
Chapitre 2

Quelques exemples de champs de
vecteurs de ŕeallocation

Nous avons pr´esenté dans le chapitre pr´ecédent le principe de la m´ethode de r´eallocation. Il s’agit
maintenant d’´etudier précisément les quantit´es math´ematiques qu’elle met en jeu. La section 2.1 r´eper-
torie, pour le spectrogramme, un certain nombre de situations o`u les calculs analytiques peuvent ˆetre
complètement men´es sans aboutir `a des expressions d’une complexit´e rédhibitoire. On se concentre
ensuite sur le plan temps-´echelle. La section 2.2 est, en effet, consacr´ee à la réallocation du scalo-
gramme de singularit´es hölderiennes avec comme application directe, la mesure de l’exposant de r´e-
gularité localeà partir du scalogramme r´ealloué. On revient, en section 2.3, au plan temps-fr´equence
en notant toutefois que les calculs qui y sont accomplis, sont int´egralement transposables au plan
temps-échelle. On traite dans cette section de l’´etude statistique des vecteurs de r´eallocation du spec-
trogramme en pr´esence de bruit.

2.1 Spectrogramme

Cette section r´eunit une collection de quelques situations o`u il est possible d’obtenir une expres-
sion algébrique pour les vecteurs de r´eallocation. Nous aborderons uniquement le cas o`u la fenêtre
d’observation est gaussienne, seule situation o`u pour des signaux non triviaux, les op´erateurs de r´eal-
location s’écrivent simplement.

Pour présenter les r´esultats de mani`ere compacte, il est utile de rendre sans dimension les quantit´es
que nous calculons. Nous nous int´eresserons donc au vecteur de d´eplacementr = ((t̂� t)=�th; (!̂�
!)=�!h)t normalisé par la dur´ee�th et la bande�!h de la fenêtreh(t). On résumera ce vecteur par
son image dans le plan complexe, qui s’´ecrit (cf. éq. (1.39)),
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Dans le cas qui nous importe, lorsque la fenˆetreh(t) est gaussienne comme d´efinie dans l’éq.
(1.40), l’imager du vecteur de r´eallocation se simplifie en un simple quotient de FCT,
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1

�th

F th

F
; (2.2)

où la durée de la fenˆetre est ´egaleà�th = �=
p
2.
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On se propose de donner pour chacun des six signaux test suivants, l’expression alg´ebrique de la
FCT F (t; !), du spectrogrammeS(t; !), du champ de vecteur de r´eallocationr(t; !) et du spectro-
gramme réalloué �S(t; !). Les cinq premiers calculs ne sont que de simples remises en forme de ceux
effectués dans [68, 4]. Le dernier exemple, signal form´e de deux impulsions ou de sa version duale
(deux sinuso¨ıdes), est une contribution originale.

2.1.1 Impulsion

Le signalx(t) = �(t� t0) est une impulsion ent0.

F (t; !) = ��1=4��1=2e�(t0�t)
2=(2�2)e�i!t0eit!=2 S(t; !) = ��1=2��1e�(t0�t)

2=�2

r(t; !) =
p
2(t0 � t)=� �S(t; !) = �(t� t0):

(2.3)

Le point(t; !) est déplacé en(t0; !) en empruntant le plus court chemin entre(t; !) et la droite
t = t0. Autrement dit, tous les vecteurs de r´eallocation pointent vers l’instant de l’impulsion, comme
illustré en Fig. 2.1.5.

2.1.2 Fŕequence

Le signalx(t) = ei!0t est une fréquence en!0.

F (t; !) = 21=2�1=4�1=2e�(!0�!)
2�2=2ei!0te�it!=2 S(t; !) = 2�1�1=2�e�(!0�!)

2�2
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(2.4)

C’est le cas dual par Fourier du pr´ecédent. Tous les vecteurs de r´eallocation indiquent cette fois la
fréquence!0 analysée, et ce, parall`elementà l’axe des fréquences c’est-`a-dire par le chemin le plus
court entre(t; !) et la droite! = !0 (cf. Fig. 2.1.5).

2.1.3 Logon Gaussien

Le signalx(t) = ��1=4T�1=2e�t
2=(2T 2) est un logon gaussien centr´e au point(0; 0) du plan

temps-fréquence. On note�tx = T=
p
2 et�!x = 1=(

p
2T ), les durée et bande du signal et� =q
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Dans le cas� = T = 1,
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la réallocation fait subir au paquet gaussien initial une homoth´etie (illustrée en Fig. 2.1.5) de centre
(0; 0), le centre du logon, et d’un rapport1=2 (contraction).

2.1.4 Modulation linéaire de fréquence

Le signalx(t) est une modulation lin´eaire de fréquence ou “chirp” lin´eaire :x(t) = ei�t
2=2
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r(t; !) =

p
2

�(1=�4+ �2)
(� � i=�2)(! � �t) �S(t; !) =

�(! � �t)

(�2 + (2�)2)(1=2)
: (2.13)

Dans le cas� = � = 1 (voir Fig. 2.1.5), on obtient

S(t; !) = ��1=2 exp

�
�(! � t)2

2

�
(2.14)

r(t; !) =
p
2=2(1� i)(! � t): (2.15)

Tous les vecteurs de r´eallocation pointentexactement sur la ligne de fr´equence instantan´ee! = �t.
On retrouve ici, pour le spectrogramme et dans un cas particulier, la propri´eté de localisation parfaite
des distributions r´eallouées (démontrée dans un cadre g´enéral en section 1.18) pour les signaux sur
lesquels la distribution de Wigner-Ville est parfaitement localis´ee.

2.1.5 Modulation linéaire de fréquence, d’enveloppe gaussienne

Le signalx(t) est une modulation lin´eaire de fréquence d’enveloppe gaussienne:x(t) = e�(1=T
2�i�)t2=2.

Ce modèle généralà partir duquel les signaux pr´ecédents peuvent se d´eduire (soit directement, soit de
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manière asymptotique) est trait´e en détail dans [68].
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Dans le casT = � = � = 1,
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5� exp
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�
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la réallocation résulte en une transformation qui combine les effets d’homoth´etie et de regroupement
autour de la ligne de fr´equence instantan´ee (voir en Fig. 2.1.5).

2.1.6 Somme de deux impulsions ou de deux fréquences

Dans le cas o`u il est naturel d’écrire le signal comme la somme de deux termesx(t) = x1(t) +
x2(t) que l’on appelleracomposantes(parce que c’est en ajoutant deux signaux diff´erents que l’on a
construitx(t), ou bien parce que l’on observe le r´esultat de deux ph´enomènes physiques distincts), le
calcul du champ de r´eallocation devient plus difficile. La nature non lin´eaire (et plus que bilin´eaire) de
r fait qu’il ne s’écrit pas comme une simple superposition der1 etr2 (les quantités d’indice1, resp.2,
feront référence dans la suite, au signalx1, resp.x2). Il ne peut non plus se mettre sous la forme d’une
somme de trois termes (deux “auto-termes” et un terme d’interf´erences) comme c’est le cas pour les
distributions bilinéaires. Mais, si l’on invoque la lin´earité de la FCT

r =
1

�th

F th1 + F th2
Fh1 + Fh2

; (2.21)

le champ de vecteur de r´eallocation s’exprime sous la forme d’une somme pond´erée der1 etr2

r =
Fh1

Fh1 + F h2
r1 +

Fh2
Fh1 + Fh2

r2; (2.22)

où les poids sont `a valeurs complexes et d´ependent du signal (conduisant `a une modification `a la fois
en module et argument). La somme de ces poids est ´egaleà 1, ce qui autorise une interpr´etation de
cette opération en termes de moyenne arithm´etique.

Il est intéressant de traiter en particulier les cas duaux de deux impulsions ou deux fr´equences
successives. Ces deux exemples vont nous renseigner en effet sur la r´esolution, i.e., la capacit´e de
séparation, que l’on peut esp´erer d’un spectrogramme r´ealloué.
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(a) Impulsion, Sect. 2.1.1 (b) Fr´equence, Sect. 2.1.2
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(c) Logon gaussien, Sect. 2.1.3 (d) Modulation lin´eaire de fréquence,
Sect. 2.1.4
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(e) Modulation linéaire de fréquence
d’enveloppe gaussienne, Sect. 2.1.5

FIG. 2.1 –Champ des vecteurs de r´eallocation pour quelques signaux test.On a regroupé ici les
graphes des champs de r´eallocation pour l’ensemble des signaux jouets choisis (voir texte). Chaque
flèche relie le point de calcul(t; !), côté encoche, au point de r´eallocation(t̂; !̂), côté pointe.

51



Considérons tout d’abord le signal compos´e de deux impulsions r´eparties de part et d’autre et `a
égale distancet0, de l’origine des temps. La combinaison des ´eqs. (2.3) et (2.22) aboutit `a l’expression
suivante pour le champ de r´eallocation

r(t; !) =

p
2(t0 � t)=�

1 + exp
�
(�2t0=�)(t=�+ i�!)

� + �p2(t0 + t)=�

1 + exp
�
(2t0=�)(t=�+ i�!)

�: (2.23)

Notons que les quotients dans l’´eq. (2.23) ne sont pas partout d´efinis. Les termes au d´enomina-
teur peuvent en effet s’annuler en des points o`u les numérateurs sont d´efinis et non nuls. Ceci arrive
nécessairement sous la conditiont = 0, i.e., au milieu des deux impulsions, points en lesquels

r(0; !) =
p
2
t0
�
tan(t0!): (2.24)

Le champ de r´eallocation diverge aux points de fr´equence!k = k�=(2t0) où k 2 Z. On peut
alors se poser la question du bien fond´e et de la validit´e mathématique de la m´ethode de r´eallocation.
Le calcul de la FCTF h(t; !) du signal total au tempst = 0

Fh(0; !) = Fh1 (0; !) + Fh2 (0; !) = 2��1=4��1=2e�t
2
0=(2�

2) cos(!t0); (2.25)

montre qu’en chacun des points singuliers!k , le spectrogramme, c’est-`a-dire la quantit´e à réallouer,
s’annule (c’est d’ailleurs pourquoi le champ de r´eallocation y est ind´efini). Il n’est alors pas n´ecessaire
de disposer d’une valeur de d´eplacement lorsqu’il n’y a rien `a déplacer. Il reste n´eanmoins probl´ema-
tique qu’autour de ces points critiques, le champ de r´eallocation admette de grandes valeurs, ce qui est
difficilement acceptable aussi bien d’un point de vue conceptuel que d’un point de vue algorithmique.

La divergence du champ de r´eallocation est `a rapprocher de celle la fr´equence instantan´ee (dé-
finie comme la d´erivée de la phase du signal analytique) sur un signal form´e de la somme de deux
fréquences [28]. On peut, en effet, montrer que lebattemententre les deux fr´equences entraˆıne dans
certains cas la divergence `a l’infini de la fréquence instantan´ee, ce qui interdit son interpr´etation en
tant que fréquence locale. Ce que nous observons dans notre cas, est l’effet (dual) du battement entre
les deux impulsions sur le temps de retard de groupe (d´efini comme la d´erivée de la phase de la trans-
formée de Fourier du signal analytique). Rappelons que l’op´erateur de r´eallocation en temps au point
(t; !) est aussi ´egal au temps de retard de groupe du signal multipli´e par la fenˆetre centr´ee au point
(t; !). L’influence du battement se fait d’autant moins sentir, que les impulsions sont distantes l’une
de l’autre, ce que l’on peut montrer en reformulant l’´eq. (2.23)à l’aide de fonctions trigonom´etriques

r(t; !) =

p
2

�

�
t0

tanh(t0t=�
2) + i tan(t0!)

1 + i tanh(t0t=�2) tan(t0!)
� t

�
; (2.26)

puis en faisant tendre l’´eloignement entre les deux impulsions relatif `a la taille de la fenˆetre d’obser-
vationt0=� vers l’infini,

r(t; !) �
p
2
t0 � t

�
si t > 0 (2.27)

r(t; !) �
p
2
�t0 � t

�
si t < 0; (2.28)

expression `a comparer avec l’´eq. (2.3) dans le cas d’une impulsion isol´ee.
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Réciproquement, lorsque les deux impulsions se rapprochent, il devient alors impossible de s´epa-
rer les deux ´evénements, comme le corrobore la convergence lorsquet0=� tend vers 0 du champ de
réallocation vers

r(t; !) � p
2
�t
�
; (2.29)

expression du champ de r´eallocation d’une impulsion isol´eeà l’instantt0 = 0 (éq. (2.3)). Ces diff´e-
rents comportements sont illustr´es en Fig. 2.2.

De manière duale, on peut s’int´eresser au champ de r´eallocation de la superposition de deux
exponentielles complexes plac´ees sym´etriquement autour de la fr´equence nulle, en!0 et en�!0.

r(t; !) =

p
2i(!0 � !)�

1 + exp
��2!0�(!�� it=�)

� + �p2i(!0 + !)�

1 + exp
�
2!0�(!�� it=�)

� : (2.30)

Ces calculs sont `a comparer avec les figures, et r´esultats obtenus pour l’´etude de “arˆete” lors de
l’interaction (ou battement) entre deux sinuso¨ıdes [33].

2.2 Scalogramme

Dans le cas temps-´echelle, il est ´egalement possible de donner l’expression analytique exacte de
certains champs de r´eallocation. C’est ce qui est fait dans [4] pour les cinq premiers signaux test
précédents avec le scalogramme `a ondelette de Morlet. Nous allons adopter ici un autre point de vue.

Les techniques temps-´echelle sont connues pour ˆetre bien adapt´eesà l’analyse des singularit´es.
Ceci est dˆu au fait que les distributions temps-´echelle (comme le scalogramme) r´eagissent avec un
fort contraste `a la présence d’un comportement singulier (pris au sens de discontinuit´es du signal
ou de ses d´erivées successives) qui, une fois d´etecté, est facilement caract´erisé par une mesure de la
croissance locale de la distribution le long des ´echelles. Il est raisonnable de penser que, dans le cas du
scalogramme, le contraste soit am´elioré par l’utilisation de la m´ethode de r´eallocation. Il nous reste `a
montrer que la caract´erisation de la singularit´e reste toujours possible avec le scalogramme r´ealloué.
C’est ce que l’on se propose de faire dans cette section et dans le cas d’une singularit´e de Hölder
isolée et pour une ondelette de Klauder.

2.2.1 Estimation de l’exposant de Ḧolder à l’aide du scalogramme

Famille de singularités ḧolderiennes

La régularité hölderienne est un raffinement de la notion de diff´erentiabilité qui permet l’extension
de cette derni`ereà certaines fonctions singuli`eres (e.g., les fonctions discontinues ou dont les d´erivées
successives sont discontinues). Sa d´efinition prend sa source dans une g´enéralisation du d´eveloppe-
ment de Taylor qui s’´ecrit pour une fonctionf 2 CN+1(0), i.e., f et ses d´erivées jusqu’`a l’ordre
N + 1 sont continues en0

8t 2 
 f(t) =
NX
n=0

cnt
n + tN+1O(t); (2.31)

où
 est un voisinage de0, cn = f (n)(0)=n! et jO(t)j � sups2
 jf (N+1)(s)j=(N + 1)!.
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FIG. 2.2 – Graphe du champ de vecteurs de r´eallocation d’une suite de deux impulsions. Différentes
configurations sont pr´esentées en fonction de la distanced = 2t0 entre les deux impulsions. Pour les
détails, voir en Sect. 2.1.6.Colonne de gauche: impulsions proches relativement `a la taille � de la
fenêtre d’observation (ici,� = 1). Il en résulte un spectrogramme (deuxi`eme ligne), un champ de
vecteurs de r´eallocation (en troisi`eme ligne) et un spectrogramme r´ealloué (quatrième ligne) proches
de ceux que l’on aurait obtenu en analysant une seule impulsion.Colonne du centre: d est de l’ordre
de la taille de la fenˆetre, d � �. On voit apparaˆıtre sur l’axe t = 0 les points o`u le champ de
vecteur de r´eallocation diverge. La valeur ded a été choisie pour que ces points soient s´eparés d’une
distanceégaleà 2 en unités normalis´ees (ce sont les points marqu´es d’un� dans le graphe du champ
de vecteurs) dans la direction des fr´equences. Ils correspondent aux endroits o`u le spectrogramme
s’annule. Les faibles quantit´esénergétiques qui viennent s’ajouter sur le spectrogramme r´ealloué
(représenté avec une dynamique logarithmique contrairement aux autres) entre les deux impulsions
s’interprètent comme des interf´erences entre les deux impulsions.Colonne de droite: la distanced
est, cette fois, suffisamment grande pour qu’il n’y ait plus d’interaction entre les champs de vecteurs
de réallocation des deux impulsions. Tout se passe comme si le champ de vecteurs de r´eallocation
(idem pour le spectrogramme et le spectrogramme r´ealloué) du signal total résultait de la somme des
champs de chaque impulsion prise s´eparément.

54



En procédant dans un mˆeme esprit, une fonctionf 2 C�(0) de régularité hölderienne� 2 R
est une fonction pour laquelle une approximation locale par un polynˆome d’ordreégal1 àN = b�c
est possible `a la différence que sa validit´e est contrˆolée par un monˆome impliquant une puissance
éventuellement non enti`ere det [74]

8t 2 
 f(t) =
NX
n=0

cnt
n + t� O(t); (2.32)

oùO(t) est bornée sur
.
Dans ce cadre, il devient naturel de s’int´eresser `a la fonctionx(t) = jtj� , prototype de r´egularité

hölderienne� en 0, où � est unélément deRnZ. On appelle ce genre de fonction, unesingularité
hölderienned’exposant�. Le prolongement de la d´efinition d’une singularit´e hölderienne pour les
valeurs enti`eres de� qui n’ont a priori aucune raison d’ˆetre exclues, n’est pas trivial. On opte pour
une définition du signal en fr´equence. On peut montrer que, pour� réel non entier, la transform´ee de
Fourier dex(t) estégale2 au sens des distributions `a [51]

X(!) = 2�(� + 1)
�� sin(��=2)

� j!j���1 � 2 RnZ: (2.33)

� Entiers naturels impairs :� = 1; 3; 5; : : :
Pour les� entiers impairs positifs, cette ´equation reste valable par prolongement analytique.

Pour ces indices, notons que la singularit´e est obtenue par un retournement du demi-plant < 0, qui
transforme une fonction impairetn régulière en une fonction pairejtjn singulière.

� Entiers naturels pairs :� = 0; 2; 4; : : :
Lorsque� = 0, x(t) est une constante surRsauf en0 où elle n’est pas d´efinie. La fonctionx n’est

donc pas singuli`ere au sens que nous nous sommes fix´es. On aimerait associer `a� = 0 une singularit´e
qui présente une d´ecroissance spectrale en loi de puissance de la fr´equence avec un exposant�1 pour
rester conforme `a l’éq. (2.33). L’échelonsgn(t) est un candidat naturel `a ce remplacement puisqu’il
procède du mˆeme principe ´enoncé plus haut (retournement du demi-plant < 0) mais transformant,
cette fois, une fonction paire en une fonction impaire singuli`ere. On g´enéralise ce proc´edé à tous
les ordres� entiers pairs positifs en employant la fonctionx(t) = sgn(t)jtj� dont la transform´ee de
Fourier respecte la d´ecroissance esp´erée

X(!) = 2� ! (�1)(�+1)=2j!j���1 si � = 2; 4; : : : (2.34)

Notons que cette ´equation est, en fait, valable pour tous les entiers naturels,� 2 N.

� Entiers relatifs pairs :� = �2; �4; �6; : : :
Pour les entiers n´egatifs pairs, on ´etablit le prolongement de l’´eq. (2.33) en invoquant le fait que

l’opérateur d’inversion par Fourier n’est autre que son conjugu´e, ce qui m`eneà [51]

X(!) =
�

j� + 1j ! (�1)
�=2j!j���1: (2.35)

� Entiers relatifs impairs :� = �1; �3; �5; : : :
Il suffit de se convaincre que, pour les entiers n´egatifs impairs, la distribution de Dirac et ses

1. La notationbxc désigne la partie enti`ere dex.
2. Il y a convergence au sens des fonctions [74] si et seulement si� est compris entre�1 et0.
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dérivées d’ordre pair sont les signaux que nous cherchons `a une constante multiplicative pr`es : en effet,
l’ éq. (2.35) donne ´egalement la forme de la transform´ee de Fourier dex(t) = �=(j� + 1j ! )�(�)(t).

En résumé, la forme temporelle du signal que nous emploierons, change selon la valeur de l’indice
� tandis que sa transform´ee de Fourier conserve la forme g´enérale

X(!) = A� j!j���1; (2.36)

où le facteur d’amplitude vaut :8>>><
>>>:
A� = 2�(� + 1)

�� sin(��=2)
�

si � 2 R�Z;
A� = 2(� !) (�1)(�+1)=2 si � 2 N et

A� = �(�1)�=2=j� + 1j ! si � 2Z��
(2.37)

Nous avons introduit l’exposant� en tant qu’exposant de H¨older. Dans la mesure o`u nous avons
engendr´e dans le domaine fr´equentiel, la famille de singularit´es que nous proposons, on peut s’inter-
roger sur la nature effectivea posterioride l’exposant� et en particulier sur le fait qu’il repr´esente
ou non la régularité locale de la fonction au sens de H¨older. Nous r´epondrons par l’affirmative. En
effet, dans des espaces de signaux au comportement singulier simple (signaux sans oscillations, com-
portant des singularit´es isolées) comme ceux que nous venons d’introduire, le lien entre exposant de
décroissance spectrale et H¨older est maintenant bien ´etabli. Le formalisme est cependant critiquable
pour les exposants de H¨older négatifs qui nécessitent des d´eveloppements math´ematiques sophisti-
qués [57] dans lesquels nous n’entrerons pas. Nous nous satisferons de notre d´efinition en fréquence
de la famille des singularit´es isolées. Notons par ailleurs que parmi toutes les singularit´es qui sont
envisageables, nous avons s´electionné celles dont la transform´ee de Fourier est `a phase constante sur
R.

Transformée en ondelettes d’une singularit́e hölderienne

Compte tenu de ce que nous venons de montrer, la transform´ee en ondelettes `a l’échellea et au
tempsb

T (a; b) =

Z
X(!)

p
a	�(a!)ei!b

d!

2�
; (2.38)

d’un tel signal s’interpr`ete comme l’action de la distribution (2.36) sur une fonction test. Si	(!) est
une fonctionà décroissance rapide surR+ et s’annule suffisamment vite en0 pour lever toutes les
divergences de la fonction `a intégrer, alors on peut faire la sommation

T (a; b) =

Z
A� j!j�

p
a	�(a!)ei!b

d!

2�
(2.39)

= A���1a
�(�+1=2)i�

�Z +1

0
(i!)�	(!)e�i!(b=a) d!=(2�)

��
; (2.40)

où � = �� � 1 et réécrire l’éq. (2.40) en faisant apparaˆıtre la dérivée fractionnaire3 d’ordre� de ,
[53]

T (a; b) = A���1a
�(�+1=2)i� (�)�(�b=a): (2.41)

3. On définit la dérivée fractionnaire d’ordre� deg comme suit :g(�)(x) =
R +1

0
(i!)�G(!)ei!x d!

2� .
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On peut déduire de l’éq. (2.41), deux caract´eristiques importantes de la structure du scalogramme
(module carr´e deT (a; b)) d’une singularité hölderienne. D’une part, il est clair que toute l’´energie
est concentr´ee dans le support dej (�)(�b=a)j qui définit dans le plan temps-´echelle un domaine
conique centr´e sur la ligneb = 0 que l’on appellecône d’influencede la singularit´e. D’autre part, au
pointb = 0, la relation [47]

log
�jT (a; 0)j2� = log

�jA� ���1(0)j2�+ (2� + 1) log(a); (2.42)

entre scalogramme et l’exposant de H¨older� de la singularit´e rend possible la mesure de� par celle
de la pente locale du scalogramme le long des ´echelles dans un diagramme log-log. En pratique, les
points singuliers pouvant ˆetre multiples et de positions inconnuesa priori, on procèdeà la mesure de
l’exposant� sur chaque ligne de maxima (ou lignes de crˆete) du scalogramme [75].

2.2.2 Estimation de l’exposant de Ḧolder à l’aide du scalogramme ŕealloué

L’id ée sous-jacente `a l’utilisation du scalogramme r´ealloué pour l’estimation de l’exposant de
Hölder est que les op´erateurs de r´eallocation du scalogramme (cf. ´eq. 1.79)

b̂ = b+ aRe

�
T t 

T 

�
â = � a!0

Im
�
T d =dt=T 

	 ; (2.43)

(!0 est la fréquence centrale de l’ondelette ) vont concentrer l’information contenue dans le cˆone
d’influence, par cons´equent augmenter le contraste de la repr´esentation, ce qui permettra vraisembla-
blement de rendre les strat´egies d’extraction de lignes de crˆetes plus robustes au bruit. La difficult´e
vient du fait qu’en modifiant le scalogramme par la r´eallocation, on perd la relation (2.42), fondamen-
tale pour la mesure de l’exposant�. Nous allons, pour une ondelette particuli`ere, montrer que nous
pouvons trouver une relation similaire `a (2.42) pour le scalogramme r´ealloué. Sans r´esoudre compl`e-
tement le probl`eme de la d´etection et de la caract´erisation de singularit´evia le scalogramme r´ealloué,
les calculs faits ici montrent que l’intuition de d´epart est th´eoriquement acceptable mais r´evèlent des
problèmes de simulations num´eriques, en particulier d’´echantillonnage du plan temps-´echelle.

Transformée en ondelettes de Klauder d’une singularit́e hölderienne

La conditionsine qua noǹa la résolution de notre probl`eme est le choix des ondelettes de Klauder
[65],

��;
(t) =
C�;


(
 � it)�+1
; (2.44)

où C�;
 = (2
)�+1=2�(� + 1)=
p
2��(2� + 1) est la constante de normalisation `a l’énergie unit´e.

Ces ondelettes sont centrales pour les d´ecompositions `a temps et ´echelle continus, au mˆeme titre
que les gaussiennes pour les d´ecompositions temps-fr´equence (ce sont par exemple les signaux d’en-
combrement minimum dans le plan temps-´echelle). L’utilisation des ondelettes de Klauder vont nous
permettre ici d’obtenir l’expression analytique de toutes les grandeurs utiles (scalogramme, champ de
vecteurs de r´eallocation, scalogramme r´ealloué). Leur transform´ee de Fourier est

K�;
(!) = C�;

2�

�(� + 1)
!�e�
!U(!); (2.45)
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où U(�) est l’échelon de Heaviside, sous les conditions d’existence� > �1=2 et 
 > 0. Elles ap-
partiennent donc `a l’ensemble des fonctions tests, identiquement nulles surR

�, à décroissance rapide
à l’infini surR+�. Le contrôle de la décroissance deK�;
(!) en0 s’effectue par le param`etre� par
lequel il est donc possible de garantir la convergence de l’int´egrale dans l’´eq. (2.40). Les ondelettes de
Klauder pour lesquelles�+� > �1 vérifient donc les hypoth`eses de validit´e de l’éq. (2.41). De plus,
la dérivation fractionnaire est une op´eration qui laisse invariante la famille des ondelettes de Klauder,
en effet :

�
(�)
�;
(t) =

�
i

2


��s�(2(�+ �) + 1)

�(2� + 1)
��+�;
(t); (2.46)

la validité de cette ´equationétant soumise aux deux in´egalités

� > �1=2 � + � > �1=2; (2.47)

qui présidentà l’existence de�(�)�;
 et��+�;
. Cette propri´eté nous permet d’obtenir la transform´ee en
ondelettes (2.41), avec = ��;
, sans faire appel `a la dérivée fractionnaire,

T��;
 (a; b) = A���1(2
a)
��

s
�(2(�+ �) + 1)

�(2� + 1)

1p
a
���+�;
(�b=a): (2.48)

Ce qui nous donne avec l’´eq. (2.44) une expression alg´ebrique exacte de (2.41)

T��;
 (a; b) = A���1(2
a)
�+1=2�(�+ � + 1)p

�(2� + 1)
(
a� ib)�(�+�+1); (2.49)

d’où l’on peut déduire le scalogramme par quadration,

S��;
 (a; b) = A2
���1(2
a)

2�+1�
2(�+ � + 1)

�(2� + 1)
j
a� ibj�2(�+�+1): (2.50)

Opérateurs de ŕeallocation du scalogramme d’une singularit́e hölderienne

La famille des ondelettes de Klauder pr´esente ´egalement la caract´eristique de rester stable vis-`a-
vis de la dérivation et de la multiplication part, i.e., des ondelettes de Klauder, transform´ees par ces
opérations, peuvent s’´ecrire comme une combinaison lin´eaire d’ondelettes de Klauder,

d��;
=dt = i=(2
)
p
(2� + 3)(2� + 2)��+1;
(t) (2.51)

x��;
(t) = i


s
2�

2� � 1
���1;
(t)� i
��;
(t): (2.52)

Chacune de ces ´equations est contrainte par une paire d’in´egalités similaires `a (2.47) ; nous en
ferons le bilan en fin de calcul. Lorsqu’elles sont combin´ees avec l’´eq. (1.79)

b̂(a; b) = b+ 
a

s
2�

2� � 1
Im

�
T���1;


T��;


�
(a; b) (2.53)

â(a; b) =
2
a!0p

2(� + 1)(2� + 1)
Re�1

�
T��+1;


T��;


�
(a; b); (2.54)
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(Re�1f�g doit être compris comme1=Ref�g) et avec l’éq. (2.49) (sous les conditions d’application de
cette formule)

b̂(a; b) = b+ 
a

s
2�

2� � 1
Im

(
1

2
a

�(� + �)p
�(2� � 1)

p
�(2� + 1)

�(�+ � + 1)
(
a� ib)

)
(2.55)

â(a; b) =
2
a!0p

2(� + 1)(2� + 1)
Re�1

(
(2
a)

�(�+ � + 2)p
�(2� + 3)

p
�(2� + 1)

�(�+ � + 1)
(
a� ib)�1

)
; (2.56)

elles nous permettent de d´eduire les expressions des op´erateurs de r´eallocation qui se r´eduisent `a :

b̂(a; b) =
�

� + �
b (2.57)

â(a; b) =
!0

� + � + 1

(
a)2 + b2


a
: (2.58)

Pour finir le calcul, on peut remplacer!0 par son expression en fonction des param`etres idoines
!0 =

R +1
0 �jK�;
(�)j2 d�=(2�) = (� + 1=2)=
. Ce raisonnement est valide sous r´eserve que�

et � respectent les contraintes de validit´e cumulées de toutes les ´equations utilis´ees (convergence de
l’int égrale des transform´ees en ondelettes, existence des ondelettes de Klauder) qui se r´esument en les
deux inégalités suivantes

� > 1=2 � + � > 1=2: (2.59)

Remarque 2.1.Remarquons que pour� = 0, b̂ est uniformément nul, ce qui corrobore dans un cas
particulier la propriété générale de localisation parfaite du scalogramme r´ealloué d’une impulsion de
Dirac.

Remarque 2.2.́Etant admis que les param`etres� et� vérifient (2.59), leur somme(� + �) doit être
a fortiori positive. Si� est négatif alors l’éq. (2.57) prouve que les points du demi-planb > 0 sont
réalloués dans le demi-plan̂b < 0 et vice-versa. Donc, les fl`eches des vecteurs de r´eallocation se
croisent, ce qui nous est difficile `a interpréter.

Remarque 2.3.Il est clair par l’éq. (2.57) que le scalogramme r´ealloué est d’autant plus concentr´e
autour de l’instant de la singularit´e que� est grand. Les ondelettes de Morlet (gaussiennes modu-
lées) deviennent int´eressantes dans cette situation puisqu’elles peuvent s’obtenirvia la famille des
ondelettes de Klauder en limite bande ´etroite par l’équivalence [79]

K�;
(!) = ��1=4��1=4
1=2 exp
��
2(! � �=
)2=(2�) +O(! � �=
)3

�
; (2.60)

lorsque
 ! +1, �=
 étant maintenu constant.
En prenant la mˆeme limite dans les ´eqs. (2.57) et (2.58), on obtient une approximation `a l’ordre 3

des opérateurs de r´eallocation pour le scalogramme `a ondelette de Morlet,

b̂(a; b)� 0 â(a; b) � a; (2.61)

qui étaient jusqu’`a lors inaccessibles car faisant appel `a des fonctions sp´eciales difficilement ma-
nipulables. L’éq. (2.61) montre clairement que le scalogramme r´ealloué à ondelette de Morlet est
parfaitement localis´e au point d’occurrence de la singularit´e. Qui plus est, les quantit´es réallouées au
point (0; â) sont celles qui appartiennent `a la lignea = â. Ce résultat avait d´ejà été prouvé pour une
impulsion de Dirac dans [40].
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Scalogramme ŕealloué d’une singularité hölderienne

� Cône de singularit´e.
Nous disposons maintenant de toute l’armada n´ecessaire pour calculer le scalogramme r´ealloué. Nous
allons procéderà un examen pr´eliminaire des op´erateurs de r´eallocation (2.57) et (2.58) pour connaˆıtre
la manière avec laquelle ils modifient le cˆone d’influence de la singularit´e.

La dérivée dêa(a; b)prise comme une fonction dea uniquement,b étant fixé à une valeur positive,

@â(a; b)

@a
=

!0
� + � + 1


2a2 � b2


a2
; (2.62)

est négative de�1 à a0 = b=
, seule valeur dansR+� où elle s’annule en changeant de signe. La
fonctiona 7! â(a; b) possède donc un seul minimum global atteint au pointa0,

â(a; b) � â(a0; b) =
2b!0

�+ � + 1
=

2!0(�+ �)

�(�+ � + 1)
b̂: (2.63)

Si b est négatif, le minimum se situe ena0 = �b=
. Par cons´equent, toutes les valeurs du scalo-
gramme sont r´eallouées au-dessus (et donc entre) les deux droites d’´equationŝa = �(2� + 1)(� +
�)=[�
(�+ � + 1)]̂b. Le cône d’influence de la singularit´e pour le scalogramme r´ealloué est, chose
nouvelle et contrairement au scalogramme, d´elimité strictement par ces deux droites fronti`eres. Le
scalogramme r´ealloué est uniform´ement nulà l’extérieur de ce domaine. L’angle� entre les deux li-
mites est contrˆolé par�=� et tend vers0 lorsque ce rapport tend vers0, comme l’indique l’équivalence
tan � � 
(�+1)=(2�+1)(�=�) si�=� ! 0. C’est ce qui arrive, par exemple, lorsque la singularit´e
s’approche de l’impulsion de Dirac (� = 0) à� fixé.

� Scalogramme r´ealloué : cas général
La manière avec laquelle nous allons calculer le scalogramme r´ealloué prend le contre-pied de

la procédure utilisée en pratique. On consid`ere un point(â0; b̂0) dans le cˆone de singularit´e, on veut
savoir quels sont les points(a; b) qui viennent s’y réallouer. Autrement dit, on veut r´esoudre pour̂a0
et b̂0 donnés, le syst`eme d’équation

â(a; b) = â0 b̂(a; b) = b̂0; (2.64)

qui, avec les ´eqs. (2.58) et (2.57), s’´ecrit

b� (1 + �=�)b̂0 = 0 (2.65)

(
a� Câ0)
2 + b2 � (Câ0)

2 = 0; (2.66)

où C = (� + � + 1)=(2!0). Dans le plan(b; a), ceséquations d´efinissent une droite, ´eq. (2.65), et
une ellipse, ´eq. (2.66) (plus pr´ecisément, on reconnait un cercle dans le plan(b; 
a) de centreCâ0 et
passant par l’origine) qui ont les points solutions `a leur intersection. Si(â0; b̂0) se trouve dans le cˆone
de singularité, cette droite et cette ellipse se coupent en deux points(b; a+) et (b; a�) (ou un point
double) de coordonn´ees (voir Fig. 2.3)

(b; 
a�) =

�
(1 + �=�)b̂0; Câ0 �

q
(Câ0)2 � (1 + �=�)2b̂20

�
; (2.67)

desquelles on d´eduit le scalogramme r´ealloué sous la forme d’une somme de deux termes

�S(â0; b̂0) = S��;
 (b; a+)(â0=a+)
2 + S��;
 (b; a�)(â0=a�)

2: (2.68)
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FIG. 2.3 –Réallocation du scalogramme avec ondelette de Klauder (� = 20, 
 = 50) d’une singu-
larit é hölderienne d’exposant� = 1=3 (� = �4=3). (a) Les valeurs du scalogramme qui viennent
se réallouer au point marqu´e d’une croix sont celles des points (marqu´es d’un cercle) situ´esà l’in-
tersection de l’ellipse et de la droite d´efinies par le syst`eme d’éqs.(2.65)et (2.66). Le scalogramme
est indiqué par des lignes de niveaux.(b) Après réallocation, le scalogramme est contenu entre deux
droites (en pointillé) qui délimitent le cône d’influence de la singularit´e.(c) On vérifie l’adéquation
entre la pente du scalogramme r´ealloué à l’instant de la singularité et celle prédite par léq. (2.72).
Lesécarts que l’on observe aux petites et grandes ´echelles sont dus aux effets de bord.

On remplace dans l’´equation pr´ecédente l’expression obtenue pour le scalogramme en ´eq. (2.50)

�S(â0; b̂0) = Ĉ
X
�=�

(
a�)
2�+1(
â0=
a�)

2�
(
a�)2 + b2

��+�+1 ; (2.69)

où Ĉ = A2
���12

2�+1�2(�+ � + 1)=�(2� + 1), que l’on simplifie avec l’´eq. (2.66)

�S(â0; b̂0) = Ĉ(
â0)
2
X
�=�

(
a�)2��1

(2Câ0a�)�+�+1
; (2.70)

pour obtenir avec l’´eq. (2.67) la forme alg´ebrique du scalogramme r´ealloué

�S(â0; b̂0) = Ĉ

�+�+3â

�(�+��1)
0

(2C)�+�+1

X
�=�

�
Câ0 + �

q
(Câ0)2 � (1 + �=�)2b̂20

���+��2
: (2.71)

Utilisée à l’instant de la singularit´e, i.e., en̂b0 = 0, l’ éq. (2.71) montre que le scalogramme
réalloué d’une singularit´e hölderienne

�S(â0; 0) = Ĉ

�+�+3

(2C)2��3
â
�(2�+1)
0 ; (2.72)

évolue selon les ´echelles avec une loi de puissance similaire au scalogramme (´eq. (2.42)). Ce r´esultat
est important dans la mesure o`u il montre qu’il est non seulement possible derelier la décroissance du
scalogramme r´eallouéà l’exposant de singularit´emais, aussi qu’il suffit d’utiliser un lien identique `a
celui obtenu pour le scalogramme.
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� Scalogramme r´ealloué : cône de singularit´eétroit
Néanmoins, pour certaines valeurs de�, on doit remettre en question l’´eq. (2.72) :

– la résolution du syst`emeéqs. (2.65) et (2.66) exclut le cas� = 0, i.e,� = �1,

– lors des simulations num´eriques, on observe, pour les valeurs de� proches de�1, unécart entre
le résultat théorique et celui simul´e qu’il faut donc expliquer.

La raison de la diff´erence entre simulation et th´eorie est, qu’`a échantillonnage du plan temps-´echelle
fixé, il devient impossible de bien ´echantillonner le cˆone d’influence lorsque ses deux droites fron-
tières sont s´eparées d’un angle tr`es aigu (� � 1). Il est alors pr´eférable de consid´erer que toutes les
contributions réallouéesà la mêmeéchelle le sont finalement en un seul point du plan temps-´echelle
(dans le calcul pr´ecédent, seulement deux valeurs peuvent se r´eallouer en un point). En proc´edant de
la sorte, nous pourrons traiter simultan´ement le cas� = �1 puisqu’il correspond `a la situation o`u tout
le scalogramme se trouve concentr´e à l’instant de la singularit´e (cf. Rem 2.1). Dans ces conditions, le
scalogramme r´ealloué s’écrit sur la ligneb = 0 comme la somme (voir Fig. 2.4)

�S(â0; 0) =

ZZ
S(a; b)�(â(a; b)� â0)(â0=a)

2 dadb; (2.73)

du scalogramme sur le chemin dans le plan temps-fr´equence d´ecrit par l’éq. (2.66). Pour faire la
sommation, on s´epare l’ellipse (2.66) en deux parties, l’une sup´erieure, not´ee(b; a+(b)), et l’autre
inférieure(b; a�(b)) et on effectue l’intégrale,I+ etI�, sur chacune d’elles. Les coordonn´ees polaires
(b = Câ0 cos �; a = Câ0(1 + sin �)=
) sont la param´etrisation naturelle du chemin le long duquel
nous intégrons. Si� varie de� et0, la somme se fait sur la partie sup´erieure

I+ =

Z 0

�
S(a+(Câ0 cos �); Câ0 cos �)

�
â0

a+(Câ0 cos �)

�2

(�Câ0 sin �) d�; (2.74)

qui, avecéq. (2.50), nous conduit `a

I+ = 2�(�+�+1)ĈC�2�
2â�2�0

Z �

0
(1 + sin �)�2��3 sin � d�: (2.75)

Pour la partie inf´erieure,� court de�� à0,

I� = 2�(�+�+1)ĈC�2�
2â�2�0

Z �

0
(1� sin �)�2��3 sin � d�: (2.76)

Le scalogramme r´ealloué enb̂0 = 0 s’obtient en parcourant enti`erement l’ellipse ´eq. (2.66), donc
en faisant la somme deI+ et I�,

�S(â0; 0) = 2�(�+�+1)ĈC�2�
2â�2�0

Z �

0

�
(1 + sin �)�2��3 + (1� sin �)�2��3

�
sin � d�: (2.77)

Le scalogramme r´ealloué varie maintenant en�S(â0; 0) � â�2�0 ce que confirment les simulations
en Fig. 2.4.

� En conclusion
Nous avons prouv´e dans le cas particulier des ondelettes de Klauder que le scalogramme r´ealloué

présente une d´ecroissance d’amplitude le long des ´echelles, similaire au scalogramme, autorisant par
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FIG. 2.4 –Réallocation du scalogramme avec ondelette de Klauder (� = 20, 
 = 50) d’une sin-
gularité hölderienne d’exposant� = �1 (� = �0). (a) Tout le scalogramme se trouve regroup´e à
l’instant de la singularité. La valeur du scalogramme r´ealloué (b) au point marqu´e d’une croix ré-
sulte de l’intégration du scalogramme le long de l’ellipse (en pointill´e) définie enéq. (2.66). (c) On
vérifie la superposition de la coupe du scalogramme r´ealloué à l’instant de la singularité avec la loi
de décroissance th´eorique(2.77).

là même, son utilisation pour la mesure de singularit´e locale des signaux. N´eanmoins, la mise en pra-
tique d’un tel algorithme n´ecessite quelques prises de pr´ecaution : pour appliquer la formule g´enérale
(2.72), il faut que le cˆone d’influence de la singularit´e soit correctement ´echantillonné. Dans le cas
contraire, on appliquera l’´eq. (2.77). Pour finir, les r´esultats obtenus ici peuvent ˆetreétendus asympto-
tiquement aux ondelettes de Morlet par les approximations faites en Remarque 2.3. Ces r´esultats sont
en cohérence avec les simulations montr´ees dans [40] pour les exposants de H¨older négatifs. Ce n’est
pas le cas pour les exposants de H¨older positifs. Une ´etude précise de la validit´e des approximations
faites ici et des conditions d’´echantillonnage employ´ees pour les simulations serait n´ecessaire pour
donner une raison `a cela.

2.3 Statistiques des vecteurs de réallocation du spectrogramme

Dans les sections pr´ecédentes, nous avons d´ecortiqué l’action de la m´ethode de r´eallocation dans
un contexte purement d´eterministe, i.e. lorsque les signaux sont totalement connus. L’objet de cette
section est de pr´esenter ce qui se passe lorsque le signal devient al´eatoire, et en particulier si du bruit
(additif) vient perturber une observation compl`etement d´eterminée. Nous nous limiterons `a l’étude du
spectrogramme, mais il est possible de reproduire ces calculs pour celui du scalogramme. Notons que
les résultats obtenus ici peuvent s’appliquer ´egalement aux m´ethodes “arˆete et squelette”. Ces contri-
butions peuvent ˆetre retrouv´ees au grand complet dans [22] ou inversement sous forme condens´ee
dans [23].

Pour cette ´etude, on se restreindra au cas d’un bruit additif complexen(t), signal analytique d’un
bruit réel blanc et gaussien, dont les parties r´eelle et imaginaire sont li´ees par la transformation de
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Hilbert4,

Imfn(t)g = 1

�
vp

Z
Refn(s)g
t� s

ds (2.78)

et pour lequel, pour tout(t; s) 2 R2,

E[Refn(t)gRefn(s)g] = E[Imfn(t)gImfn(s)g] = �2

2
�(t� s) (2.79)

E[n(t)] = 0 E[n(t)n(s)] = 0; (2.80)

la dernièreéquation traduisant la circularit´e totale den(t) [82].

2.3.1 Statistiques des oṕerateurs de ŕeallocation du spectrogramme de
Gabor

Nous avons d´ejà vu (éq. (1.42)) que, dans le cas o`u la fenêtreh est gaussienne, l’image complexe
du vecteur de r´eallocation réduit se mettait sous la forme du quotient des FCTs,F1 = F hx (t; !) et
F2 = F thx (t; !),

r =
1

�th

F2
F1
; (2.81)

qui, si le signal est gaussien, sont elles-mˆemes des variables al´eatoires gaussiennes. On s’attend donc
à obtenir, pour le vecteur de r´eallocation, une densit´e de probabilit´e du type Cauchy.

Bruit seul

Dans le cas “bruit seul”, le signal observ´e estx(t) = n(t). Il est facile de v´erifier que les corr´ela-
tionsE[F1F1],E[F2F2] etE[F1F2] sont toutes nulles. Compte tenu des propri´etés du filtrage lin´eaire
et de la circularit´e, le vecteurF = [F1 F2]

t est un vecteur gaussien centr´e totalement circulaire.
La matrice d’autocorr´elation� = E[FF y] caractérise donc totalement le vecteurF . Chacun de

seséléments, les moments du deuxi`eme ordre deF , peutêtreévalué par la formule des interf´erences si
! est tel queh(t) exp(i!t) ait un support fr´equentiel quasiment contenu dans les fr´equences positives
(pour des d´etailsà ce sujet, voir en annexe C.1), i.e., pour des valeurs de! supérieures `a la demi-
largeur en fréquence deh,

E[F1F
�
1 ] = 2�2 E[F2F

�
2 ] = 2�2�t2h E[F1F

�
2 ] = 0; (2.82)

(h est d’énergie unit´e), ce qui d´efinit complètement la densit´e de probabilit´e deF

fF (F1; F2) =
1

�2 det(�)
exp(�F y

�
�1
F ); (2.83)

où la décorrélation entreF1 etF2 fait disparaˆıtre les termes crois´es dans la forme quadratique qui se
réduità

F
y
�
�1
F = jF1j2=�21 + jF2j2=�22; (2.84)

avec�21 = 2�2 et�22 = 2�2�t2h.

4. On notevp
R
g(x) dx l’int égrale en valeur principale au sens de Cauchy.

64



En faisant le changement de variables[F1; F2]! [w = F1; r = (1=�th)F2=F1], de jacobien����det
�
d[F1 F2]

d[wr]

�����
2

= �t2hjwj2; (2.85)

on obtient la densit´e de probabilit´ef(r) der

f(r) =

ZZ
�t2hjwj2fF

�
w;��t2hrw

�
dRefwg dImfwg; (2.86)

sous forme d’une int´egrale gaussienne qu’il est ensuite possible de calculer

f(r) =
�t2h

�(�21�
2
2)
�
1=�21 + �t2hjrj2=�22

�2 ; (2.87)

puis de simplifier en utilisant les expressions de�1 et�2, (voir en Fig. 2.5)

f(r) =
1

� (1 + jrj2)2 : (2.88)

Comme le montrent les premiers moments et les marginales (voir en Fig. 2.5),

E[r] = 0 var(r) = E[rr�] = +1 (2.89)

f(Refrg) = 1=
�
2(1 + (Refrg)2)3=2� f(Imfrg) = 1=

�
2(1 + (Imfrg)2)3=2�; (2.90)

la variable aléatoirer est centr´ee, de variance infinie, et les densit´es de probabilit´e de ses parties
réelle (i.e., l’opérateur de d´eplacement en temps de la r´eallocation) et imaginaire ( i.e., l’op´erateur
de déplacement en fr´equence de la r´eallocation) prennent une mˆeme forme. Notons que les r´esultats
sont indépendants de l’´energie du bruit�2, du temps (stationnarit´e), de la fréquence (blancheur) et
de la longueur de la fenˆetre (coordonn´ees réduites). Des estimations issues de simulation num´erique
des log-densit´es de probabilit´e marginales et conjointe des op´erateurs de r´eallocation confirment ces
résultats th´eoriques (voir Figs. 2.6 et 2.7).

Compte tenu la sym´etrie radiale de l’´eq. (2.88), il est naturel d’abandonner la repr´esentation car-
tésienne du plan temps-fr´equence adopt´ee jusqu’ici pour en envisager un param´etrage polaire(�; �)
avec� = jrj 2 [0;+1[ et� = arg r 2]� �; �], ce qui conduit `a la densit´e de probabilit´e conjointe

f(�; �) =
�

� (1 + �2)2
: (2.91)

Les quantités� et� apparaissent comme des variables s´eparables de densit´e de probabilit´e margi-
nale (voir en Fig. 2.8)

f(�) = 2�=
�
1 + �2

�2
f(�) = 1=(2�); (2.92)

et de premiers moments

E[�] = �=2 var(�) = +1 E[�] = 0 var(�) = �2=3: (2.93)

De la fonction de r´epartition de�, �(�) = �2=(1 + �2), on peut calculer la distance maximale
�max =

p
p=(1� p) à laquelle peut se trouver r´eallouée une valeur du spectrogramme `a une proba-

bilit ép donnée telle quep = P(� � �max). Par exemple, pourp = 0; 99, �max � 9; 95.
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FIG. 2.5 – Densités de probabilit´e conjointe et marginale du vecteur de r´eallocation du spectro-
gramme de Gabor d’un bruit blanc gaussien analytique.(à gauche) Densité de probabilité conjointe
théorique du vecteur de r´eallocation du spectrogramme de Gabor d’un bruit blanc gaussien analy-
tique (̀a droite) Densité de probabilité marginale (temps ou fr´equence) th´eorique des op´erateurs de
réallocation du spectrogramme de Gabor d’un bruit blanc gaussien analytique.
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FIG. 2.6 – Log-densités de probabilit´e conjointes du vecteur de r´eallocation du spectrogramme
de Gabor d’un bruit blanc gaussien analytique.Log-densités de probabilit´e conjointes simul´ee (̀a
gauche) et théorique (̀a droite) donnée par(2.88)du vecteur de r´eallocation du spectrogramme de
Gabor dans la situation “bruit seul”. La densit´e estimée aété calculéeà partir d’histogrammes issus
de moyenne d’ensemble sur412� 156 (soit64272) points temps-fr´equence, et pour3 réalisations de
bruit.
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FIG. 2.7 – Log-densités de probabilit´e marginales du vecteur de r´eallocation du spectrogramme
de Gabor d’un bruit blanc gaussien analytique.Log-densités de probabilit´e marginales en temps (à
gauche) et en fréquence (̀a droite) du vecteur de r´eallocation du spectrogramme de Gabor dans la
situation “bruit seul”. Les valeurs estim´ees, indiqu´ees par des croix, ont ´eté calculéesà partir de
moyenne d’ensemble sur412 � 156 (soit 64272) points temps-fr´equence, et pour3 réalisations de
bruit. La loi théorique (éq.(2.90)) est marqu´ee d’un trait continu.
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d’un bruit blanc gaussien analytique.
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Signal + bruit

Le calcul précédent peut ˆetre reproduit `a l’identique dans le cas d’un m´elange “signal+bruit” o`u
l’observation est, cette fois, de la formex(t) = s(t) + n(t), avecs(t) une composante d´eterministe
et en adoptant une d´efinition identique pourn(t). Dans cette situation,x(t) est toujours gaussien,
totalement circulaire, i.e, pour tout(t; s) 2 R2, E[

�
x(t)�E[x(t)]��x(s)�E[x(s)]�] = 0.

Le but de cette section est de savoir dans quelle mesure la pr´esence de bruit perturbe le vecteur de
réallocation du spectrogrammeS = jF hs (t; !)j2 du cas sans bruit

r0 =
1

�th

F s2
F s1
; (2.94)

oùF s1 etF s2 sont des notations raccourcies pourF hs (t; !) etF ths (t; !) respectivement.
Par des arguments similaires `a ceux produits dans la section pr´ecédente, le vecteurF = [F1F2]

t

est un vecteur gaussien totalement circulaire, dont la matrice de covariance conserve la forme obtenue
précédemment, mais dont la moyenne n’est plus nulle. Sa densit´e de probabilit´e conjointe s’écrit
maintenant

fF (F1; F2) =
1

�2 det(�)
exp
��(F � F

s)y��1(F � F
s)
�
; (2.95)

oùF s = [F s1F
s
2 ]
t, et(F � F

s)y��1(F � F
s) = jF1 � F s1 j2=�21 + jF2 � F s2 j2=�22.

Le calcul def(r), complètement d´etaillé en annexe C.2, passe par les mˆemesétapes (changement
de variables, mise en forme d’une int´egrale gaussienne, calcul par un passage en coordonn´ees polaires)
que dans le cas “bruit seul” et m`ene au r´esultat suivant

f(r) =
1

�
�
1 + jrj2�2

�
1 +

S

2�2
j1 + rr�0j2
1 + jrj2

�
exp

�
� S

2�2
jr� r0j2
1 + jrj2

�
: (2.96)

Les simulations effectu´ees (en Figs. 2.9 et 2.10) dans le contexte pr´ecisé en Fig. 2.11 confirment
ces expressions. Il est int´eressant de noter que la forme de la densit´e de probabilit´e enéq. (2.96)
est contrˆolée par deux param`etres : le champ de r´eallocation du signal sans bruit qui joue le rˆole
d’une valeur moyenne (mˆeme si ce n’est pas exactement le cas) et le quotient du spectrogramme du
signal seul par la puissance du bruit qui s’interpr`ete comme un rapport signal sur bruit localRSB =
S=(2�2). Dans le cas o`u RSB ! 0, on vérifie que (2.96) se simplifie et devient alors ´equivalente `a
(2.88), obtenue pour la situation “bruit seul”. R´eciproquement, siRSB ! +1 (“signal seul”), alors
f(r) � RSB exp(1=RSB) sauf pourr = r0, cas pour lequelf(r) = RSB. On remarque ´egalement
que (2.96) tend approximativement vers la loi normale pour les petitsr. La figure 2.12 montrent
comment s’effectue la transition entre ces diff´erents RSB.

2.3.2 Statistiques des oṕerateurs de ŕeallocation du spectrogramme

L’utilisation de fenêtres gaussiennes peut paraˆıtre très restrictive, c’est pourquoi il est souhaitable
d’étendre nos calculs `a un cadre plus g´enéral. Traiter le cas de fenˆetresà la forme arbitraire n´ecessite
néanmoins un traitement sp´ecifique, plus compliqu´e puisqu’il ne profite pas des simplifications issues
de la gaussiannit´e. En fait, le probl`eme de l’évaluation de la densit´e de probabilit´e des vecteurs de
réallocation du spectrogramme calcul´e avec une fenˆetre arbitraire est un cas particulier d’un probl`eme
plus général résolu en annexe C.3 pour lequel le vecteurY = [y1y2y3]

t regroupe, dans l’ordre, la
valeur en(t; !) des FCT de fenˆetre d’observationh1(t) = h(t), h2(t) = th(t) eth3(t) = dh=dt.
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FIG. 2.9 – Log-densités de probabilit´e conjointes du vecteur de r´eallocation du spectrogramme de
Gabor dans la situation “chirp+bruit”.Log-densités de probabilit´e conjointes simul´ee (̀a gauche) et
théorique (̀a droite) donnée par(2.96)du vecteur de r´eallocation du spectrogramme de Gabor dans la
situation “chirp+bruit”. La densité estimée aété calculéeà partir d’histogrammes issus de moyenne
d’ensemble sur50000 réalisations de bruit.
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FIG. 2.10 –Log-densités de probabilit´e marginales du vecteur de r´eallocation du spectrogramme de
Gabor dans la situation “chirp+bruit”.Log-densités de probabilit´e marginales en temps (à gauche)
et en fréquence (̀a droite) du vecteur de r´eallocation du spectrogramme de Gabor dans la situation
“chirp+bruit”. Les valeurs estimées, indiqu´ees par des croix, ont ´eté calculéesà partir de moyenne
d’ensemble sur50000 réalisations de bruit. La loi th´eorique est marqu´ee d’un trait continu.
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FIG. 2.12 – Évolution de la densit´e marginale du vecteur de r´eallocation du spectrogramme de Ga-
bor dans le cas “signal+bruit” pour différentes valeurs de RSB.́Evolution de la densit´e (à gauche)
et de la log-densit´e (à droite) de probabilité marginale en fr´equence du vecteur de r´eallocation du
spectrogramme de Gabor dans le cas “fr´equence pure+bruit” pour diff´erentes valeurs du rapport
signal sur bruit local RSB.
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En utilisant la formule des interf´erences (cf. C.1) et sih(t) et! répondent aux conditions suivantes

(i) h paire,
(ii) limjtj!+1(jh(t)j2) = 0,
(iii) h1(t)e

i!t, h2(t)ei!t eth3(t)ei!t sont de supports fr´equentiels
approximativement contenus dans les fr´equences positives,

la matrice d’autocorr´elation deY s’écrit

� = 2�2

2
41 0 0
0 �t2h �1=2
0 �1=2 �!2h

3
5 : (2.97)

Remarque 2.4.Notons quedet� = 2�6(4�t2h�!
2
h � 1) est, en vertu de l’in´egalité d’Heisenberg,

une quantit´e toujours positive, et qui s’annule si et seulement sih est gaussienne. Dans ce cas,� n’est
plus inversible, et l’on doit revenir aux sections pr´ecédentes.

Si l’on interdit àh d’être gaussienne, l’inverse de� existe

�
�1 =

4�4

det�

2
4det�=(8�6) 0 0

0 �!2h 1=2
0 1=2 �t2h

3
5 : (2.98)

La densité de probabilit´e du vecteur de r´eallocation

r =
1

�th
Re

�
y2
y1

�
� i

1

�!h
Im

�
y3
y1

�
; (2.99)

s’obtient en calculant la marginale (par rapport `a la partie imaginaire de la premi`ere variable, et la
partie réelle de la deuxi`eme variable) de la densit´e de probabilit´e du vecteur

r = (r1 r2)
t =

�
1

�1

y2
y1
;
1

�2

y3
y1

�t
(2.100)

avecf�1 = �th; �2 = ��!hg.

Bruit seul

Si le signal observ´e estx(t) = n(t), un bruit blanc gaussien analytique tel que d´efini par (2.79),
on est alors dans le cas de moyenne nulle trait´e en fin de l’annexe C.3. La densit´e de probabilit´e du
vecteur complexer par (C.27)

f(r) =
2�1�2

�2 det� a3
=

2

�2
H2
�
H2 � 1

�2�
H2 (1 + jr1j2 + jr2j2)� 2HRefr1r�2g � 1

�3 ; (2.101)

oùH = 4�th�!h, fournit ensuite par le calcul de la marginale

f(r) =

ZZ
f(r) dImfr1gdRefr2g; (2.102)
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FIG. 2.13 – Log-densités de probabilit´e conjointes du vecteur de r´eallocation du spectrogramme
basé sur une fenêtre sinus cardinal d’un bruit blanc gaussien analytique.Log-densités de proba-
bilit é conjointes simul´ee (̀a droite) et théorique (̀a gauche) donnée par(2.102)du vecteur de r´eallo-
cation du spectrogramme bas´e sur une fenˆetre sinus cardinal (voir Fig. 2.15) dans la situation “bruit
seul”. La densité estimée aété calculéeà partir d’histogrammes issus de moyenne d’ensemble sur
412� 156 (soit64272) points temps-fr´equence, et pour5 réalisations de bruit.

le résultat surprenant

f(r) =
1

�(1 + jrj2)2 ; (2.103)

puisqu’identique `a celui obtenu dans le cas d’une fenˆetre gaussienne (voir ´eq. (2.88)). Autrement
dit, dans le cas “bruit seul”, la forme de la fenˆetre ne change rien `a la forme finale de la densit´e de
probabilité des vecteurs de r´eallocation ce que confirment les simulations en Figs 2.13 et 2.14. On
peut remarquer que la marginale en fr´equence de l’´eq. (2.103) peut ˆetre aussi bien consid´erée comme
la densité de probabilit´e de la fréquence instantan´ee d’un bruit gaussien color´e, avec la cons´equence
que son expression est en accord avec les r´esultats obtenus dans [17] par une m´ethode différente.

Signal et bruit

Dans le cas du m´elange “signal+bruit”, les d´eveloppements faits en annexe C.3 nous donnent
l’expression de la densit´e du vecteur complexer enéq. (C.23)

f(r) =
j�1�2j2
� det� a3

 
2 + c2 + (1 + 8c)

jbj2� ca

a
+ 4

� jbj2� ca

a

�2!
exp
��jbj2=a+ c

�
; (2.104)

où, s1, r01 etr02 correspondent `ay1, r1 etr2 sous hypoth`ese qu’il n’y ait pas de bruit,

a = 1 +
j�1�2j2
det�

�jr1j2 + jr2j2 + Refr1r�2g=(�1�2)
�

(2.105)

jbj2 � ca = js1j2 j�1�2j
2

det�

�jr1 � r01j2 + jr2 � r02j2 + Ref(r1 � r01)(r2 � r02)
�g=(�1�2)

�
(2.106)

c = js1j2
�
1 +

j�1�2j2
det�

�jr01j2 + jr02j2 + Refr01r�02g=(�1�2)
��
: (2.107)
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FIG. 2.14 – Log-densités de probabilit´e marginales du vecteur de r´eallocation du spectrogramme
basé sur une fenêtre sinus cardinal d’un bruit blanc gaussien analytique.Log-densités de pro-
babilité marginales en temps (à gauche) et en fréquence (̀a droite) du vecteur de r´eallocation du
spectrogramme bas´e sur une fenˆetre sinus cardinal (voir Fig. 2.15) dans la situation “bruit seul”.
Les valeurs estim´ees, indiqu´ees par des croix, ont ´eté calculéesà partir de moyenne d’ensemble sur
412 � 156 (soit 64272) points temps-fr´equence, et pour3 réalisations de bruit. La loi th´eorique est
marquée d’un trait continu.
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FIG. 2.15 – Fenêtre utilisée en Figs. 2.13 et 2.14.Fenêtre utilisée pour les simulations pr´esentées en
figures 2.13 et 2.14.
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FIG. 2.16 – Log-densités de probabilit´e marginales du vecteur de r´eallocation du spectrogramme
basé sur une fenêtre sinus cardinal dans la situation “chirp+bruit”.Log-densités de probabilit´e
marginales en temps (à gauche) et en fréquence (̀a droite) du vecteur de r´eallocation du spectro-
gramme bas´e sur une fenˆetre sinus cardinal (voir Fig. 2.15) dans la situation “chirp+bruit”. Les va-
leurs estim´ees, indiqu´ees par des croix, ont ´eté calculéesà partir de moyenne d’ensemble sur20000
réalisations de bruit. La loi th´eorique obtenue pour les fenˆetres gaussiennes uniquement est marqu´ee
d’un trait continu. Les conditions de simulation sont identiques `a celles précisées en figure 2.11, `a
l’exception de la position du point de mesure dont les coordonn´ees sont maintenant(123; 67=256).

Malheureusement, l’´etape du calcul de la marginale qui conduit au r´esultat final nous a ´eté impos-
sible, nos tentatives pour l’´evaluation des int´egrales s’´etant toutes sold´ees par des ´echecs. Notons que
des travaux [31] effectuant le calcul (par une m´ethode différente de celle expos´ee ici) de la densit´e
de probabilité de la fréquence instantan´ee (marginale en fr´equence def(r)) d’un mélange signal et
bruit (gaussien) aboutissent aux mˆemes impossibilit´es. Néanmoins, comme le sugg`ere la figure 2.16,
les simulations num´eriques donnent des r´esultats encourageants, puisque les histogrammes calcul´es
montrent de grandes ressemblances avec les formules obtenues dans le cas d’une fenˆetre gaussienne
enéq. (2.96).

2.4 Conclusion

Ce chapitre regroupe quelques illustrations destin´eesà montrer comment agit le champ des vec-
teurs de r´eallocation sur les distributions d’´energie temps-fr´equence. Pour ce faire, nous avons tout
d’abord donn´e pour une s´erie de signaux tests l’expression du spectrogramme du champ de vecteurs
réallocation associ´e et du spectrogramme r´ealloué qui résulte de leur combinaison. Nous avons abord´e
la question de la r´eallocation de signaux contenant deux composantes dans deux exemples simples
(deux impulsions, deux fr´equences) ce qui a mis en ´evidence les probl`emes (divergence du vecteur
de réallocation) caus´es par l’interaction des signaux et particuli`erement par leur battement de phase.
Nous sommes int´eress´es ensuite `a l’utilisation de la réallocation dans le plan temps-´echelle. Nous
avons prouv´e que la mesure de l’exposant de r´egularité locale pour une singularit´e de Hölder isolée
par le scalogramme r´ealloué était possible, mais n´eanmoins soumis `a des contraintes de bon ´echan-
tillonnage du cˆone d’influence de la singularit´e. Enfin, nous avons ´etabli les propri´etés statistiques
des vecteurs de r´eallocation dans un cadre simple mais r´ealiste et important. Ces propri´etés revèlent
l’instabilité du champ de vecteurs de r´eallocation (qui est de variance infinie pour un bruit blanc gaus-
sien). Ceci est sans doute `a relier au probl`eme de l’interaction entre deux composantes d’un signal que
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nous venons de mentionner plus haut. En effet, un bruit blanc peut ˆetre consid´erer comme la super-
position d’un certain nombre de composantes dispos´ees aléatoirement dans le plan temps-fr´equence.
On peut néanmoins envisager l’utilisation de ces r´esultats pour l’am´elioration du processus de r´eal-
location dans les situations bruit´ees. On peut aussi penser que ces nouvelles connaissances pourront
aiderà extraire de l’information utile directement du champ des vecteurs de r´eallocation de mani`ere
optimale selon des crit`eres statistiques.
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