre® gérérale de localisation parfaite du scalogramm&lowe d’une impulsion de
Dirac.

Remarque 2.2Etant admis que les paramésa et 3 vérifient (2.59), leur somm@x + /) doit étre
a fortiori positive. Sia est régatif alors I8qg. (2.57) prouve que les points du demi-plap 0 sont
reallods dans le demi-plah < 0 et vice-versa. Donc, lesefthes des vecteurs deatlocation se
croisent, ce qui nous est difficieinterpgter.

Remarque 2.3l est clair par I€q. (2.57) que le scalogrammeatlolg est d’autant plus conceatr”
autour de l'instant de la singulagitjue est grand. Les ondelettes de Morlet (gaussiennes modu-
lees) deviennent iateéssantes dans cette situation puisqu’elles peuvent s’obtana famille des
ondelettes de Klauder en limite baneteoite par IEquivalence [79]

Kpq(w) = a7 157Y 5 Rexp (=2 (w = 5/7)°/(20) + O(w = 5/7)°).  (2.60)
lorsquey — +o0, 3/~ étant maintenu constant.

En prenant la rafne limite dans lesds. (2.57) et (2.58), on obtient une approximatdiordre 3
des ogtrateurs degdllocation pour le scalogrammaeohdelette de Morlet,

b(a,b) ~ 0 i(a,b) =~ a, (2.61)
qui étaient jusqua’lors inaccessibles car faisant appeties fonctions gziales difficilement ma-
nipulables. LEqg. (2.61) montre clairement que le scalogramesloie a ondelette de Morlet est
parfaitement localisau point d’occurrence de la singulatiQui plus est, les quarei €allolEes au
point (0, @) sont celles qui appartienneata lignea = a. Ce Bsultat avait dja été prouse pour une
impulsion de Dirac dans [40].
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Scalogramme €alloué d’une singularité holderienne

e COne de singularg’
Nous disposons maintenant de toute I'armael@assaire pour calculer le scalogrameaIoLE. Nous
allons proedera un examen gliminaire des oprateurs degallocation (2.57) et (2.58) pour contra
la mangre avec laguelle ils modifient l@né d’'influence de la singulagit”
La dérivée dei(a, b) prise comme une fonction deuniquement) étant fixé & une valeur positive,
da(a,b) wo  7%a* — b

P s R (2.62)

est régative de-co aag = b/, seule valeur danB™* ou elle s’annule en changeant de signe. La
fonctiona — a(a, b) posgde donc un seul minimum global atteint au paigt

2009 2wola+f)

&(a7b)2&(a07b):a—|—ﬁ—|—1_Oé(Oé—I—ﬁ—I—l) :

(2.63)

Si b est régatif, le minimum se situe em, = —b/~. Par coneguent, toutes les valeurs du scalo-
gramme sontgéllolées au-dessus (et donc entre) les deux droitepudifions: = +(26 + 1) (a +
B)/[ey(a+ 5+ 1)](3. Le ddne d'influence de la singulagitpour le scalogrammealloLe est, chose
nouvelle et contrairement au scalogrammeljrdité strictement par ces deux droites frenéis. Le
scalogrammeaallolg est unifornement nula’'I'extérieur de ce domaine. L'angteentre les deux li-
mites est contle para/ 5 et tend ver$ lorsque ce rapport tend veiscomme I'indique lIEquivalence
tanf = y(+1)/(268+1)(a/p) sia/s — 0. C'est ce qui arrive, par exemple, lorsque la singudarit”
s’approche de I'impulsion de Dirae:(= 0) a g fixe.

e Scalogrammegéllowe : cas gréral

La manére avec laquelle nous allons calculer le scalograneabote prend le contre-pied de
la pro&dure utili€e en pratique. On consitE un point o, by) dans le ohe de singularét, on veut
savoir quels sont les points, b) qui viennent s’y €allouer. Autrement dit, on veuésoudre poud
etb, donres, le systie déquation

i(a,b) = ao b(a,b) = bo, (2.64)
qui, avec legqs. (2.58) et (2.57), trit
b— (14 8/a)by=0 (2.65)
(ya — Clag)® 4+ b — (Cao)* = 0, (2.66)
ouC = (a+ F+ 1)/(2wp). Dans le plan(b, a), cesequations dfinissent une droited. (2.65), et
une ellipsegq. (2.66) (plus @cigment, on reconnait un cercle dans le plany«) de centre’'a, et
passant par 'origine) qui ont les points soluti@nigur intersection. Siig, bo) Se trouve dans leorie

de singulari¢, cette droite et cette ellipse se coupent en deux pfints.) et (b, a_) (ou un point
double) de coordore€s (voir Fig. 2.3)

(b,yas) = ((1 + B/a)bo, Clag + \/(0&0)2 -1+ ﬂ/a)%g) , (2.67)
desquelles onetuit le scalogrammeesdllolg sous la forme d’'une somme de deux termes

$(ao.bo) = 575 (b.ay) (do/as)? + S5 (b.a_) (a0 a-)?. (2.68)
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FiG. 2.3 —Réallocation du scalogramme avec ondelette de Klaudee 20, v = 50) d’'une singu-
larite holderienne d’exposant = 1/3 (¢ = —4/3). (a) Les valeurs du scalogramme qui viennent
se éallouer au point marge d’'une croix sont celles des points (maggud’un cercle) sitesa l'in-
tersection de I'ellipse et de la droiteefihies par le systhe d€gs.(2.65)et (2.66) Le scalogramme
est indiqe par des lignes de niveaug) Apres réallocation, le scalogramme est contenu entre deux
droites (en pointil) qui cElimitent le ohe d'influence de la singulagt{c) On \erifie 'adéquation
entre la pente du scalogrammeallowe a I'instant de la singulari¢ et celle pedite par Eq.(2.72)
Lesécarts que I'on observe aux petites et grandeiselles sont dus aux effets de bord.

On remplace dansd{uation pecddente I'expression obtenue pour le scalogrammeeii2.50)

(yad)* " (vao/vac)® (2.69)

S(ag,bo) = C ,
( 0 0) = <(7a6)2+b2)a+ﬁ+1

ou (= A2 _ 224112 (a4 4 1)/T(23 + 1), que I'on simplifie avec Eq. (2.66)

Gl g A a2 (’705)25_1
S(ao, bo) = C (yao) ZW? (2.70)
e=% €

pour obtenir avec €q. (2.67) la forme algprique du scalogrammealloug

at+p+35~(a+p~1)
0
(2C)e+5+1

S(do,i)o) - 67

5 (Can+efican -+ ﬁ/a)?i%)_w_z. (2.71)

e=%+

Utiliseea l'instant de la singula®i.e., enby = 0, I'eq. (2.71) montre que le scalogramme
réallowg d’'une singularg’holderienne

. R 7a+ﬁ+3 (2041

S(Q0,0) = C(Qmmao( o ), (272)
évolue selon leschelles avec une loi de puissance similaire au scalograemmé¢42)). CeesSultat
est important dans la mesure ibmontre qu'il est non seulement possiblerdier la décroissance du
scalogrammeeallové a I'exposant de singularimais, aussi gu'’il suffit d’utiliser un lien identique
celui obtenu pour le scalogramme.
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e Scalogrammegéllowe : cone de singulargétroit
Néanmoins, pour certaines valeurssd®n doit remettre en questiorely. (2.72) :

— la résolution du systime€qs. (2.65) et (2.66) exclut le cas= 0, i.e,v = —1,

— lors des simulations nueniques, on observe, pour les valeurg:ggoches de-1, unécart entre
le résultat tleorique et celui simelqu’il faut donc expliquer.

La raison de la dirence entre simulation etdbrie est, qud échantillonnage du plan tempstielle
fixe, il devient impossible de biezchantillonner le @fie d’influence lorsque ses deux droites fron-
tieres sontepaces d’'un angle &s aigu § < 1). Il est alors peférable de consier que toutes les
contributions eallowgesa la mémee€chelle le sont finalement en un seul point du plan teaghelle
(dans le calcul géédent, seulement deux valeurs peuvenesdlatier en un point). En predant de

la sorte, nous pourrons traiter simulésmént le cag = —1 puisqu’il corresponé la situation a'tout

le scalogramme se trouve concerar’instant de la singulat{cf. Rem 2.1). Dans ces conditions, le
scalogrammeeallowg s&crit sur la ligneé = 0 comme la somme (voir Fig. 2.4)

S(ag,0) = //S(a,b)é(d(a,b) — ao)(ao/a)* dadb, (2.73)

du scalogramme sur le chemin dans le plan tempgtience ecrit par I'eq. (2.66). Pour faire la
sommation, onepare I'ellipse (2.66) en deux parties, I'une stiplre, nate (b, a (b)), et I'autre
inferieure(b, a_(b)) et on effectue I'inégrale,/; et/_, sur chacune d’elles. Les coord@as polaires
(b = Cagcosf, a = Cag(l +sin 6)/v) sont la pararetrisation naturelle du chemin le long duquel
nous inggrons. S# varie der et0, la somme se fait sur la partie srEure

a 2
0 )) (—Cléig sin §) d8, (2.74)

0
I_|_ = /7.r S(a+(0a0 COs 0),0@0 COs 0) (W

qui, aveceq. (2.50), nous condust
I, = 2—<a+ﬁ+1>éc—2a72a52a/ (14 sin#)~2*3sin 6 df. (2.75)
0
Pour la partie inétieure ¢ court de—= a0,

I = 2~ (eHpH) G o—2e, 2520 / (1 —sin#)~23sin 6 df. (2.76)
0

Le scalogrammeedllou§ enb, = 0 s’obtient en parcourant eetément I'ellipseeq. (2.66), donc
en faisant la somme dg. et/_,

S(ag, 0) = 27 e+ G2y 252 / ((14sin ) 7273 + (1 — sin 0) 72 72) sin 0 df. (2.77)
0

Le scalogrammeedlloLlg varie maintenant eﬁ(do, 0) ~ dgza ce que confirment les simulations
en Fig. 2.4.

e En conclusion
Nous avons prowydans le cas particulier des ondelettes de Klauder que le scalograailinesr”
présente uneetroissance d’amplitude le long deshelles, similaire au scalogramme, autorisant par
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FIG. 2.4 —Réallocation du scalogramme avec ondelette de Klauder= 20, v = 50) d’une sin-

gularite hélderienne d’exposant = —1 (o« = —0). (&) Tout le scalogramme se trouve regrep”
l'instant de la singulari€. La valeur du scalogrammealloué (b) au point marge”d’'une croix E-

sulte de I'in€gration du scalogramme le long de I'ellipse (en poiedikEfinie eneq. (2.66) (c) On

vérifie la superposition de la coupe du scalogrammalioué a I'instant de la singulari¢’avec la loi
de cEcroissance worique(2.77)

la méme, son utilisation pour la mesure de singudntale des signaux.@dhmoins, la mise en pra-
tique d’un tel algorithme @Cessite quelques prises degadtion : pour appliquer la formuleggrale
(2.72), il faut que le ehe d’influence de la singulagitsoit correctemergchantillon®. Dans le cas
contraire, on appliquerady. (2.77). Pour finir, lessultats obtenus ici peuvegiréétendus asympto-
tiguement aux ondelettes de Morlet par les approximations faites en Remarque 2 &\l sont
en colerence avec les simulations maes dans [40] pour les exposants d#def régatifs. Ce n’est
pas le cas pour les exposants dald¢r positifs. Uneefude pecise de la validéd'des approximations
faites ici et des conditions dthantillonnage empl@&gs pour les simulations seragagssaire pour
donner une raisoa cela.

2.3 Statistiques des vecteurs desallocation du spectrogramme

Dans les sections peedentes, nous avongabrtigqLe I'action de la nethode deeéllocation dans
un contexte purementetErministe, i.e. lorsque les signaux sont totalement connus. L'objet de cette
section est de psenter ce qui se passe lorsque le signal devieataile, et en particulier si du bruit
(additif) vient perturber une observation core@ment dfermirée. Nous nous limiteroresl’etude du
spectrogramme, mais il est possible de reproduire ces calculs pour celui du scalogramme. Notons que
les @sultats obtenus ici peuvent s’appligegalement aux ethodes “agfe et squelette”. Ces contri-
butions peuvenetre retrouees au grand complet dans [22] ou inversement sous forme cardens’
dans [23].

Pour cetteetude, on se restreindra au cas d’'un bruit additif compieéxg signal analytique d’un
bruit réel blanc et gaussien, dont les partieslié et imaginaire sontdgés par la transformation de
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Hilbert?,

Im{n(t)} = %Vp/ st (2.78)

et pour lequel, pour tout, s) € R?,
E[Re{n(t)}Re{n(s)}] = E[lm{n(t)} Im{n(s)}] = %6(15 —3) (2.79)
E[n(t)]=0 E[n(t)n(s)] =0, (2.80)

la dernére€quation traduisant la circulagitotale de: () [82].

2.3.1 Statistiques des agrateurs de réallocation du spectrogramme de
Gabor

Nous avons dja vu €q. (1.42)) que, dans le cas & fergtreh est gaussienne, I'image complexe
du vecteur deedallocation eduit se mettait sous la forme du quotient des FQTs= F/(t,w) et
Py = P (t,w),

1 F

qui, si le signal est gaussien, sont ellesm&s des variablesegifoires gaussiennes. On s’attend donc
a obtenir, pour le vecteur deallocation, une densitde probabil#’du type Cauchy.

Bruit seul

Dans le cas “bruit seul”, le signal obserest: (t) = n(t). Il est facile de etifier que les cosla-
tionsE[Fy Fi], E[F, Fy] et E[F) F5] sont toutes nulles. Compte tenu des pregs du filtrage lieaire
et de la circulari¢; le vecteud = [F F,]" est un vecteur gaussien centotalement circulaire.

La matrice d’autocosfationI' = E[F F'] caracétise donc totalement le vecteBir Chacun de
sesgléments, les moments du deemie ordre dé&’, peutétreévallg par la formule des integfénces si
w est tel quér(t) exp(iwt) ait un support fequentiel quasiment contenu dans lesjfrénces positives
(pour des dtailsa ce sujet, voir en annexe C.1), i.e., pour des valeurs deprieuresa’la demi-
largeur en fequence dé,

E[F F}] = 20° E[ILFy] = 20°At7 E[F F;] =0, (2.82)

(h est dénergie unit), ce qui @finit compkEtement la densitde probabilg’deF

Jr(Fy, 1) = exp(—FIT7'F), (2.83)

_
72 det(T)

ou la décorglation entref et F; fait disparafre les termes croés dans la forme quadratique qui se
réduita

FIT™'F = |11 o} +|F|* /o3, (2.84)

avecoi = 20 eto3 = 20%Al3.

4.0n notevp [ g(x) dz l'ntegrale en valeur principale au sens de Cauchy.
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En faisant le changement de variables, F>] — [w = Fy, r = (1/Aty) Fy/F], de jacobien

AR BN oy
‘det ( fwr] ) = Aty |wl|*, (2.85)
on obtient la densitde probabilie’f(r) der
flr)y= / Atp ol fr (w, = Atjrw) dRe{w} dIm{w}, (2.86)
sous forme d'une imgrale gaussienne gu'il est ensuite possible de calculer
At?
f(r)= : , (2.87)

2
m(ofod)(1/of + At |r[*/0})
puis de simplifier en utilisant les expressionsdest o,, (voir en Fig. 2.5)

0= TR o

Comme le montrent les premiers moments et les marginales (voir en Fig. 2.5),
E[r]=0 var(r) = E[rr*] = 400 (2.89)
f(Re{r}) = 1/(2(1 + (Re{r}))?)?/?) fam{r}) = 1/(2(1 + (Im{r})}>3/?), (2.90)

la variable atatoirer est centee, de variance infinie, et les demsitde probabilé’de ses parties
réelle (i.e., 'ograteur de dplacement en temps de keatlocation) et imaginaire (i.e., I'gpateur
de placement en éjuence de laedllocation) prennent uneaenie forme. Notons que lessultats
sont indépendants dedhergie du bruit?, du temps (stationnagj; de la fEquence (blancheur) et
de la longueur de la festfe (coordoneés gduites). Des estimations issues de simulationeriqué
des log-dens@s de probabilé'marginales et conjointe desarpfeurs degdllocation confirment ces
résultats teoriques (voir Figs. 2.6 et 2.7).

Compte tenu la syetfie radiale de Bg. (2.88), il est naturel d’abandonner la eg@nhtation car-
tésienne du plan tempsefijuence adop¥ jusqu’ici pour en envisager un pamnage polairdp, )
avecp = |r| € [0,+oc[ etd = argr €] — 7, 7], ce qui conduit’la densi’de probabili’conjointe

f(p.0) = m (2.91)

Les quantigsp et apparaissent comme des variablegaables de densitle probabilie'margi-
nale (voir en Fig. 2.8)

Flo)=2p/ (14 %) £(0) = 1/(2m), (2.92)
et de premiers moments
E[p|=7/2 var(p) = 400 E[f] =0 var(f) = 72/3. (2.93)

De la fonction de epartition dep, ®(p) = p?/(1 + p?), on peut calculer la distance maximale
pmaz = / P/ (1 — p) &laquelle peut se trouveeallowge une valeur du spectrogramanene proba-
bilite p donrée telle que = P(p < piq..). Par exemple, poyr = 0,99, prar = 9, 95.

65



/7

7/
7555
,,,';/Izz'%:’:‘“\‘\‘\\‘\\
AN

0.25

densite de probabilite

Iz

SSSSSSSS

SIS
S

S

oo

,
=
=
SO,
e ee
o
===

S

S

=3
=
S

SN

o o
w o s =4
& > & o

o
w

o
)

o
[
5}

densite de probabilite marginale
)
N
&

o
B

0.05

-2 -1 0 1 2 3

FiG. 2.5 — Densi#s de probabilig’conjointe et marginale du vecteur deeallocation du spectro-
gramme de Gabor d’un bruit blanc gaussien analytiqué@.gauchg Densi€ de probabili€ conjointe
théorique du vecteur decgllocation du spectrogramme de Gabor d’'un bruit blanc gaussien analy-
tique @ droite) Densig de probabili€ marginale (temps oudduence) teérique des oprateurs de
reallocation du spectrogramme de Gabor d’'un bruit blanc gaussien analytique.

theorie

estimation

FIG. 2.6 —Log-densi€s de probabilié” conjointes du vecteur deedllocation du spectrogramme
de Gabor d’'un bruit blanc gaussien analytiqué.og-densig€s de probabilié’conjointes simeié @
gauchg et théorique & droite) donrée par(2.88)du vecteur deeallocation du spectrogramme de
Gabor dans la situation “bruit seul”. La dengtéstinge a€té calcuEea partir d’histogrammes issus
de moyenne d’ensemble s x 156 (s0it64272) points temps-&fuence, et pout realisations de

bruit.
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FIG. 2.7 — Log-densits de probabili#”marginales du vecteur deegllocation du spectrogramme
de Gabor d’un bruit blanc gaussien analytiquéog-densiés de probabilie’marginales en tempa (
gauchg et en fequenced droite) du vecteur deeallocation du spectrogramme de Gabor dans la
situation “bruit seul”. Les valeurs estipg€s, indiqees par des croix, oraté calcubesa partir de
moyenne d’ensemble sdit2 x 156 (soit 64272) points temps-&fuence, et pous realisations de

log10(pdf)
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bruit. La loi théorique €g.(2.90) est margee d’un trait continu.

0.7

FIG. 2.8 — Densies de probabilig"du module et de 'angle du vecteur deallocation du spec-
trogramme de Gabor d’un bruit blanc gaussien analytiqueensi€s de probabili¢” théoriques du
module & gauchg et de I'angle & droite) du vecteur deeallocation du spectrogramme de Gabor

d’un bruit blanc gaussien analytique.

67




Signal + bruit

Le calcul pecddent peuefre reproduiti l'identique dans le cas d’'unetdnge “signal+bruit” a
I'observation est, cette fois, de la formét) = s(¢) + n(t), avecs(t) une composanteetiérministe
et en adoptant uneefihition identique pour(t). Dans cette situation;(¢) est toujours gaussien,
totalement circulaire, i.e, pour to(t, s) € R?, E[(z(¢) — E[z(?)]) (z(s) — E[z(s)])] = 0.

Le but de cette section est de savoir dans quelle mesuresameé de bruit perturbe le vecteur de
réallocation du spectrogramnse= | F (¢,w)|? du cas sans bruit

1 F3

rg = —— —=
0 Atth7

(2.94)

ou F} et Iy sont des notations raccourcies pdir(t,w) et F*(t,w) respectivement.

Par des arguments similairaxeux produits dans la sectiorepgdente, le vecteuF' = [F; F3]°
est un vecteur gaussien totalement circulaire, dont la matrice de covariance conserve la forme obtenue
précédemment, mais dont la moyenne n’est plus nulle. Sa dedsitprobabilié” conjointe scrit
maintenant

fr(F1, k) = exp(=(F - F*)'T™Y(F - F?)), (2.95)

1
72 det(T)
ou F* = [FiFS), et(F — FS)IT™YF - F*) = |Fy — F}|?/o? + |y — F5|?/02.

Le calcul def(r), compEtement étaillé en annexe C.2, passe par lesmeSetapes (changement

de variables, mise en forme d’'unedgtale gaussienne, calcul par un passage en cocedempolaires)
gue dans le cas “bruit seul” etané au esultat suivant

1 S |1—|—7‘7‘(*J|2) ( S |7‘—7‘0|2)
rN=————|1l+———"—F—)exp|l —=——— |- (2.96)
) ﬂ<1+|r|2>2( 207 TP 207 11 ]

Les simulations effecegs (en Figs. 2.9 et 2.10) dans le contexeei® en Fig. 2.11 confirment
ces expressions. Il est er€ssant de noter que la forme de la dendi# probabili”enéq. (2.96)
est contolée par deux parastres: le champ deegllocation du signal sans bruit qui joue Eea”
d’'une valeur moyenne (emie si ce n’est pas exactement le cas) et le quotient du spectrogramme du
signal seul par la puissance du bruit qui s'intetprcomme un rapport signal sur bruit loBdB =
S/(20?). Dans le cas@RSB — 0, on \érifie que (2.96) se simplifie et devient al@guivalentea’
(2.88), obtenue pour la situation “bruit seul"e&@proquement, RSB — +oo (“signal seul”), alors
f(r) ~ RSB exp(1/RSB) sauf pourr = r, cas pour lequef(r) = RSB. On remarquegalement
gue (2.96) tend approximativement vers la loi normale pour les petits figure 2.12 montrent
comment s’effectue la transition entre ceseliéints RSB.

2.3.2 Statistiques des agrateurs de réallocation du spectrogramme

L'utilisation de ferétres gaussiennes peut paatres restrictive, c’est pourquoi il est souhaitable
d’etendre nos calcuks un cadre plusey€ral. Traiter le cas de fetresa la forme arbitraire @Cessite
néanmoins un traitementaspifique, plus compligeipuisqu’il ne profite pas des simplifications issues
de la gaussianrét’En fait, le probtme de lEvaluation de la dengtde probabilé’des vecteurs de
réallocation du spectrogramme cakeavec une fegtte arbitraire est un cas particulier d’un prexoie
plus ggréral €solu en annexe C.3 pour lequel le vect®ur= [y, y.ys] regroupe, dans l'ordre, la
valeur en(t,w) des FCT de feefte d’observatiotn; (t) = h(t), ha(t) = th(t) eths(t) = dh/dt.

68



estimation

"1 \ , | ““w"l’l
i
“fl\f" ""“l

I

i ‘\"‘Vm

-0.92

0.2

theorie

i i
it

ANNY

I

I IV

i

i
i
i II'IM ;:0‘
il

il

A,
iy

‘tt“\m«\\\

i

0.2

0.18

FiG. 2.9 — Log-densiEs de probabili’conjointes du vecteur desgllocation du spectrogramme de
Gabor dans la situation “chirp+bruit”.Log-densiés de probabili’conjointes simeaé @ gauchg et
théorique @ droite) donrée par(2.96)du vecteur degallocation du spectrogramme de Gabor dans la
situation “chirp+bruit”. La densité estinge a€té calcuBea partir d’histogrammes issus de moyenne
d’ensemble sus0000 realisations de bruit.
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FiG. 2.10 —Log-densigs de probabilé'marginales du vecteur desglllocation du spectrogramme de
Gabor dans la situation “chirp+bruit”. Log-densi¢s de probabilé’marginales en tempa gauchg

et en fiéquenced droite) du vecteur deeallocation du spectrogramme de Gabor dans la situation
“chirp+bruit”. Les valeurs estinges, indigees par des croix, orété calcuBesa partir de moyenne
d’ensemble sus0000 realisations de bruit. La loi teorique est margeg d’un trait continu.
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FiG. 2.11 — Dispositif pour les simulations en Figs. 2.9 et 2.1Des simulations mSenges dans
les figures 2.9 et 2.10 omtté faites avedRSB = 64dB. (& gauchg: La composante eterministe
utilisée est un chirp ligaire. @ droite): sa ligne de fEquence instanta® et le point de mesure de
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coordonrges(123, 69/256) et marque d’une croix.
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FIG. 2.12 —Evolution de la densi’marginale du vecteur desdllocation du spectrogramme de Ga-
bor dans le cas “signal+bruit” pour diférentes valeurs de RSHEvolution de la densita gauchd

et de la log-densit’@@ droite) de probabilig marginale en fquence du vecteur deallocation du
spectrogramme de Gabor dans le casétjience pure+bruit” pour diffentes valeurs du rapport

signal sur bruit local RSB.
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En utilisantla formule des intefences (cf. C.1) et $i(¢) etw répondent aux conditions suivantes

(¢)  hpaire,

(11) 1im|t|ﬁ+oo(|h(t)|?) =0, '

(i7d)  hy(t)e™, ha(t)e™! eths(t)e™! sont de supportséuentiels
approximativement contenus dans lesgfnénces positives,

la matrice d’autocoriation deY s’écrit

1 0 0
=200 A2 -1/2|. (2.97)
0 —-1/2 Aw?

Remarque 2.4Notons quelet I' = 20%(4At7 Aw? — 1) est, en vertu de I'iegali€ d’Heisenberg,
une quantig’'toujours positive, et qui s’annule si et seulementast gaussienne. Dans ce cBs)'est
plus inversible, et I'on doit revenir aux sectiongpdentes.

Sil'on interditah d’etre gaussienne, l'inverse fleexiste

detT/(80%) 0 0
0 Aw? 1/2]. (2.98)
0 /2 At

1 4ot
"~ detT

La densi€ de probabilie’du vecteur degdllocation

1 Y2 } o1 { Y3 }
r = —Re —_— — ’L—Im — 5 299
Aty { (1 Awy, (1 (2.99)
s’obtient en calculant la marginale (par rappata partie imaginaire de la preene variable, et la
partie €elle de la deuwedme variable) de la densitle probabilié’du vecteur

Ly, 1y’
(e o) — (__7 __) 2.100

( ! 2) Ay Ay ( )
avec{\; = Atp, Ay = —Awy }.

Bruit seul

Si le signal obsemestz(t) = n(t), un bruit blanc gaussien analytique tel quedini'par (2.79),
on est alors dans le cas de moyenne nullegrait fin de I'annexe C.3. La densitle probabili¢”du
vecteur complexe par (C.27)

A1\ 2 "2 (H? — 1)
fr) = = 172 - == ( ) -, (2.101)
midetTa® a2 (H2 (14 |2 + |rof?) — 2HRe{rir3} — 1)
ou H = 4At, Awy, fournit ensuite par le calcul de la marginale
flr)y= // f(r) dlm{ry }dRe{r:}, (2.102)
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theorie estimation

FIG. 2.13 — Log-densigs de probabili’conjointes du vecteur desgllocation du spectrogramme
bas sur une fergtre sinus cardinal d’un bruit blanc gaussien analytiquéog-densigs de proba-
bilite conjointes simelé @& droite) et théorique & gauchg donrée par(2.102)du vecteur deeallo-
cation du spectrogramme basur une feefre sinus cardinal (voir Fig. 2.15) dans la situation “bruit
seul”. La densit estinge a€té calcuBea partir d’histogrammes issus de moyenne d’ensemble sur
412 x 156 (soit64272) points temps-&quence, et pour realisations de bruit.

le résultat surprenant

1

= T (2.103)

fr)
puisqu’identiquea’celui obtenu dans le cas d’'une é&& gaussienne (voeq. (2.88)). Autrement
dit, dans le cas “bruit seul”, la forme de la &nré ne change riea la forme finale de la denside
probabilig€ des vecteurs deallocation ce que confirment les simulations en Figs 2.13 et 2.14. On
peut remarquer que la marginale eadquence de 4. (2.103) peuttre aussi bien constEe comme
la densit de probabilig’de la fEquence instantae’d’'un bruit gaussien coleyavec la coresjuence
gue son expression est en accord avecdssltats obtenus dans [17] par unethode diférente.

Signal et bruit
Dans le cas du slange “signal+bruit”, les eveloppements faits en annexe C.3 nous donnent
I'expression de la dengitdu vecteur complexe enéq. (C.23)

A A
7det T a3

2
f(r) — (2‘|’ 62 + (1_|_ 86) |b|2a— ca +4 (|b|2a— Ca) ) exp(—|b|2/a+ C), (2104)

ou, sy, ro1 etrgy corresponderd yy, r; etrs sous hypothse qu'’il n'y ait pas de bruit,

A1 Ao?

= 1+ S (P o+ [ral® + Re{rirs}/ (A ha) (2.105)
A Ag|?
o1 ~ ca = |81|2|dzt2r| (Ir1 = ro1]* + |r2 = roa|* + Re{(r1 = r01) (r2 = 702)"}/(MA2)) (2.106)
A Ag|?
c=|s1]? (1 + |d1et2I|‘ (Iro1]? + roal® + Re{T01T82}/(’\1’\2)))‘ (2.107)
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FIG. 2.14 — Log-densits de probabil#’marginales du vecteur desgllocation du spectrogramme
bas sur une fergtre sinus cardinal d’'un bruit blanc gaussien analytiqué.og-densigs de pro-
babilite marginales en temps (auchg et en féquenced droite) du vecteur de eallocation du
spectrogramme bassur une feafre sinus cardinal (voir Fig. 2.15) dans la situation “bruit seul”.
Les valeurs estiggs, indigees par des croix, orgté calcuBesa partir de moyenne d’ensemble sur
412 x 156 (soit64272) points temps-Bquence, et pous realisations de bruit. La loi thorique est
marguée d’un trait continu.
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FIG. 2.15 — Fenétre utilisée en Figs. 2.13 et 2.14&enétre utiliste pour les simulations psenges en
figures 2.13 et 2.14.
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FIG. 2.16 — Log-densits de probabil#’marginales du vecteur desgllocation du spectrogramme
bag sur une fergtre sinus cardinal dans la situation “chirp+bruit”.Log-densi¢s de probabili¢”
marginales en tempsi(gauchg et en fiequenced droite) du vecteur de @allocation du spectro-
gramme bas’sur une feefre sinus cardinal (voir Fig. 2.15) dans la situation “chirp+bruit”. Les va-
leurs estinees, indigees par des croix, orté calcuBesa partir de moyenne d’ensemble 20000
realisations de bruit. La loi thérique obtenue pour les fetiés gaussiennes uniquement est meequ’
d’un trait continu. Les conditions de simulation sont identiqae=lles pecisges en figure 2.15 °
I'exception de la pasion du point de mesure dont les coorde®s sont maintenaft23, 67/256).

Malheureusement,dtape du calcul de la marginale qui conduit esuitat final nous até impos-
sible, nos tentatives pourekaluation des imgjrales £tant toutes sokks par deschecs. Notons que
des travaux [31] effectuant le calcul (par unethode dif€rente de celle expes’ici) de la densit”
de probabili€ de la fEquence instantae’(marginale en éjuence d¢g (r)) d’'un mélange signal et
bruit (gaussien) aboutissent auxemés impossibilés. NSanmoins, comme le sugg la figure 2.16,
les simulations nueriques donnent degsultats encourageants, puisque les histogrammes eslcul”
montrent de grandes ressemblances avec les formules obtenues dans le cas eftsgdenSienne
enéq. (2.96).

2.4 Conclusion

Ce chapitre regroupe quelques illustrations destsga”montrer comment agit le champ des vec-
teurs de eallocation sur les distributionsefiergie temps-&uence. Pour ce faire, nous avons tout
d’abord done’pour une &fie de signaux tests I'expression du spectrogramme du champ de vecteurs
réallocation assoeiét du spectrogrammealloLlg qui Esulte de leur combinaison. Nous avons abord”
la question de lagdllocation de signaux contenant deux composantes dans deux exemples simples
(deux impulsions, deux éjuences) ce qui a mis enifence les prokines (divergence du vecteur
de @Ballocation) causs par I'interaction des sighaux et partiemément par leur battement de phase.
Nous sommes ietesges ensuitea l'utilisation de la gallocation dans le plan tempstielle. Nous
avons proue’que la mesure de I'exposant a@gulari€ locale pour une singulagitie Hilder isoEe
par le scalogrammeedlloLg était possible, maiseanmoins soumia des contraintes de ba&than-
tilonnage du ohe d'influence de la singulagit Enfin, nous avonetabli les propeis statistiques
des vecteurs desgllocation dans un cadre simple massgliSte et important. Ces props rewlent
I'instabilite du champ de vecteurs deatlocation (qui est de variance infinie pour un bruit blanc gaus-
sien). Ceci est sans dowteelier au prol@me de I'interaction entre deux composantes d’un signal que
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nous venons de mentionner plus haut. En effet, un bruit blancgteitonsidrer comme la super-
position d'un certain nombre de composantes dispss#atoirement dans le plan tempsdtience.

On peut ®anmoins envisager l'utilisation de cessultats pour I'amlioration du processus deal-
location dans les situations bre@S. On peut aussi penser que ces nouvelles connaissances pourront
aidera extraire de I'information utile directement du champ des vecteursalkcation de maeie
optimale selon des cates statistiques.
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