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1.2 La réallocation du spectrogramme . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.1 Relation avec la phase de la FCT, interpr´etation en tant que fr´equence instan-

tanée et retard de groupe locaux . . .. . . . . . . . . . . . . . . . . . . . . 19
1.2.2 Formulation `a l’aide de quotients de FCT, application `a la mise en œuvre . . 21
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3.3.1 Différentes approches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.2 Une proposition bas´ee sur la r´eallocation différentielle . . . . . . . . . . . . 91
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3.5 Réallocation supervis´ee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.5.1 Superviser la r´eallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.2 Mise en œuvre et r´esultats . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.5.3 Conclusions sur la supervision . . . . . . . . . . . . . . . . . . . . . . . . . 122
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Introduction

Il est aujourd’hui bien admis que les repr´esentations d’un signal conjointement en temps et en
fréquence pr´esentent un int´erêt en soi : elles donnent une description naturelle des signaux non sta-
tionnaires, e.g., dont la fr´equence varie au cours du temps, ou provenant de r´egimes transitoires. Le
problème reste de savoir comment arriver `a une telle description. La d´emarche la plus intuitive est
celle de l’analyse de Fourier `a court terme qui conduit `a l’introduction duspectrogramme(module
carré de la transform´ee de Fourier `a court terme). Ce n’est cependant qu’une approche parmi d’autres
et une formalisation g´enérale du probl`eme aboutit `a la conclusion qu’il n’existe pas une solution in-
téressante mais toute une vari´eté. Dans le cas des distributions quadratiques, il est maintenant bien
connu que, sous hypoth`ese de covariance par rapport aux translations en temps et en fr´equence, les
diff érentes solutions admissibles se regroupent dans un ensemble, que l’on appelleclasse de Cohen,
dont le spectrogramme n’est qu’un ´elément. Une autre classe de solutions digne d’int´erêt est celle de
la classe affinequi rassemble les distributions quadratiques covariantes par les translations en temps
et enéchelle. Dans cette classe, lescalogramme(module carr´e de la transform´ee en ondelettes) joue
un rôle mathématiquement ´equivalentà celui du spectrogramme dans la classe de Cohen.

À l’int érieur de ces deux classes, il n’existe pas de solution universelle, i.e., valable pour tous si-
gnaux, en terme de lisibilit´ede la repr´esentation. On doit, en effet, choisir entre pr´esence d’interférences
(duesà la nature bilin´eaire de la distribution) et ´etalement (oudélocalisation) des composantes du si-
gnal (dû au lissage utilis´e pour atténuer les interf´erences). Interf´erences et d´elocalisation viennent
compliquer, chacune `a leur manière, la lecture de la repr´esentation soit, pour les premi`eres, par des
termes d’interaction peu signifiants (les interf´erences), qu’il est parfois difficile de s´eparer de l’infor-
mation pertinente soit, pour la deuxi`eme, parce qu’elle en diminue le contraste.

D’un point de vue pratique et compte tenu de la nature des signaux `a analyser, il est difficile au
non spécialiste de faire d’abord le choix de la repr´esentation (parmi tout celles qui sont possibles) qui
aboutit au meilleur compromis, et ensuite de lire simplement le r´esultat de l’analyse s´electionnée.

De nombreux travaux ont ´eté dédiésà l’amélioration de la lisibilité des distributions de la classe
de Cohen et de la classe affine. La m´ethode de laréallocationrésulte de ceux conduits par Kodera,
Gendrin et de Villedary dans le courant des ann´ees 1970 et Auger et Flandrin qui en ont fait une
récente r´eactualisation. Son principe est de r´earranger (ou r´eallouer) les valeurs d’une distribution
présentant peu d’interf´erences pour en am´eliorer la localisation, en s’aidant d’une distribution bien
localisée (avec, donc, des interf´erences). Plus pr´ecisément, cela consiste `a déplacer avec unchamp de
vecteurs de r´eallocationadéquat les valeurs d’une distribution mal localis´ee de la classe de Cohen ou
de la classe affine, pour en concentrer les composantes du signal (´etalées par lissage).

La méthode de r´eallocation dont les qualit´es sont aujourd’hui reconnues, a ´eté appliquée dans des
contextes divers avec des r´esultats satisfaisants (voir e.g., [16, 34, 9, 85]). Elle est n´eanmoins un outil
méconnu et son m´ecanisme est dans certaines situations (e.g., signaux avec plusieurs composantes,
mélanges signal et bruit: : : ) mal compris.
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L’objet de cette th`ese est d’apporter une meilleure compr´ehension de la m´ethode de r´eallocation,
d’en proposer des am´eliorations et d’étendre son champ d’application au del`a du cadre de l’analyse
(temps-fréquence) proprement dite.

On s’intéressera essentiellement `a la réallocation des spectrogrammes et scalogrammes dans la
mesure o`u celle-ci jouit d’une plus grande richesse d’interpr´etation et conduit `a des d´eveloppements
mathématiques plus simples.

Nos objectifs :

� Apporter une meilleure compr´ehension de la m´ethode de r´eallocation

La réallocation n’est pas la seule strat´egie envisageable pour le probl`eme de la lisibilité évoqué
plus haut. Nous commen¸cons dans le premier chapitre par faire bri`evement un ´etat des connaissances
actuelles concernant la r´eallocation. Nous mettons ensuite en ´evidence l’existence d’un ensemble de
méthodes d´ediées au mˆeme objectif qui se retrouvent autour d’une communaut´e d’idées. Nous situons
chacune de ces m´ethodes relativement aux autres en en montrant les aspects communs et en comparant
les descriptions qu’elles donnent du signal.

Dans le deuxi`eme chapitre, nous nous attachons `a faire une description analytique aussi com-
plète que possible du champ de vecteurs de r´eallocation dans quelques cas pr´ecis : d’abord pour le
spectrogramme, avec une gamme de signaux jouets, ensuite pour le scalogramme, avec des singu-
larités hölderiennes isol´ees, situation qui pr´esente un int´erêt particulier puisque l’on en d´eduit que,
comme le scalogramme, le scalogramme r´ealloué peut servir, sous certaines conditions, `a la mesure
de la régularité locale des signaux. Enfin, nous consid´erons le cas important des signaux al´eatoires, et
plus spécifiquement des signaux d´eterministes auxquels s’ajoute un bruit gaussien stationnaire. Nous
obtenons pour ces signaux la densit´e de probabilit´e des vecteurs de r´eallocation.

Les distributions temps-fr´equence ne sont pas des fonctions quelconques. Il en est de mˆeme pour
les champs de vecteurs de r´eallocation. Ces derniers respectent des contraintes g´eométriques pr´ecises
que l’on se propose de caract´eriser dans le troisi`eme chapitre. En particulier, on montre le lien impor-
tant qui unit le champ de vecteur de r´eallocationà un potentiel scalaire dont il d´erive exactement sous
certaines conditions.

� Proposer des am´eliorationsà la méthode de r´eallocation

La méthode de r´eallocation d´eplace les quantit´es de mani`ere discrète, i.e., par “bonds” finis, dans
le plan temps-fr´equence. Les r´esultats prouvant que le champ de vecteurs de r´eallocation est intime-
ment relié à un champ de gradient sugg`ere par analogie aux syst`emes dynamiques physiques une
généralisation continue, laréallocation différentielle, dans laquelle les contributions ´energétiques, `a
l’image de particules, se meuvent continˆument dans le plan temps-fr´equence selon une vitesse fix´ee
par le vecteur de r´eallocation. On montre que cette approche peut ˆetre vue comme une extension
d’autres méthodes (les m´ethodes “arˆete et squelette”) pr´esentées au premier chapitre.

Déjà constat´ee de mani`ere heuristique, et confirm´ee par les calculs accomplis au deuxi`eme cha-
pitre, la sensibilit´e au bruit (large bande) de la m´ethode de r´eallocation fait figure d’obstacle `a son
utilisation dans certaines situations r´eellesà faible rapport signal sur bruit. Nous proposons en fin
de troisième chapitre, une am´elioration destin´eeà augmenter la robustesse de la repr´esentation, qui
consiste `a autoriser la r´eallocation uniquement lorsque l’on estime se trouver `a proximité d’un signal.
On peut consid´erer que l’on engage un audit ou unesupervisionen chaque point du plan temps-
fréquence sur la pertinence de la mise en jeu de la r´eallocation, et ce au vu d’informations obtenues
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par le biais de l’utilisation d’un panel de fenˆetres d’observation.

� Étendre son champ d’application au del`a du cadre de l’analyse (temps-fr´equence)

La réallocation a ´eté initialement introduite dans un but essentiel d’analyse, i.e., avec comme
objectif une am´elioration de lisibilité. Nous envisageons dans ce document l’extension possible de
l’applicabilité de l’approche dans deux directions qui vont au-del`a de l’analyse proprement dite. Au
chapitre 3 d’abord, nous nous int´eressons `a une description originale des signaux se prˆetantà une
extraction de composantes et `a leur débruitage. Pour ce faire, on s’appuie sur la description du si-
gnal fournie par la r´eallocation différentielle pour construire unepartition du plan temps-fr´equence
dans laquelle chaque r´egion est associ´ee à une composante du signal modul´ee en fréquence et/ou
en amplitude. Nous comparons les r´esultats obtenus avec ceux issus de techniques informationnelles
et de traitement d’image. Apr`es avoir montr´e les faiblesses de cette approche, nous proposons des
algorithmes defusionpour y remédier.

Nous nous int´eressons ensuite dans le chapitre 4 au probl`eme de la d´etection optimale de signaux
modulés en fréquence ouchirps. Il est connu que la formulation temps-fr´equence de ce probl`eme
conduit à des algorithmes bas´es sur l’intégration de chemin d’une distribution temps-fr´equence, la
condition d’optimalité sélectionnant le chemin et la distribution ad´equats. La mise en œuvre d’un tel
détecteur temps-fr´equence se heurte g´enéralement `a la difficulté du calcul de la distribution temps-
fréquence que l’on doit utiliser. C’est par exemple vrai dans le cas important des chirps hyperboliques
que l’on traite dans le d´etail. Nous montrons que dans cette situation le spectrogramme r´ealloué,
plus facileà évaluer, peut ˆetre employ´e avec profit en tant qu’estimateur de la distribution centrale
pour notre probl`eme. Nous appliquons ces r´esultats au probl`eme sp´ecifique de la d´etection d’ondes
gravitationnelles. Il est `a noter que ce dernier chapitre constitue une entit´e en soi et que ses objectifs,
guidés par l’application, am`enentà des contributions originales mais ext´erieures `a la méthodologie de
réallocation proprement dite. Il fournit cependant une illustration de comment la r´eallocation — en
tant qu’outil dont les propri´etés sont bien maˆıtrisées par ailleurs — peut s’ins´erer avec profit dans une
chaı̂ne de traitement du signal.

Il est possible de refaire toutes les figures de ce document, si l’on dispose du logiciel Mat-
lab 5 (Mathworks Corp.), en t´eléchargeant les scripts correspondants `a l’adresse internet suivante:

http://www.physique.ens-lyon.fr/ts/publi.html
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Notations

Temps-fréquence

Classe de Cohen

Wx(t; !) =

Z
x(t� s=2)x�(t+ s=2)e�is! ds Distribution de Wigner-Ville

Ĉx(t; !) =

ZZ
Wx(s; �)�(s� t; � � !)

dsd�

2�
Distribution de la classe de Cohen

t̂x(t; !) =
1

Cx(t; !)

ZZ
sWx(s; �)�(s� t; � � !)

dsd�

2�
Opérateur de r´eallocation en temps

!̂x(t; !) =
1

Cx(t; !)

ZZ
�Wx(s; �)�(s� t; � � !)

dsd�

2�
Opérateur de r´eallocation en fr´equence

�Cx(t; !) =

ZZ
Cx(s; �)�

�
t � t̂x(s; �); !� !̂x(s; �)

� dsd�
2�

Distribution réallouée

r̂x(t; !) =
�
t̂x(t; !)� t; !̂x(t; !)� !

�t Champ de vecteurs de r´eallocation

r̂x(t; !) =
�
t̂x(t; !)� t

�
+ i
�
!̂x(t; !)� !

�
Image dans le plan complexe

Spectrogramme

Fhx (t; !) =

Z
x(s)h�(s� t)e�i!s ds eit!=2 Transformée de Fourier `a Court Terme (FCT)

Shx(t; !) = jFhx (t; !)j2 Spectrogramme

�(t; !) = Wh(t; !) Noyau de param´etrisation

t̂hx(t; !) = t=2� @! argfFhx g = t +RefF thx =F hx g Opérateur de r´eallocation en temps

!̂hx(t; !) = !=2 + @t argfFhx g = ! � ImfF dh=dtx =Fhx g Opérateur de r´eallocation en fr´equence
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Temps-́echelle

Classe affine


x(a; b) =

ZZ
Wx(s; �)�

�
s� b
a

; a�

�
dsd�

2�
Distribution de la classe affine

b̂x(a; b) =
1

Cx(a; b)

ZZ
sWx(s; �)�

�
s� b

a
; a�

�
dsd�

2�
Opérateur de r´eallocation en temps

!̂x(a; b) =
1

Cx(a; b)

ZZ
�Wx(s; �)�

�
s� b
a

; a�

�
dsd�

2�
Opérateur de r´eallocation en fr´equence

!0 =

ZZ
��(s; �)

dsd�

2�
Fréquence centrale

â x (a; b) = !0=!̂x(a; b) Opérateur de r´eallocation en ´echelle

�
x(a; b) =

ZZ

x(�; s)�

�
b� b̂x(�; s); a� âx(�; s)

� �2

â2x(�; s)
dsd�

Scalogramme

T (a; b) =

Z
x(s) �

�
s� b

a

�
ds Transformée en ondelettes

S x (t; !) = jT x (t; !)j2 Scalogramme

�(t; !) = W (t; !) Noyau de param´etrisation

!0 =

Z
�j	(�)j2d�=(2�) Fréquence centrale

b̂ x (a; b) = b+ aRefT t x =T x g Opérateur de r´eallocation en temps

âx(a; b) = � a!0

ImfT d =dtx =T x g
Opérateur de r´eallocation en ´echelle
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Chapitre 1

Le principe de la méthode de ŕeallocation

Ce chapitre introductif constitue une synth`ese bibliographique sur la m´ethode de r´eallocation. On
en introduit d’abord le principe, les d´efinitions des quantit´es math´ematiques mises en jeu et quelques
unes de leurs propri´etés. On se focalise ensuite sur la r´eallocation du spectrogramme (module carr´e
de la transform´ee de Fourier `a court-terme) et du scalogramme (module carr´e de la transform´ee en
ondelettes), deux distributions qui nous int´eresserons particuli`erement par la suite. Finalement, on
établit un parall`ele, dans un formalisme unique, entre la m´ethode de r´eallocation et d’autres m´ethodes
qui partagent des id´ees analogues bien que propos´ees indépendamment.

Précisons que la section introductive s’appuie essentiellement sur les travaux de Koderaet al.[67,
66] (Sect. 1.1.1), et sur ceux d’Auger et Flandrin [5] (Sect. 1.1.2). Les sections 1.2 et 1.3 mˆelent des
éléments pris dans [5] et des travaux personnels dont certains ont ´eté publiés [40]. Enfin, la synth`ese
fait en Sect. 1.4 constitue la contribution principale de ce chapitre.

1.1 Principe ǵenéral

La méthode de r´eallocation a ´eté introduite [67] en 1976 par Kodera, Gendrin et de Villedary. Cette
année marque ´egalement la premi`ere utilisationdu formalisme de la classe de Cohen pour le traitement
des signaux non stationnaires [35]. Pourtant, les id´ees apport´ees par la m´ethode de r´eallocation n’ont
pas profité immédiatement de ce r´esultat fort, qui rassemble dans un mˆeme cadre th´eorique toutes les
distributions d’énergie temps-fr´equence bilin´eaires (covariantes par les translations en temps et fr´e-
quence). Ce n’est que r´ecemment, que Auger et Flandrin [5] ont reformul´e les idées de la r´eallocation
dans le cadre de cette th´eorie et ont montr´e la pertinence de la m´ethode de r´eallocation en tant qu’outil
complémentaire pour l’analyse temps-fr´equence.

Pour préciser les id´ees fondamentales de la r´eallocation, nous en ´eclaircirons, dans un premier
temps, le principe dans le cas particulier du spectrogramme [67] par souci de simplicit´e.

1.1.1 Refocaliser une distribution lisśee

La transformée de Fourier1

X(!) =

Z
x(t)e�i!t dt; (1.1)

1. Nous emploierons une d´efinition de la transform´ee de Fourier en pulsation plutˆot qu’en fréquence. Les int´egrales sans
bornes explicites courent de�1 à+1.
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ou son module carr´e jX(!)j2 le spectre, si l’on est int´eress´e par l’énergie, offrent pour les signaux
stationnaires une caract´erisation simple et facile `a interpréter.

Dès que l’on sort de ce cadre, par exemple, lorsqu’on d´esire mettre en ´evidence des glissements
de la fréquence du signal au cours du temps, localiser des r´egimes transitoires, ou caract´eriser la
naissance ou l’extinction d’un signal, il est naturel d’abandonner la description `a un param`etre (le
temps ou la fr´equence) et de passer `a une repr´esentation conjointe `a la fois en temps et en fr´equence.

On doit alors se poser le probl`eme de d´efinir une telle repr´esentation du signal. La distribution de
Wigner-Ville est un candidat envisageable pour la description de l’´evolution de l’énergie :

Wx(t; !) =

Z
x(t+ s=2)x�(t� s=2)e�is! ds: (1.2)

On constate en Fig. 1.1,(a) sur un signal constitu´e de deux modulations lin´eaires de fr´equence
parallèles, qu’elle r´epondà nos esp´erances : l’énergie est concentr´ee autour de chacune des lois de
variation de la fréquence en fonction du temps des deux signaux. Mais la nature bilin´eaire de cette
distribution provoque l’apparition d’interférences[39] qui se mat´erialisent par des structures oscil-
lantes (entre valeurs positives et n´egatives) qui viennent en compliquer la lecture.

Il nous faut trouver une solution pour supprimer ces interf´erences. Compte tenu de la structure de
celles-ci, le lissage (l’application d’un filtre lin´eaire passe-bas) de la distribution de Wigner-Ville, est
une solution naturelle.

À ce titre, le spectrogramme (cf. Fig. 1.1,(b)) Shx(t; !) = jFhx (t; !)j2, i.e., le module carr´e de la
transformée de Fourier `a Court Terme2 (FCT) :

Fhx (t; !) =

Z
x(s)h�(s� t)e�i!s ds eit!=2; (1.3)

peutêtre vu comme une version liss´ee de la distribution de Wigner-Ville du signal

Shx(t; !) =

ZZ
Wx(s; �)Wh(s� t; � � !)

dsd�

2�
; (1.4)

par un noyau ´egalà la distribution de Wigner-Ville de la fenˆetreh(t).
Dans les r´egions o`u la distribution de Wigner-Ville ne pr´esente que des interf´erences, celle-ci

fluctue rapidement entre valeurs positives et n´egatives qui se compensent si on en fait une moyenne
locale. Ceci am`ene le spectrogramme (cf. Fig. 1.1,(c)) à avoir, dans ces r´egions, une valeur proche
de 0. Les interf´erences sont donc bien att´enuées. En contrepartie, le lissage provoque l’´etalement de
la distribution d’énergie dans les r´egions associ´ees au signal (cf. Fig. 1.1,(d)), ce qui conduit pour le
spectrogramme `a une perte de r´esolution et de contraste.

Le principe de la r´eallocation [67] est de “refocaliser” le spectrogramme sur la r´epartition d’éner-
gie temps-fréquence donn´ee par la distribution de Wigner-Ville3. Cela consiste `a déplacer les valeurs
du spectrogramme de leur point de calcul vers une nouvelle position

�
t̂(t; !); !̂(t; !)

�
donnée par

2. Dans la suite, on all´egera les notations de la FCT et du spectrogramme lorsqu’il n’y aura pas ambigu¨ıté en supprimant
les indices concernant le signal et/ou la fenˆetre utilisés.

3. Dans la version originale, Koderaet al. ont utilisé la distribution de Rihaczek `a la place de la distribution de Wigner-
Ville. Pour le spectrogramme, l’utilisation de l’une ou l’autre de ces distributions aboutit aux mêmes résultats. Ce n’est plus
le cas dans cadre g´enéral que nous d´ecrirons dans la section suivante. Nous pr´eférerons la distribution de Wigner-Villepour
ces nombreuses propri´etés (de localisation, notamment) [5].
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un barycentre ´evalué sur la distribution de Wigner-Ville du signal dans un voisinage du plan temps-
fréquence d´efini par le noyau de de lissageWh(t; !) de la manière suivante :

t̂hx(t; !) =
1

Shx(t; !)

ZZ
s Wx(s; �)Wh(s� t; � � !)

dsd�

2�
(1.5)

!̂hx(t; !) =
1

Shx(t; !)

ZZ
� Wx(s; �)Wh(s� t; � � !) dsd�

2�
: (1.6)

Le spectrogramme r´ealloué s’obtient donc en r´eagen¸cant les valeurs du spectrogramme dans le
plan temps-fr´equence, ´eventuellement en en faisant la somme si deux quantit´es arrivent au mˆeme
endroit :

�Shx(t; !) =

ZZ
Shx(s; �)�

�
t� t̂hx(s; �); !� !̂hx(s; �)

� dsd�
2�

: (1.7)

Dans notre exemple en Fig. 1.1, le spectrogramme r´ealloué donne une description tr`es simple `a
lire et à interpréter, proche de la repr´esentation id´eale (que l’on esp`ere).

1.1.2 La méthode de ŕeallocation dans la classe de Cohen

Généralisation

Nous avons d´efini les opérateurs de r´eallocation comme les coordonn´ees du centre de masse cal-
culé sur la distribution de Wigner-Ville du signal prise dans un voisinage du plan temps-fr´equence.
Ce voisinage est d´eterminé pour le spectrogramme parWh(t; !), la distribution de Wigner-Ville de
la fenêtre. Rien n’empˆechea priori de consid´erer d’autres types de voisinage. Ceci revient alors `a
choisir un noyau de lissage arbitraire pour la distribution que l’on d´esire réallouer.

Soit�(t; !) ce noyau, la distribution qui lui est associ´e s’écrit alors comme la convolution2D de
la distribution de Wigner-Ville du signal :

Cx(t; !) =

ZZ
Wx(s; �)�(s� t; � � !) dsd�

2�
: (1.8)

On se retrouve alors naturellement dans la classe de Cohen qui rassemblent toutes les distributions
bilinéaires temps-fr´equence covariantes aux translations en temps et en fr´equence [39].

La généralisation pour ces distributions des ´eqs. (1.5) et (1.6) est alors directe [5]

t̂x(t; !) =
1

Cx(t; !)

ZZ
s Wx(s; �)�(s� t; � � !)

dsd�

2�
(1.9)

!̂x(t; !) =
1

Cx(t; !)

ZZ
� Wx(s; �)�(s� t; � � !) dsd�

2�
: (1.10)

On modifie ensuite la distributionCx(t; !) de manière identique au spectrogramme :

�Cx(t; !) =

ZZ
Cx(s; �)�

�
t� t̂x(s; �); !� !̂x(s; �)

� dsd�
2�

: (1.11)

De cette mani`ere, on associe `a chaque distribution de la classe de Cohen, une distribution modifi´ee
par la méthode de r´eallocation. L’utilité de la modification de telle ou telle distribution d´epend de la
nature du noyau de param´etrisation. Par exemple, l’application de la r´eallocation sur la distribution de
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FIG. 1.1 – Principe de la réallocation du spectrogramme(voir Sect. 1.1.1). Le signal est form´e
de deux modulations lin´eaires de fréquence d’amplitudes gaussiennes. Pour la description temps-
fréquence `a l’aide de distribution bilinéaire, on est confront´eà un compromis entre pr´esence d’inter-
férences, termes oscillants sur la distribution de Wigner-Ville(a) et délocalisation des termes signal,
comme sur le spectrogramme(b) : le lissage de la distribution de Wigner-Ville a pour avantage d’att´e-
nuer les interférences puisque les valeurs positives et n´egatives se compensent dans la somme faite `a
l’int érieur de domaine temps-fr´equence d´efini par le noyau de lissage. C’est qui est illustr´e en(c) qui
montre la restriction de la distribution de Wigner-Ville au domaine temps-fr´equence qui sert au calcul
du spectrogramme au point marqu´e d’un� en(b). En contrepartie, la taille finie du noyau de lissage
conduità unétalement des composantes du signal et donc `a une perte en localisation. Par exemple, la
valeur du spectrogramme au point+ en(b) est obtenue par la moyenne des valeurs de la distribution
de Wigner-Ville apparaissant en(d). Le principe de la réallocation est de ne plus affecter cette valeur
au point+ mais de la d´eplacer au point�, centre de masse des contributions en(d), et point plus
représentatif du comportement ´energétique local du signal. En proc´edant de la sorte en tout point
du plan temps-fr´equence, on obtient le spectrogramme r´ealloué (f), distribution “refocalisée” sur la
répartition d’énergie donn´ee par la distribution de Wigner-Ville. Le spectrogramme r´ealloué présente
des résultats satisfaisants en termes de lisibilit´e et de facilité d’interprétation comme le montre sa
comparaison avec la repr´esentation id´eale(e).
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FIG. 1.2 –Distribution de la classe de Cohen et leurs versions modifi´ees par la m´ethode de r´eal-
location. On présente ici sur la colonne de gauche, quelques distributions classiques de la classe de
Cohen, et en regard sur la colonne de droite, leur versions modifi´ees par la m´ethode de r´eallocation.
(a) Distribution pseudo Wigner-Ville : noyau de param´etrisation�(t; !) = �(t)H(!). (c) Distribu-
tion pseudo Wigner-Ville liss´ee :�(t; !) = g(t)H(!). En (b) et (d), les distributions réallouées qui
leur correspondent respectivement.

Wigner-Ville pour laquelle�(t; !) = �(t; !) donneà nouveau la distribution de Wigner-Ville, et est
donc inutile. On ne dispose pas de r`egle quantitative qui permet de savoir quand l’application de la
réallocation est digne d’int´erêt. Néanmoins, il est naturel de penser qu’elle est justifi´ee lorsque�(t; !)
définit implicitement un voisinage du plan temps-fr´equence (qui donne un sens `a la notion de centre
de masse local) aux dimensions telles que l’att´enuation des interf´erences soit suffisante.

Propri étés

On répertorie ici quelques propri´etés des distributions de la classe de Cohen r´eallouées qui sont
intrinsèquement li´eesà la méthode de r´eallocation et donc v´erifiées par toutes celles-ci). On donne les
preuves sans entrer dans les d´etails (on réfère le lecteur int´eress´eà [5]).

� Distribution d’énergie
La réallocation ne fait que d´eplacer des valeurs. Si la distribution `a réallouer est une distribution

d’énergie, i.e., si
RR
Cx(t; !) dtd!=(2�) = kxk22, alors la distribution apr`es réallocation est ´egalement

une distribution d’énergie : ZZ
�Cx(t; !)

dtd!

2�
= kxk22: (1.12)

� Covariance aux translations en temps et en fr´equence
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La classe de Cohen est la classe des distributions d’´energie quadratiques covariantes aux trans-
lations en temps et en fr´equence. Il est int´eressant de savoir si cette derni`ere propriété est conserv´ee
après réallocation.

Soit [T �;�x](t) = x(t� �)ei�t, la version translat´ee du signalx(t) d’un retard� et d’un doppler�.
Les opérateurs de r´eallocation deCT �;�x(t; !) s’obtiennent en partant des d´efinitions (1.9) et (1.10),
et en invoquant la covariance aux translations en temps et en fr´equence des distributions, soit pour la
distribution de Wigner-VilleWT �;�x(t; !) = Wx(t� �; !� �) et pour les distributions de la classe de
CohenCT �;�x(t; !) = Cx(t� �; ! � �). On en déduit

t̂T �;�x(t; !) =
1

Cx(t� �; ! � �)
ZZ

s Wx(s� �; � � �)�(s � t; � � !) dsd�
2�

(1.13)

!̂T �;�x(t; !) =
1

Cx(t� �; ! � �)
ZZ

� Wx(s� �; � � �)�(s� t; � � !) dsd�
2�

; (1.14)

équation dans laquelle on reconnaˆıt, après un changement de variables, les op´erateurs de r´eallocation
deCx(t; !)

t̂T �;�x(t; !) = � + t̂x(t � �; ! � �) (1.15)

!̂T �;�x(t; !) = � + !̂x(t� �; !� �): (1.16)

Utilisés dans l’éq. (1.11), ils conduisent `a

�CT �;�x(t; !) =
�Cx(t� �; ! � �); (1.17)

ce qui prouve la covariance aux translations en temps et en fr´equence des distributions de la classe de
Cohen réallouées.

� Localisation parfaite sur les lignes du plan temps-fr´equence
L’action des op´erateurs de r´eallocation se traduit par une compression de chaque composante du

signal le long de leur loi de retard de groupe ou/et de fr´equence instantan´ee. Sur les modulations de
fréquence (chirps) lin´eaires et d’amplitude constante, on peut montrer qu’il en r´esulte une localisation
parfaite des distributions r´eallouées.

x(t) = exp
�
i(�t2=2 + !0t + 
)

�) �Cx(t; !) = �
�
! � (�t+ !0)

�
; (1.18)

Cette propriété est simple `a démontrer dans la mesure o`u pour ces signaux la distribution de Wigner-
Ville est elle-même une distribution de Dirac sur la loi! = �t + !0. Les centres de masse ´eqs. (1.9)
et (1.10) sont donc localis´es nécessairement sur cette loi, ce qui prouve (1.18).

Plus généralement, les distributions r´eallouées de la classe de Cohen sont parfaitement localis´ees
sur tous les signaux pour lesquels la distribution de Wigner-Ville se localise parfaitement c’est-`a-dire
en plus des chirps, les fr´equences pures (� = 0) et les impulsions (que l’on peut abusivement assimiler
au cas o`u � !1).

� Non linéarité et localisation
Dans le cas de chirps non lin´eaires, la r´eallocation aura un effet de compression similaire, si la

fréquence instantan´ee ou le retard de groupe du signal sont presque lin´eaireslocalement, c’est-à-dire
dans un domaine temps-fr´equence dont le support est d´efini par les largeurs en temps et en fr´equence
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FIG. 1.3 – Spectrogrammes r´ealloués de modulations non lin´eaires de fréquence. Pour les mo-
dulations non linéairement en fr´equence, le spectrogramme r´ealloué poss`ede encore `a la fois une
bonne localisation le long de la ligne de fr´equence instantan´ee (qui provient de la distribution de
Wigner-Ville) et peu d’interf´erences (h´eritage du spectrogramme) `a la condition que le signal puisse
être assimilé localement `a une modulation lin´eaire de fréquence. Ceci est illustr´e sur deux signaux
test : un chirp en loi de puissance qui nous int´eressera plus particuli`erement au chapitre 4, et une
modulation sinuso¨ıdale de fréquence d’amplitude constante. Pour ces deux signaux, on pr´esente le
spectrogramme(a) et (d), suivi de la distribution de Wigner-Ville(b) et (e), et enfin le spectrogramme
réalloué (associ´e au spectrogramme de la premi`ere colonne)(c) et (f). On note que l’on perd en loca-
lisation aux endroits o`u l’hypothèse de lin´earité locale est moins v´erifiée (par exemple aux sommets
de la sinuso¨ıde).

de la fenêtre d’analyse. Ceci est illustr´e en Fig. 1.3 avec le spectrogramme r´ealloué d’un chirp en loi
de puissance et d’une modulation sinuso¨ıdale de fréquence.

En conclusion, les distributions r´eallouées résolvent un compromis, en ayant `a la fois peu d’in-
terférences et de bonnes propri´etés de localisation. Le prix de ce compromis est la complexit´e de la
distribution. Les distributions r´eallouées ne font pas partie de la classe des distributions quadratiques.
Leur forte non linéarité fait qu’elles sont moins robustes au bruit, et qu’elles deviennent plus difficiles
à manier math´ematiquement, comme nous allons le voir dans la suite du document.

1.1.3 Ǵenéralisation à la classe affine

La classe affine regroupe les distributions d’´energie temps-´echelle quadratiques et covariantes par
les translations en temps et en ´echelle4. Ces distributions s’´ecrivent comme des versions modifi´ees de

4. Les variablesa etb désigneront respectivement dans ce cadre l’´echelle et le temps.
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la distribution de Wigner-Ville


x(a; b) =

ZZ
Wx(s; �)�

�
s � b
a

; a�

�
dsd�

2�
: (1.19)

par un lissage particulier que l’on qualifie d’affine. La forme du noyau varie `a chaque ´echelle. Pour les
échellesa > 1 (resp.a < 1), c’est une version dilat´ee (resp. contract´ee) en temps et contract´ee (resp.
dilatée) en fréquence du noyau de r´eférence�(t; !). Cela ne nous empˆeche pas de continuer `a pouvoir
appliquer l’idée de refocalisation par la r´eallocation des contributions temps-´echelle vers la distribu-
tion de Wigner-Ville par des centres de masse locaux. La d´efinition de l’opérateur de r´eallocation en
temps se d´eduit directement

b̂x(a; b) =
1

Cx(a; b)

ZZ
s Wx(s; �)�

�
s� b

a
; a�

�
dsd�

2�
: (1.20)

La nature particuli`ere du lissage affine nous oblige `a passer par l’interm´ediaire d’une d´efinition
fréquentielle

!̂x(a; b) =
1

Cx(a; b)

ZZ
� Wx(s; �)�

�
s� b

a
; a�

�
dsd�

2�
; (1.21)

que l’on convertit ensuite en ´echelle par

âx(a; b) =
!0

!̂x(a; b)
; (1.22)

où !0 =
RR
��(s; �) dsd�=(2�) est la fréquence de r´eférence du noyau�(t; !) (de normeL1(R)

unité).
On procède ensuite `a la réorganisation des contributions temps-´echelle de la mˆeme mani`ere qu’en

éq. (1.11)

�
x(a; b) =

ZZ

x(�; s)�

�
b� b̂x(�; s); a� âx(�; s)

� �2

â2x(�; s)
dsd�; (1.23)

à la différence, toutefois, de l’ajout d’une mesure qui garantit que la distribution r´eallouée soit de
même somme que la distribution standard.

Notons que dans cette classe, l’´egal du spectrogramme dans la classe de Cohen, est le scalo-
grammmeS x (a; b). Il se définit commeS x (a; b) = jT x (a; b)j2, le module carr´e de la transform´ee en
ondelettes,

T x (a; b) =

Z
x(s)

1p
a
 �

�
s � b
a

�
ds; (1.24)

ou comme le membre de la classe affine dont le noyau de�(t; !) = W (t; !) est une distribution de
Wigner-Ville. Nous nous y int´eresserons en d´etail un peu plus loin.

Les distributions r´eallouées de la classe affine h´eritent de propri´etés similaires `a celles de la classe
Cohen (voir [5] pour les d´emonstrations) `a savoir : ce sont des distributions d’´energie, covariantes aux
translations en temps et en ´echelle, et elles sont parfaitement localis´ees sur les mˆemes signaux que la
distributions de Wigner-Ville (modulations lin´eaires de fr´equence, impulsion de Dirac, fr´equence).

Au delà de la classe de Cohen et de la classe affine, la m´ethode de r´eallocation peut ˆetre géné-
ralisée pour toutes les classes de distributions dont les membres sont obtenus par le lissage d’une
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distribution de référence (unitaire, g´enéralement) pr´esentant de bonnes propri´etés de localisation sur
une gamme de signaux utiles. Les distributions r´eallouées hériteront de ces propri´etés tout en profitant
du peu d’interférences dans la distribution liss´ee. Cela fait de la m´ethode, un processus g´enéral et
systématique pouvant s’appliquer `a d’autres types de distribution temps-fr´equence (la classe hyper-
bolique [80], par exemple). Nous nous restreindrons cependant dans ce document aux distributions
temps-fréquence et temps-´echelle.

1.1.4 Champ de vecteur de ŕeallocation

Dans les deux chapitres suivants, nous pr´eférerons voir l’action de la r´eallocation comme la mo-
dification du plan temps-fr´equence et de la distribution temps-fr´equence qu’il contient, par le champ
des vecteurs de d´eplacements

r̂x(t; !) = (t̂x � t; !̂x � !)t; (1.25)

plutôt que par celle des op´erateurs (1.9) et (1.10).
Pour les calculs, il nous sera commode d’une part d’assimiler le plan temps-fr´equence au plan

complexe (t pour la partie r´eelle et! pour la partie imaginaire), l’´eq. (1.25) devenant alors

r̂x(t; !) = (t̂x � t) + i(!̂x � !); (1.26)

et d’autre part, de normaliser5 le champ des vecteurs de r´eallocation par les largeurs temporelle et
fréquentielle du noyau

�t =

�Z
t2�(t; !)

dtd!

2�

�1=2

�! =

�Z
!2�(t; !)

dtd!

2�

�1=2

; (1.27)

ce qui conduit `a

rx(t; !) =

�
t̂x � t

�t
;
!̂x � !

�!

�t
; (1.28)

ou bien dans le plan complexe, par

rx(t; !) =
t̂x � t

�t
+ i

!̂x � !
�!

: (1.29)

1.2 La réallocation du spectrogramme

Dans le cas particulier du spectrogramme, d’autres formulations sont possibles pour les op´erateurs
de réallocation (1.5) et (1.6). Chacune d’entre elles a une utilit´e spécifique ou ouvre les portes `a de
nouvelles interpr´etations.

1.2.1 Relation avec la phase de la FCT, interpŕetation en tant que fréquence instanta-
née et retard de groupe locaux

Nous savons d´ejà que le noyau de param´etrisation�(t; !) du spectrogramme dans la classe de
Cohen est la distribution de Wigner-Ville de la fenˆetre (cf. éqs. (1.4) et (1.8)). Les op´erateurs de

5. Pour mémoire, le champ de vecteurs de r´eallocation se pr´esentera sans couvre-chef si on lui enl`eve sa dimension.

19



réallocation sont donc des centres de masse calcul´es dans des voisinages qui ne sont pas quelconques
mais reliésà une réalité physique. Ceci justifie le fait que des liens existent entre les op´erateurs de
réallocation et des grandeurs qui ont un sens physique av´eré.

Dans un premier temps, il est possible de reformuler les d´efinitions (1.5) et (1.6) `a l’aide de la FCT
ou de transform´ees linéaires analogues du signal. Ceci est fait en Annexe A et conduit `a l’équation
(A.9) pour l’opérateur en temps, que nous rappelons ici :ZZ

s Wx(s; �)Wh(s� t; � � !) dsd�
2�

= Re

�
Fh�x (t; !)

Z
s x(s)h�(s � t)e�i!s ds eit!=2

�
;

(1.30)

et pour l’opérateur en fr´equence (cf. (A.15)) :ZZ
� Wx(s; �)Wh(s� t; � � !)

dsd�

2�
= !Shx(t; !)� Im

�
Fh�x (t; !)

Z
x(s)h0�(s � t)e�i!s ds eit!=2

�
:

(1.31)

À partir de ces deux nouvelles formulations, il est imm´ediat d’établir le lien des op´erateurs de
réallocation aux d´erivées partielles6 de la phase'(t; !) = argfF (t; !)g = ImflogF (t; !)g de la
FCT, simplement en notant que@t'(t; !) = Imf@tF=Fg(t; !) et @!'(t; !) = Imf@!F=Fg(t; !)
[67]

t̂hx(t; !) = t=2� @!' !̂hx(t; !) = !=2 + @t': (1.32)

Leséqs. (1.32) sont importantes `a plusieurs titres :

� Information de phase
elles nous informent que les op´erateurs de r´eallocation intègrent l’information de phase de la FCT

dont on n’a pas tenu compte pour le calcul du spectrogramme puisque que l’on en garde uniquement
le module.

� Fréquence instantan´ee et retard de groupe locaux
Avec une réorganisation dans les ´eqs. (1.32) des termes de phases de la FCT, on peut mettre en

évidence que l’op´erateur en temps peut ˆetre interprété en tant que retard de groupe du signal vu `a
travers la fenˆetreh(t)

t̂hx(t; !) = �@! arg
�Z

X(�)
�
H(� � !)e�i(��!)t�� d�

2�

�
; (1.33)

et de mani`ere duale, l’op´erateur en fr´equence, en tant que fr´equence instantan´ee du signal filtr´e dans
une bande de fr´equence d´efinie par la fenˆetre

!̂hx(t; !) = @t arg

�Z
x(s)

�
h(s� t)ei!(s�t)�� ds� : (1.34)

Ceci nous permet de donner une nouvelle interpr´etation du fonctionnement de la r´eallocation du
spectrogramme. La valeur du spectrogrammeShx(t; !) correspond `a l’énergie de la “partie” du signal
contenue dans un voisinage temps-fr´equence centr´e sur(t; !) aux dimensions fix´ees par les tailles
temporelle et fr´equentielle de la fenˆetre. La réallocation du spectrogramme regroupe en une mˆeme
position lesénergies de chacune des “parties” du signal qui ont le mˆeme retard de groupe et la mˆeme
fréquence instantan´ee.

6. Pour simplifier les notations, on remplacera@=@x par l’écriture plus compacte@x.
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1.2.2 Formulation à l’aide de quotients de FCT, applicationà la mise en œuvre

Il est également possible de relier les op´erateurs de r´eallocation directement `a des FCT (sans en
prendre la phase). Il s’agit de reconnaˆıtre dans l’intégrale du membre de droite de l’´eq. (1.30) la FCT
du signal associ´eeà une fenˆetreégaleà th(t) :ZZ

s Wx(s; �)Wh(s� t; � � !) dsd�
2�

= Re
n
F thx (t; !)F h�x (t; !)

o
+ tShx(t; !); (1.35)

et celle de l’éq. (1.31) une FCT associ´eeà une fenˆetreégale la d´erivée deh(t) :ZZ
� Wx(s; �)Wh(s� t; � � !) dsd�

2�
= �Im

n
F dh=dtx (t; !)Fh�x (t; !)

o
+ !Shx(t; !): (1.36)

Les opérateurs de r´eallocation s’expriment alors `a l’aide de quotients de FCT [5]

t̂hx(t; !) = t +Re

�
F thx
Fx

�
(t; !) (1.37)

!̂hx(t; !) = ! � Im

(
F
dh=dt
x

Fx

)
(t; !): (1.38)

On peut en faire de mˆeme avec le vecteur de d´eplacement normalis´e (éq. (1.29)) par�t, ici égal

à la durée de la fenˆetre (d’énergie unit´e)�th =
�R
t2jh(t)j2 dt�1=2 et�!, égalà la largeur de bande

de la fenêtre�!h =
�R
!2jH(!)j2d!=(2�)�1=2
r(t; !) =

1

�th
Re

�
F thx
Fhx

�
� i

�!h
Im

(
F
dh=dt
x

Fhx

)
: (1.39)

Ces expressions sont tr`es importantes pour la mise en œuvre du spectrogramme r´ealloué. Elles
permettent de remplacer le calcul direct des centres de gravit´e locaux (très coûteux) ou la d´erivation
de la phase de la FCT (avec toutes les probl`emes d’instabilit´e que cause son d´eroulement) par un
algorithme efficace qui se r´esume par :

– l’ évaluation des trois FCT du signal bas´ees sur les trois fenˆetresh(t), th(t) etdh=dt,

– leur combinaison selon les ´eqs. (1.37) et (1.38),

– le calcul du spectrogramme en prenant le module carr´e de la premi`ere,

– la réallocation des valeurs du spectrogramme, proprement dite, selon l’´eq. (1.7).

Cette derni`ereétape mise `a part, le coˆut de calcul du spectrogramme r´ealloué varie enO(NM logM),
avec unéchantillonage deN points en temps etM points en fréquence. Son utilisation pratique pour
des problèmes réels de traitement du signal est donc tout `a fait envisageable. Qui plus est, une mise
en œuvre r´ecursive de cet algorithme a ´eté propos´ee récemment [87]. On peut alors penser utiliser le
spectrogramme r´ealloué pour des applications en temps r´eel.

Si la fenêtreh(t) est gaussienne,

h(t) = ��1=4��1=2e�t
2=(2�2); (1.40)
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seulement deux FCT seront n´ecessaires, puisque dans ce cas, les fenˆetresth(t) et dh=dt sont propor-
tionnelles

dh

dt
(t) = ��1=�2�th(t): (1.41)

Il est alors remarquable que le champ de r´eallocation normalis´e enéq. (1.39) prend la forme
particulièrement compacte

rhx =

p
2

�

F thx
Fx

; (1.42)

étant donn´es�th = �=
p
2 et�!h = 1=(

p
2�).

1.2.3 Ŕeallocation du spectrogramme et approximation de la phase stationnaire

Koderaet al., dans leur article [68], mettent en avant un argument suppl´ementaire pour montrer
l’importance des op´erateurs de r´eallocation pour la caract´erisation du signal. Le point de d´epart de cet
argument est l’application de l’approximation de phase stationnaire `a la formule de reconstruction du
signalà partir de la FCT. Une erreur de calcul fait que l’interpr´etation qui en r´esulte est erron´ee. Dans
cette section, on reprend cette id´ee en la mettant au net. Nous en profitons pour prolonger la r´eflexion
et montrons qu’il est possible d’´etendre le r´esultatà la reconstruction approch´ee de la transform´ee
de Fourier fractionnaire du signal en utilisant simplement quelques valeurs de la FCT situ´ees en des
points où le vecteur de r´eallocation ob´eit à des contraintes g´eométriques pr´ecises.

Reconstruction du signal et approximation de phase stationnaire

Rappelons tout d’abord que la FCT n’est autre que le produit scalaire du signalx(t)

F (t; !) =

Z
x(s)h�(t;!)(s) ds; (1.43)

avec tous les ´eléments d’une famille de signaux ´elémentairesh(t;!)(s) = h(s � t)ei!se�it!=2 tous
déduits par une translation en temps et en fr´equence d’un signal de r´eférenceh(t).

� Inversion de la FCT
À temps et fréquence continus, la famille sur laquelle on projette, dispose de suffisamment d’´elé-

ments pour que l’on puisse revenir au signal par la recombinaison suivante :

x(s) =

ZZ
F (t; !)h(t;!)(s)

dtd!

2�
: (1.44)

Si h(t) est une fenˆetre réelle, on peut s´eparer les termes d’amplitude et de phase comme suit

x(s) =

ZZ
jF (t; !)jh(s� t)ei('(t;!)+!s�t!=2) dtd!

2�
(1.45)

ce qui montre que le signal r´esulte de l’intégrale double d’une fonction dont les oscillations sont
réglées par la phase'(t; !) de la FCT. Sous certaines conditions de variation relative des termes
d’amplitude et de phase, il existe pour ce genre d’int´egrale, une m´ethode de calcul approch´ee, dite
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de la phase stationnaire7 (voir, par exemple, [92]): si le module de l’int´egrande varie lentement par
rapportà la phase (condition que nous supposerons v´erifiée), alors ses valeurs alternativement posi-
tives puis négatives vont se compenser quand on en fait la somme, `a l’exception des points o`u la phase
stationne, c’est-`a-dire

@t
�
'(t; !) + !s � t!=2� = 0 (1.46a)

@!
�
'(t; !) + !s � t!=2� = 0: (1.46b)

� Phase stationnaire et op´erateur de réallocation
Pour la clarté de l’expos´e, nous nous placerons dans la situation la plus simple o`u il existe un

unique point stationnaire(ts; !s) qui vérifie leséquations pr´ecédentes. Apr`es développement des ´eqs.
(1.46) et compte tenu des relations (1.32) qui lient la phase'(t; !) aux opérateurs de r´eallocation
du spectrogramme, on d´eduit que ces derniers doivent respecter au point(ts; !s) les deux conditions
suivantes :

!̂(ts; !s)� !s = 0 (1.47a)

t̂(ts; !s) = s: (1.47b)

L’ équation pr´ecédente signifie que le point stationnaire associ´e à l’évaluation approch´ee dex(s)
est celui —éq. (1.47b) — qui vient se r´eallouer au tempss, — éq. (1.47a) — tout en restant `a la même
fréquence. Ceci est illustr´e schématiquement en Fig. 1.4.

� Reconstruction approch´ee
Dans le cas d’un unique point stationnaire o`u, de plus, la matrice d´erivée seconde de la phase

de l’intégrande@2(t;!)('(t; !)� t!=2) est non d´egénérée, l’intégrale double (1.45) s’´ecrit sous forme
approchée [92] :

x(s) = 2�ijdet@2(t;!)('(t; !)� t!=2)(ts; !s)j�1=2F (ts; !s)h(ts;!s)(s): (1.48)

Cetteéquation montre que la reconstruction approch´ee du signal peut ˆetre conduite seulement
avec les quelques valeurs de la FCT prises aux points du plan temps-fr´equence o`u le vecteur de
réallocation respecte la condition (1.47). Cela met en ´evidence l’importance de ces derniers pour la
description temps-fr´equence du signal.

Le seul obstacle `a la mise en œuvre de la formule de reconstruction approch´ee (1.48) est l’´evalua-
tion numérique du d´eterminant

det @2(t;!)('� t!=2) = @2t'@
2
!'� (@2t;!'� 1=2)2: (1.49)

Il est possible de passer outre cette difficult´e en calculant les d´erivées successives de la phase
'(t; !) en fonction de différentes FCT8 selon le même principe qu’en Sect. (1.2.2). Le d´eterminant
(1.49) s’obtient alors par

det@2(t;!)('� t!=2) = Imff thgImffdhg � �Reff tdhg�2; (1.50)

7. Nous nous int´eresserons en d´etail à l’approximation de phase stationnaire au chapitre 4. L’annexe D y est d’ailleurs
totalement consacr´ee, mais uniquement pour le calcul approch´e d’intégrales simples. L’argument de phase stationnaire
invoqué ici pour les intégrales doubles est celui qui est commun´ement admis, bien que nous le sachions critiquable (cf.
Annexe D).

8. Nouséluderons la d´emonstration de l’´eq. (1.50).
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une combinaison de six FCT (trois si la fenˆetre est gaussienne), du signal, chacune associ´eeà une
fenêtre différente

f th(t; !) =

�
F th

Fh

�2

(t; !)� F t
2h

F h
(t; !) (1.51)

fdh(t; !) =

�
F dh=dt

Fh

�2

(t; !)� F d
2h=dt2

Fh
(t; !) (1.52)

f tdh(t; !) =
F thF dh=dt�
Fh
�2 (t; !)� F tdh=dt

Fh
(t; !): (1.53)

Pour reconstruire le signal, il n’est donc pas n´ecessaire de disposer de toute la FCT, que l’on sait
par ailleurs très redondante, pour revenir au signal. Il suffit de restreindre la FCT aux points station-
naires : cette description temps-fr´equence parcimonieuse du signal est en fait identique au “squelette”
proposé par les m´ethodes de “arˆete et squelette” [33] que nous pr´esenterons plus en d´etail en Sect.
1.4. Bien qu’ils aboutissent `a une même description du signal, il est important de signaler que le rai-
sonnement fait ici et celui employ´e par les m´ethodes “arˆete et squelette” sont diff´erents : on proc`ede
ici aussià l’application de l’argument de phase stationnaire, mais pas sur les mˆemes quantit´es (cf.
Sect. 1.4). En ce qui concerne l’algorithme de reconstruction du signal, celui que nous d´ecrivons et
celui des m´ethodes “arˆete et squelette” diff`erent totalement aussi bien dans l’id´ee que dans leur mise
en œuvre.

Il est entendu que nous ne proposons ici aucun crit`ere de validité de l’approximation faite ici,
ce qui serait pourtant n´ecessaire. En particulier, il serait int´eressant de savoir, `a fenêtreh(t) fixée,
pour quelle classe de signaux, les termes d’amplitude et de phase de l’int´egrande dans l’´eq. (1.45)
respectent les conditions n´ecessaires `a l’approximation de phase stationnaire.

Reconstruction de la transformée de Fourier du signal

Les conditions (1.47) font apparaˆıtre une dissym´etrie entre les variables temps et fr´equence. Ceci
est dû au fait que l’on veuille reconstruire le signal dans son extension temporelle. On peut penser au
cas dual de la reconstruction de la transform´ee de Fourier du signal qui s’´ecrit

X(�) =

ZZ
F (t; !)H(t;!)(�)

dtd!

2�
; (1.54)

où la famille de signaux ´elémentaires se d´eduit deH(!) parH(t;!)(�) = H(� � !)e�i�teit!=2.
Si h(t) està symétrie hermitienne (H(!) est réelle), on peut alors suivre le mˆeme raisonnement

pour obtenir une reconstruction approch´ee deX(�). Cette fois, les points stationnaires sont ceux qui
vérifient

!̂(ts; !s) = � (1.55a)

t̂(ts; !s)� ts = 0: (1.55b)

Ce sont donc maintenant les points — ´eq. (1.55b) — qui viennent se r´eallouerà la fréquence� —
éq. (1.55a) — tout en restant au mˆeme instant (cf. Fig. 1.4).
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Reconstruction de la transformée de Fourier fractionnaire du signal

On peut encore g´enéraliser le processus en essayant d’obtenir la reconstruction approch´ee de la
transformée de Fourier fractionnaire d’angle� (dans]� �; �]) du signalx(t), définie par

X(�)(�) =
ei(���=2)=2p

sin �

Z
x(s) exp

�
i

sin�

�
s2

2
cos�� s� +

�2

2
cos�

��
ds (1.56)

si � est différent de0 ou �. Pour� = 0, cette transformation est l’identit´eX0(�) = x(�). La trans-
formée de Fourier d’angle� = �=2 est la transform´ee de Fourier au sens classiqueX�=2(�) = X(�).
La transformée de Fourier fractionnaire est reli´ee de mani`ere biunivoque au signal (dansL2(R)).

Le paramètre� permet de passer continˆument de l’axe des temps `a l’axe des fréquences. On peut
associer `a chaque transform´ee fractionnaire la droiteD(�) du plan temps-fr´equence qui passe par
l’origine et fait un angle� avec l’axe des temps. On peut voirD(�) comme un axe gradu´e par la
variable� (� = 0 : l’axe des temps,� = �=2 : l’axe des fréquences).

La reconstruction deX(�)(�) se fait par la somme double

X(�)(�) =

ZZ
F (t; !)H

(�)
(t;!)(�)

dtd!

2�
; (1.57)

deséléments de la famille de projection, qui d´ependent de mani`ere compliqu´ee du signal de r´eférence
H(�)(�) :

H
(�)
(t;!)(�) = H(�)

�
� � (t cos�+ ! sin �)

�
exp i

�
t!

2
+ �

��t sin �+ ! cos�
�
+
cos�

2

�
t2 sin �� 2t! cos�� !2 sin���; (1.58)

pondérés par la valeur de la FCT correspondante.
Si H(�)(�) est réelle (ce qui est, par exemple, vrai sih(t) = ��1=4e�t

2=2, quelque soit l’angle
�) alors on peut appliquer la mˆeme proc´edure que pour les deux calculs pr´ecédents. Les points o`u la
phase de l’int´egrande est stationnaire, ob´eissent aux deux relations suivantes

!̂(t; !)� � sin�+ cos� (t sin�� ! cos�) = 0 (1.59a)

t̂(t; !)� � cos�� sin� (t sin�� ! cos�) = 0; (1.59b)

qui se traduisent sur les op´erateurs de r´eallocation par�
!̂(ts; !s)� !s

�
cos�� �t̂(ts; !s)� ts� sin� = 0 (1.60a)

t̂(ts; !s) cos� + !̂(ts; !s) sin� = �: (1.60b)

Ces deux relations signifient g´eométriquement que les points stationnaires sont ceux qui — ´eq.
(1.60b) — viennent se r´eallouer au point d’abscisse� dans le syst`eme de coordonn´ees définies sur
D(�), et —éq. (1.60a) — parall`elementà cet axe (le point doit se d´eplacer sans changer de coordonn´ee
sur l’axe dualD(�+�=2)). Ceci est illustr´e en Fig. 1.4.

On peut,à l’aide de ces r´esultats, g´enéraliser les m´ethodes “arˆete et squelette” `a des directions
obliques dans le plan temps-fr´equence en suivant la mˆeme démarche `a savoir la restriction de la FCT
aux points stationnaires. Cela a d´eja été propos´e pour� = �=2 (transformée de Fourier classique)
dans [52]. Il paraˆıt naturel de dire que, pour garantir une description parcimonieuse fid`ele du signal
(et corrélativement, pour disposer d’une bonne reconstruction du signal), on a int´erêt à considérer,
selon la nature du signal, une direction plutˆot qu’une autre. Il serait int´eressant alors de savoir quelle
direction principale choisir pour un signal donn´e.
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FIG. 1.4 –Vecteurs de r´eallocation aux points pertinents pour l’approximation de phase station-
naire. Cette figure d´ecrit la configuration que doit respecter les op´erateurs de r´eallocation(t̂; !̂),
pour que le point(t; !) où ils sont calculés soit un point stationnaire (cf. Sect. 1.2.3), i.e., un point
pertinent pour l’approximation de phase stationnaire. Le vecteur de r´eallocation est indiqu´e par une
flèche.(a) Reconstruction approch´ee du signalx(t) au tempst = s. Le vecteur de r´eallocation in-
diqué sur la figure respecte les conditions(1.47), le point(t; !) est donc un point stationnaire.(b)
Reconstruction approch´ee de la transform´ee de Fourier du signalX(!) à la fréquence! = �. Le vec-
teur de réallocation indiqué sur la figure valide les conditions(1.55). (c) Reconstruction approch´ee
de la transform´ee de Fourier fractionnaire du signalX(�)(!) (� = �=4) pour! = �. Le vecteur de
réallocation présenté ici respecte les conditions(1.60).
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1.2.4 Oṕerateur de réallocation et changement d’́echelle

Nous précisons ici une propri´eté dont nous aurons besoin dans les chapitres suivants. Il s’agit
d’établir la relation entre le champ de vecteur de r´eallocation du spectrogramme du signal dilat´e d’un
facteur� avec celui du spectrogramme du signal calcul´e avec une fenˆetre comprim´ee par le mˆeme
rapport.

Soitx�(t) =
p
�x(�t) la version dilatée (si� < 1) ou comprimée (si� > 1) du signalx(t). Un

changement de variableu = �s dans la d´efinition de la FCT (1.3) dex�(t)

Fhx�(t; !) = eit!=2
p
�

Z
x(u)h�

�
u

�
� t

�
e�i!u=�

du

�
(1.61)

nous permet de transformer une dilatation sur le signal par une compression sur la fenˆetre

Fhx�(t; !) = F
h1=�
x (�t; !=�): (1.62)

Pour les op´erateurs de r´eallocation, on utilise la formulation (1.32) en fonction de la phase de la FCT
dans laquelle on ins`ere le résultat précédent

t̂hx�(t; !) =
t

2
� @!

�
argF

h1=�
x (�t; !=�)

�
(1.63)

!̂hx�(t; !) =
!

2
+ @t

�
argF

h1=�
x (�t; !=�)

�
: (1.64)

Le développement des d´erivées partielles suivi d’une factorisation ad´equate

t̂hx�(t; !) =
1

�

�
�t

2
� @!

�
argF

h1=�
x

�
(�t; !=�)

�
(1.65)

!̂hx�(t; !) = �

�
!=�

2
+ @t

�
argF

h1=�
x

�
(�t; !=�)

�
(1.66)

conduit au résultat suivant :

t̂hx�(t; !) = t̂
h1=�
x (�t; !=�)=� (1.67)

!̂hx�(t; !) = �!̂
h1=�
x (�t; !=�): (1.68)

Les champs de vecteurs de r´eallocationShx�(t; !) et deS
h1=�
x (t; !) sont donc identiques `a condi-

tion de regarder un des champs dans un syst`eme de coordonn´ees anamorphos´e puis de faire porter
l’anamorphose sur le champ lui-mˆeme.

1.3 La réallocation du scalogramme

Le scalogrammeS x (a; b) = jT x (a; b)j2 est l’équivalent dans la classe affine du spectrogramme
dans la classe de Cohen. Il s’obtient par un lissage de la distribution de Wigner-Ville du signal

S x (a; b) =

ZZ
Wx(s; �)W 

�
s � b
a

; a�

�
dsd�

2�
; (1.69)
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avec un noyau qui est lui-mˆeme la distribution de Wigner-Ville du signal de r´eférence qu’utilise la
transformée linéaire qui lui est associ´eeà savoir l’ondelette (t). Nous rappelons que la particularit´e
du lissage affine nous oblige `a faire intervenir un op´erateur suppl´ementaire en fr´equence que l’on
convertit ensuite en ´echelle

b̂ x (a; b) =
1

S x (a; b)

ZZ
s Wx(s; �)W 

�
s � b
a

; a�

�
dsd�

2�
(1.70)

!̂ x (a; b) =
1

S x (a; b)

ZZ
� Wx(s; �)W 

�
s� b

a
; a�

�
dsd�

2�
(1.71)

â x (a; b) = !0=!̂
 
x (a; b) (1.72)

en utilisant la fréquence centrale du noyau qui, dans le cas du scalogramme, est aussi celle de l’onde-
lette (d’énergie unit´e)!0 =

R
�j	(�)j2 d�=(2�).

Pour les mˆemes raisons que pour le spectrogramme, la forme sp´ecifique du noyau de lissage du
scalogramme va induire des propri´etés spécifiques sur ses op´erateurs de r´eallocation.

1.3.1 Relation avec la phase de la transforḿee en ondelettes

Similairementà la Sect. 1.2.1, une reformulation des op´erateurs de r´eallocationà l’aide de FCT ou
de transform´ees analogues (faite en Annexe B) aboutit aux deux ´equations suivantes : pour l’op´erateur
en temps d’une part (´eq. (B.10))ZZ

s Wx(s; �)W 

�
s� b
a

; a�

�
dsd�

2�
= Re

�
T �x (a; b)

Z
s x(s)

1p
a
 �

�
s� b

a

�
ds

�
; (1.73)

et celui en fréquence d’autre part (´eq. (B.16))ZZ
� Wx(s; �)W 

�
s � b
a

; a�

�
dsd�

2�
= �1

a
Im

�
T �x (a; b)

Z
x(s)

1p
a
 0�

�
s � b
a

�
ds

�
: (1.74)

On note a(t) =  (t=a)=
p
a la famille des ondelettes utilis´ee. Il n’est plus possible d’´ecrire

explicitementb̂ x comme la d´erivée de la phase deT x (a; b) et donc comme un retard de groupe
comme c’était le cas pour le spectrogramme. N´eanmoins, l’équation suivante

b̂ x(a; b) = Re

�R
s x(s) �

a(s� b) dsR
x(s) �

a(s� b) ds

�
; (1.75)

montre qu’il s’interprète comme un temps moyen du signal vu `a travers l’ondelette a(t) (celle-ci
étant abusivement consid´erée comme une densit´e de probabilit´e).

En revanche, on peut faire apparaˆıtre explicitement dans l’´eq. (1.74) la d´erivée de la phase de la
transformée en ondelettes

!̂ x (a; b) = @t arg

�Z
x(s) �

a(s� b) ds
�
; (1.76)

qui est donc homog`eneà une fréquence instantan´ee du signal filtr´e dans la bande de fr´equence d´eter-
minée par a(t). Dans ce cadre,̂a x (a; b) peutêtre décrit en tant qu’́echelle instantan´eedéfinie comme
le rapport de la fr´equence centrale!0 par la fréquence instantan´ee.
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1.3.2 Formulationà l’aide de quotients de transforḿees en ondelettes, applicatioǹa la
mise en œuvre

Des formulations qui permettent le calcul efficace des op´erateurs de r´eallocation existent ´egale-
ment pour le scalogramme. Celles-ci ont ´eté mises en ´evidence pour les scalogrammes `a base d’on-
delettes prenant la forme d’une sinuso¨ıde multipliée par une enveloppe (comme l’ondelette de Morlet
que nous verrons plus loin) dans [5]. D’autres obtenues dans [40] convenant `a toutes les ondelettes
feront l’objet de cette section.

On fait apparaˆıtre dans l’éq. (1.73) la transform´ee en ondelettes avect (t)ZZ
s Wx(s; �)W 

�
s� b

a
; a�

�
dsd�

2�
= bS x (a; b) + Re

n
T t x (a; b)T �x (a; b)

o
; (1.77)

et dans l’éq. (1.74) celle d’ondeletted =dtZZ
� Wx(s; �)W 

�
s � b
a

; a�

�
dsd�

2�
= �1

a
Im
n
T d =dtx (a; b)T �x (a; b)

o
: (1.78)

Trois transform´ees en ondelettes suffisent donc au calcul des op´erateurs de r´eallocation dans la
mesure o`u ils se mettent sous la forme des quotients suivants :

b̂ x (b; a) = b+ aRe

�
T t 

T 

�
â x (b; a) = � a!0

Im
�
T d =dt=T 

	 : (1.79)

Le nombre de transform´ees se r´eduità deux pour l’ondelette de Morlet

 (t) = ��1=4��1=2 e�t
2=(2�2)+i!0t; (1.80)

puisque l’on a, similairement `a la fenêtre gaussienne pour le spectrogramme :

d 

dt
= � 1

�2
t (t) + i!0 (t): (1.81)

Des simplifications existent ´egalement pour un autre type d’ondelette, dite de Klauder. Nous le
verrons en Sect. 2.2.

� Algorithme rapide pour la r´eallocation du scalogramme

Dans le cadre temps-´echelle discret, les calculs des trois transform´ees en ondelettesT x (a; b),

T t x (a; b) etT d =dtx (a; b) peuventêtre accomplis efficacement [2, 41] par l’utilisation des algorithmes
rapides issus de la th´eorie de la multir´esolution [29]. Nous proposons dans [2, 41] un algorithme
d’évaluation de chacune de ces transform´ees en ondelettes sur une grille quasi-continue avec des
ondelettessplines. Une seule multir´esolution suffit au calcul des trois transform´ees en ondelettes. Par
ailleurs, les ondelettessplinesprésentent deux avantages :

– au sein de l’unique multir´esolution, on construit trois bancs de filtres associ´es aux trois onde-
lettes. Avec ce type d’ondelette, ils se d´eduisent tr`es simplement les uns des autres.

– Il n’existe pas n´ecessairement de multir´esolution associ´eeà toutes les ondelettes. En effet, l’on-
delette doit satisfaire certaines conditions. Une solution consiste `a trouver une ondelette respec-
tant ces conditions, en restant proche (au sens de la normeL2 par exemple) de l’ondelette avec
laquelle on d´esire analyser le signal. Les ondelettessplinesdéfinissent un vaste ensemble qui
s’avèreêtre un cadre naturel et efficace pour ce genre d’approximation.
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On obtient finalement un algorithme assez flexible (grille quasi-continue, large choix d’onde-
lette) au coˆut de calcul réduit (enO(NM), avecN nombre d’échantillons du signal etM , nombre
d’échelles s´electionnées, au lieu deO(N2M) pour une mise en œuvre standard) ce qui permet l’uti-
lisation de la réallocation pour des signaux de grandes tailles.

1.4 Une famille de ḿethodes autour d’une m̂eme id́ee

Nous présentons ici quatre m´ethodes aux objectifs analogues `a celui de la r´eallocation :

i. l’analyse spectrale diff´erentielle [46, 62],
ii. la densité de fréquence instantan´ee [43],

iii. les méthodes “arˆete et squelette” [33],
iv. la méthode du “squeezing” [72, 30].

Chacune d’entre elles se trouve impliqu´ee plus ou moins fortement dans un probl`eme sp´ecifique
(traitement de la parole, analyse de signaux musicaux, d´etection de modulations de fr´equence: : : ),
mais finalement, ce sont les mˆemes quantit´es math´ematiques qui sont utilis´ees, seul leur emploi diff`ere
selon le cas.

Nous commencerons par une pr´esentation de leur principe en insistant sur les justifications des
choix effectués. Nous ferons ensuite une comparaison entre ces quatre m´ethodes ajout´eesà la ré-
allocation selon trois crit`eres choisis pour mettre en lumi`ere leurs principales diff´erences. Ce sera
l’occasion de tests communs sur quelques signaux.

Un travail similaire a ´eté fait dans [73] ou plus succinctement dans [30]. Mais, celui qui est pr´e-
senté ici, qui est la contribution principale de ce chapitre, se singularise des pr´ecédents pour deux
raisons :

1. les liens que l’on peut tisser entre toutes ces m´ethodes y sont pr´esentés clairement dans un
formalisme unique,

2. les tests faits sur des signaux communs montrent l’int´erêt et les limitations de chaque m´ethode.

1.4.1 Principe

Précisons `a nouveau quelques notations qui nous seront utiles par la suite, comme celle de la FCT
F (t; !) :

F (t; !) =

Z
x(s)h�(t;!)(s) ds; (1.82)

où h(t;!)(s) = h(s � t)ei!se�it!=2. Rappelons ´egalement les ´eqs. (1.32), ´etablies en Sect. 1.2.1, qui
précisent comment, `a partir de la repr´esentation polaire de la FCT,F (t; !) = jF (t; !)j exp�i'(t; !)�,
on déduit les op´erateurs de r´eallocation :

t̂(t; !) = t=2� @!' !̂(t; !) = !=2 + @t': (1.83)

Toutes les m´ethodes que nous allons pr´esenter, utilisent (parfois implicitement) un mod`ele pour
le signal. On le qualifie g´enéralement deformantique(ou de “modulation model”) en traitement de la
parole. Le signal y est d´ecrit par une somme de signaux modul´es en amplitude et en fr´equence

x(t) =
NX
n=1

An(t) exp
�
i�n(t)

�
+ b(t); (1.84)
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sous des hypoth`eses de variations lentes (i) des enveloppesAn(t) par rapport `a leur phase respective
�n(t) et (ii ) de la fréquence instantan´ee!n(t) = _�n(t) soit :�����

_An(t)

An(t)

������
��� _�n(t)��� et

�����
��n(t)
_�2n(t)

������ 1; (1.85)

où “ _ ” et “ � ” désignent les d´erivées premi`eres et secondes respectivement.
Ces deux hypoth`eses contraignent le signal `a certains types de non stationnarit´e, nommément les

dérives lentes de fr´equence. On accepte les signaux de r´egimes transitoires (forte variation d’amplitude
et de fréquence) `a condition qu’ils se d´eroulent lentement. On peut dire que le signal d´efini comme
tel, est faiblement non stationnaire. SiN = 1, on dit également que le signalx(t) se situe dans la
limite asymptotique(en temps) ou qu’il est un signal asymptotique [33]. On inclut dansb(t) (que l’on
supposera toujours n´egligeable) les erreurs de mod´elisation et le bruit d’observation.

Idéalement, on aimerait d´ecrire le signal dans le plan temps-fr´equence par la collection des lignes
de fréquence instantan´ee!n(t), le long desquelles on pourrait suivre l’´evolution de l’amplitudeAn(t)
(ou de l’énergieA2

n(t)). Il s’agit pour toutes les m´ethodes pr´esentées ici d’obtenir une telle repr´esen-
tation du signal et ce, en mettant l’accent sur le contraste et l’acuit´e finale du résultat.

Notons que ce que propose C. Berthomier dans [12] peut ˆetre vu comme un pr´ecurseur `a toutes
ces techniques (r´eallocation comprise) : il sugg`ere de mˆeler l’utilisation de la fréquence instantan´ee et
une mesure ´energétique locale pour construire une repr´esentation conjointe en temps et fr´equence du
signal.

Analyse spectrale diff́erentielle

� Contexte
L’analyse spectrale diff´erentielle a ´eté appliquée aux signaux de sonars animaux (chauve-souris)

[45] et plus cons´equemment au traitement de la parole [62].

� Problème pos´e
On se propose de faire le suivi des variations de la fr´equence du signal observ´e dans une bande

fréquentielle donn´ee et ce le plus finement possible [46].

� Solution envisag´ee
En limitant le modèle (1.84)à N = 1, le signal se simplifie enx(t) = A(t) exp

�
i�(t)

�
. La

méthode s’appuie sur l’introduction de deux quantit´es moyennes [46] d’une part�!(t), la pulsation
moyenne du signal dans un voisinage du tempst (défini par la fenêtreh(t)) telle que, pour une fr´e-
quence! donnée,Z

exp
�
i
�
�!(t)s + �0

�	
h�(s� t)e�i!s ds =

Z
exp

�
i�(s)

�
h�(s� t)e�i!s ds; (1.86)

et d’autre part�A(t), l’amplitude moyenne du signal dans le mˆeme voisinage :

�A(t)

Z
exp

�
i
�
�!(t)s+ �0

�	
h�(s� t)e�i!s ds =

Z
A(s) exp

�
i�(s)

�
h�(s � t)e�i!s ds: (1.87)

Notons bien que, si2�=! correspond `a la (pseudo-)p´eriode du signal autour du tempst alors les
éqs. (1.86) et (1.87) sont des ´egalitésécrites sur le premier terme (le “fondamental”) de d´eveloppe-
ments en s´erie de Fourier.
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On en déduit une approximation locale du signal :

x(t) � �A(t) exp i
�
�!(t)t+ �0

�
: (1.88)

Il s’agit alors de faire une estimation des quantit´es moyennes�!(t) et �A(t) du signalà partir de la
FCT. Pour ce faire, on simplifie le membre de gauche de l’´eq. (1.87), et on reconnaˆıt la FCT du signal
dans son membre de droite

F (t; !) = �A(t)H�
�
�!(t)

�
ei
�
�!(t)t+t!=2+�0

�
; (1.89)

où�!(t) = �!(t)� !.
SiH(!) est réelle (h(t) està symétrie hermitienne), on obtient (en prenant le module) pour l’am-

plitude

�A(t) =
jF (t; !)j
H
�
�!(t)

� ; (1.90)

et (en dérivant la phase) pour la pulsation

@t'(t; !) = t d�!=dt+�!(t) + !=2; (1.91)

équation, qui en recourant aux hypoth`eses faites sur le signal (d�!=dt faible), conduità

�!(t) = �!
2
+ @t'(t; !); (1.92)

ou bien avec les relations (1.83) `a :

�!(t) = !̂(t; !)� !: (1.93)

L’ équation (1.93) ´etablit clairement le lien entre l’analyse spectrale diff´erentielle et la m´ethode
de réallocation. La différence de fr´equence�!(t) n’est autre que l’op´erateur de d´eplacement en
fréquence de la r´eallocation. On sait, par ailleurs, que cet op´erateur est reli´eà la fréquence instantan´ee
du signal filtré par l’analyse de Fourier `a court-terme (cf. ´eq. (1.34)). Le principe de l’analyse spectrale
diff érentielle est donc de calculer la fr´equence instantan´ee du signal s´electionné dans une bande de
fréquence pour en mesurer finement les fluctuations autour de la fr´equence centrale d’analyse.

On déduit de (1.88), (1.90) et (1.93), l’approximation locale du signal en fonction de la FCT et de
l’opérateur de r´eallocation en fr´equence :

x(t) =
jF (t; !)j

H
�
!̂(t; !)� !� exp

�
i
�
!̂(t; !)t+ �

�	
: (1.94)

Remarque 1.1.Pour des raisons de coˆut de calcul, on choisit une fenˆetreh(t) rectangulaire. Dans ce
cas, la FCT peut se calculer r´ecursivement et l’op´erateur de r´eallocation̂!(t; !) admet une forme tr`es
simple9. Notons enfin que la fr´equence centrale! esta priori arbitraire. Cependant l’approximation
(1.94) sera d’autant meilleure que la fenˆetre d’observation est centr´ee sur la fréquence “principale” (
i.e., correspondant `a la pseudo-p´eriode) du signal.

9. Si h(t) = 1T (t) est une fenˆetre rectangulaire, de largeurT centrée sur0 alors sa d´erivée est ´egaleà la somme de
deux distributions de Dirac :dh=dt = ��(t + T=2) + �(t � T=2). La FCT du signalx(t) de fenêtredh=dt s’écrit donc
simplement comme la diff´erence du signal pris `a deux instants distants deT (à un terme de phase pr`es). Ceci conduit `a
uneéconomie consid´erable de calcul lors de la mise en œuvre de ´eq. (1.38) pour l’évaluation dê!(t; !) mais au prix de la
pauvreté de l’analyse spectrale faite par la fenˆetre rectangulaire.
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� Représentation graphique propos´ee
Les choix d’affichage faits sont surprenants et s’expliquent sˆurement par les limitations des

moyens informatiques de l’´epoque. On choisit de montrer pour une fr´equence! (i.e., fréquence cen-
trale d’analyse) donn´ee(ASD) :

– la phase de la FCT'(t; !) (on pratique une r´egression lin´eaire pour trouver la fr´equence�!(t)),

– la proportion d’énergie dans la bande analys´eeR(t; !) = jF (t; !)j2= R jF (t; !)j2 d!=(2�).
Densit́e de fréquence instantańee

� Contexte
Le contexte d’application de la densit´e de fréquence instantan´ee [43] est celui du traitement

(analyse) de la parole, et plus sp´ecifiquement celui de la localisation et du suivi de formant. L’auteur
n’admet pas de mod`ele explicite sur le signal mais les seuls exemples trait´es dans [43] entrent dans le
cadre du mod`ele formantique (1.84).

� Problème pos´e
La méthode se fonde sur une analogie avec le syst`eme auditif (moins ´elaborée que celle faite

dans [30] que nous examinerons plus loin). L’observation des syst`emes auditifs semblent montrer
que le traitement du son par l’oreille interne (la membrane basilaire en particulier) s’apparente (aux
basses fr´equences essentiellement) au passage du signal re¸cu dans un banc de filtres proche de celui
utilisé pour calculer la FCT (et plus fid`element encore de la transform´ee en ondelettes, voir plus loin).
Pour le traitement (analyse et reconnaissance) de la parole, il s’av`ere donc important d’abandonner
une description spectrale utilisant l’´energie seulement et de prendre aussi en compte l’information de
phase. Ceci am`ene l’auteur `a faire une nouvelle interpr´etation de la FCT inspir´ee par “l’image d’un
groupe de fibres nerveuses adjacentes toutes v´erouillées sur une seule et mˆeme fréquence”.

� Solution envisag´ee
On calcule la FCT pourM valeurs de la fr´equence!m = fm�!gm=1::M séparées d’un pas

d’échantillonnage�! donné. On obtient alorsM signauxym(t) = F (t; !m) qui sont similaires `a
ceux qui sont observ´es sur les nerfs auditifs au d´epart de la membrane basilaire. On se propose de
regrouper tous les signauxym(t) qui ont la même fréquence instantan´ee et de placer cette information
dans une matriceDFI(t; !). On procède de la mani`ere suivante : `a un tempst fixé, on incrémente
DFI(t; !n) à chaque occurrence d’une valeur de!̂(t; !m) dans[!n ��!=2; !n + �!=2] et ce pour
toutes les valeurs dem et den. La quantité DFI(t; !n) que nous calculons est au final ´egale au
nombre de signauxym(t) qui ont approximativement au tempst la même fréquence instantan´ee!n.
On normalise ensuiteDFI(t; !m) à la normeL1(R)unité. On obtient donc un histogramme empirique
qui s’assimileà une densit´e (de probabilit´e) de fréquence instantan´ee.

Il est important de remarquer que la fr´equence instantan´ee du signalym(t) estégaleà la valeur
de l’opérateur de r´eallocation en fr´equencê!(t; !m) selon l’éq. (1.34). Cela montre que la densit´e
de fréquence instantan´ee et la réallocation s’appuient sur une communaut´e d’idée : on pourrait d´efinir
la densité de fréquence instantan´ee comme le r´esultat de l’action de l’op´erateur de r´eallocation en
fréquence sur une matrice temps-fr´equence uniform´ement remplie de1 (suivie d’une normalisation
en normeL1(R)).

� Représentation graphique propos´ee
On affiche simplementDFI(t; !) en niveau de gris.
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“Ar ête et squelette” ou “ridge and skeleton”

Cette méthode est certainement la plus ´elaborée d’entre toutes. Elle est issue de la collaboration
de nombreuses personnes, majoritairement de l’“´ecole marseillaise”.

� Contexte
Les méthodes “arˆete et squelette” ont ´eté utilisées pour le traitement de signaux musicaux [33,

32, 53], la détection et la caract´erisation de modulations de fr´equence [20].

� Problème pos´e
Le problème pos´e est celui de l’extraction et de la caract´erisation de signaux modul´es en ampli-

tude et en fr´equence dans la limite asymptotique.

� Solution envisag´ee
Cette méthode a ´eté essentiellement consid´erée dans le plan temps-´echelle et pour la transform´ee

en ondelettes, mais elle est ´egalement valable pour la FCT. L’id´ee est de tirer profit du cadre asymp-
totique pour faire l’approximation de phase stationnaire de la FCT. On en d´eduit une repr´esentation
temps-fréquence simplifi´ee et non redondante du signal (lesquelette) à partir de la restriction de la
FCT à certaines lignes importantes du plan temps-fr´equence (lesarêtes).

Pour présenter les choses, il est plus simple de consid´erer que le signalx(t) = A(t)ei�(t) et
la fenêtreh(t) (réelle) sont deux signaux asymptotiques, i.e., ob´eissent au mod`ele (1.84), bien que
cette hypoth`ese soit irréaliste en ce qui concerne la fenˆetre. En effet, la nature “`a court terme” de la
fenêtre est totalement antagoniste avec les contraintes du mod`ele (1.84). Nous ne d´ecrirons pas le cas
(traité dans [33]) plus raisonnable mais plus compliqu´e, où le signal est asymptotique et la fenˆetre
gaussienne, puisqu’il m`ene aux mˆemes résultats.

La FCT du signal mis sous la forme

F (t; !) =

Z
A(s)h(s� t)ei

�
�(s)�!s+t!=2

�
ds (1.95)

peutêtre clairement vue comme une int´egrale oscillante qu’il est possible d’´evaluer par l’approxima-
tion de phase stationnaire [92] (d´ejà évoquée précédemment en Sect. 1.2.3 et d´etaillée en Annexe D).
Cela consiste `a approcher la FCTF (t; !) par la valeur de l’int´egrande (moyennant une correction de
module et de phase) aux points o`u la phase de celle-ci est stationnaire :

@s
�
�(s)� !s+ t!=2

�
= 0: (1.96)

Supposons qu’il existe un seul pointts(t; !) qui vérifie l’éq. (1.96), on a alors en ce point

_�
�
ts(t; !)

�
= !: (1.97)

L’hypothèse d’unicité du point stationnaire que nous venons de faire, signifie donc que la fr´e-
quence instantan´ee du signal! = _�(t) associe `a une fréquence! donnée, un et un seul instantt.

Dans l’approximation de la FCT [92]

F (t; !) �
s

2�

j��(ts)j
ei sgnf

��(ts)g�=4x(ts)h(ts � t)ei(�!ts+t!=2); (1.98)

(nous avons retir´e la dépendance dets = ts(t; !) en t et! pour simplifier la lecture), on voit claire-
ment que certains points stationnaires sont plus importants que d’autres. En particulier, les points qui
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vérifientts(t; !) = t puisqu’ils permettent de relier directement la FCT au point(t; !) à la valeur du
signal ent. L’ensemble de ces points d´efinit une courbe dans le plan temps-fr´equence que l’on appelle
l’ arête. Qui plus est, la pertinence de l’arˆete pour la description du signal se trouve confirm´ee par
d’autres arguments. En effet, il est simple de montrer que l’´equation de cette courbe est simplement
celle de la ligne de fr´equence instantan´ee! = _�(t) du signal. De plus, l’arˆete dessine un chemin
particulier sur le module de la FCT.À t fixé, l’éq. (1.98) montre que sih(t) est maximum en0 alors le
pointts(t; !) = t indique le maximum dejF (t; !)j (si on néglige l’influence de la d´erivée seconde au
dénominateur). L’arˆete est donc la ligne qui relie tous les maxima (calcul´esà t constant) dejF (t; !)j.

En pratique, l’extraction de l’arˆete gagne en pr´ecision si on utilise la phase de la FCT,F (t; !), qui
vérifie selon

'(t; !) = �(t) � !t

2
; (1.99)

aux points de l’arˆete selon l’éq. (1.98). De la d´erivation de l’équation pr´ecédente et avec l’´eq. (1.97),
on déduit

@t'(t; !) = !=2; (1.100)

qui se réécrit aussi :

!̂(t; !)� ! = 0: (1.101)

On fait donc ici la connexion entre les m´ethodes “arˆete et squelette” et la r´eallocation puisque
les points de l’arˆete sont les points o`u la réallocation est stationnaire en fr´equence. Notons que cette
propriété est conserv´ee lorsqu’on abandonne l’hypoth`ese d’asymptotisme sur la fenˆetre [33].

Il est alors naturel de proposer l’algorithme `a point fixe suivant pour la recherche des points de
l’arête : on se place `a un tempst, on initialise la recherche `a une fréquence!0 arbitraire et on it`ere la
procédure

!n+1 = !̂(t; !n); (1.102)

jusqu’à convergence, c’est-`a-dire!n+1 � !n (point fixe). Le point(t; !n+1) fait alors partie de l’arˆete.
Autrement dit, cet algorithme r´epète le processus de r´eallocation en fr´equence jusqu’`a convergence
vers un point o`u la réallocation est stationnaire.

� Description graphique propos´ee
La représentation finale que l’on donne du signal est la restrictionSKE(t; !) de la FCTà son

arête. Elle définit ce que l’on appelle lesquelette. Pour tout(t; ! = _�(t)) situé sur l’arête,

SKE(t; !) �
s

2�

j��(t)je
i sgnf��(t)g�=4x(t)h(0)e�it!=2: (1.103)

Le squeletteSKE(t; !) est nul en tout autre point.

Méthode du “squeezing”

� Contexte
La méthode du “squeezing” [30, 72] a ´eté utilisée en traitement de la parole (suivi de formant

pour la reconnaissance de locuteur).
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� Problème pos´e
La méthode du “squeezing” s’appuie en premi`ere approximation (comme la densit´e de fréquence

instantan´ee) sur une analogie avec le syst`eme auditif. Les observations montrent en fait que la mem-
brane basilaire (organe de perception de l’oreille interne) effectue une op´eration analogue `a celle d’un
banc de filtres passe-bande dont les fr´equences centrales graduent logarithmiquement la bande de fr´e-
quence audible. Cela correspond [30] `a ce que fait la transform´ee en ondelettes, ce qui justifie son
utilisation pour le traitement de la parole.

Malheureusement, une telle d´ecomposition est tr`es redondante. O. Ghitza propose dans [44] un
algorithme de compression de l’information dont la m´ethode du “squeezing” va s’inspirer. Le principe
de cet algorithme est le suivant :

– en sortie de chaque filtre du banc, on r´ecupère un signal oscillant. On s´electionne ce signal
autour d’un tempst fixé au moyen d’une fenˆetre,

– et dans ce voisinage, on compte le nombre de ses passages `a un seuil (fronts montants) qui sont
séparés d’une certaine p´eriodeT .

– On stocke ce nombre dans la matriceEIH(t; T ).

– On recommence l’op´eration pour toutes les valeurs possibles (`a l’intérieur de la fenˆetre d’ob-
servation) de la p´eriodeT .

On obtient ainsi une description du signal nomm´ee E.I.H. (“Ensemble Interval Histogram”) `a deux
dimensions que l’on peut voir comme une repr´esentation temps-fr´equence dans la mesure o`uT�1 joue
le rôle d’une fréquence instantan´ee.

On se propose d’utiliser ces id´ees pour faire une modification non-lin´eaire de la transform´ee en
ondelettes.

� Solution envisag´ee
La méthode du “squeezing” a ´eté uniquement formul´ee pour la transform´ee en ondelettes (pour

les raisons ´evoquées ci-dessus). Pour l’homog´enéité de cette section, nous ´etendrons cette formulation
à la FCT.

Dans le cas o`u x(t) = A exp(i!0t), on aimerait comprimer (“to squeeze”) l’information (`a la
manière de Ghitza) contenue dans la FCT pour qu’elle se restreigne `a son minimum. La FCT dex(t)
s’écrit

F (t; !) = H�(!0 � !)eit(!0�!=2): (1.104)

Cette FCTF (t; !), vue comme une fonction det uniquement (! fixé), est un signal dont les oscil-
lations harmoniques sont r´egulières et directement reli´eesà!0. Cela sugg`ere de réaffecterF (t; !) à la
fréquence

�
!=2� i�@tF=F�(t; !)� puisque cette quantit´e est uniform´ementégaleà!0. En procédant

de la sorte, on obtient une nouvelle repr´esentation temps-fr´equenceSQU(t; !) du signalégaleà 0
partout, except´e sur la ligne! = !0. On admet que la compression ainsi faite est raisonnablement
effective pour les signaux respectant le mod`ele (1.84).

Le lien qui unit la méthode du “squeezing” et la r´eallocation est clair puisque l’on utilise finale-
ment l’opérateur de r´eallocation en fr´equence, vu la relation

!̂(t; !) =
!

2
+ Im

�
@tF

F

�
(t; !) (1.105)
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(la partie réelle de@tF=F est nulle). Formul´e autrement, la m´ethode du “squeezing” effectue la r´eal-
location (en fréquence uniquement) de la valeur complexe de la FCT.

� Description graphique propos´ee
La réallocation deF (t; !) en moduleet phase (que l’on appellesynchrosqueeze)

SQU(t; !) =

Z
F (t; �)�

�
!̂(t; �)� !

�d�
2�
; (1.106)

a pour avantage de disposer d’une possibilit´e de retour (exact) au signal.
On peut néanmoins voir sur les quelques tests avec des signaux (r´eels) de parole [30] que r´eaffecter

la valeur complexeF (t; !) n’est pas la meilleure solution. On propose dans [30] toute une gamme de
variantes bas´ee sur des grandeurs (module deF (t; !) seulement, avec pond´eration,: : : ) à réallouer
vers

�
t; !̂(t; !)

�
, desquelles on d´eduit autant de repr´esentations temps-fr´equence.

1.4.2 Comparatif

On se propose ici de faire une comparaison des m´ethodes pr´esentées ci-dessus en trois points : les
deux premiers concernent les implications du choix d’une m´ethode bas´ee sur un ou sur deux op´era-
teurs de r´eallocation en termes delocalisationde la représentation et de possibilit´e dereconstruction
du signal. Le dernier point concerne larobustessede la représentation au bruit. Il est bien entendu que
cette comparaison n’a rien de syst´ematique mais qu’elle est simplement faite pour avoir une id´ee des
diff érences entre les points de vues en lice.

Localisation

Dans l’ensemble des m´ethodes compar´ees, la capacit´e de localisation d’une repr´esentation sur un
signal donn´e est directement reli´ee au nombre et au type de l’op´erateur de r´eallocation choisi.

� Un opérateur de réallocation
Il apparaˆıt que les m´ethodes que nous venons de pr´esenter qui utilisent, toutes, un seul op´erateur

de réallocation, sont intimement reli´eesà des hypoth`eses faites sur le signal. Si le signal s’´ecarte de
ces hypoth`eses, i.e., ne respecte plus le mod`ele formantique (1.84), alors la repr´esentation n’a plus de
raison de continuer `a fonctionner correctement et en particulier en termes de localisation.

Par exemple, la Fig. 1.5 illustre ce que donne chaque m´ethode pour un signal test dont la premi`ere
partie est compos´ee d’une fréquence pure (asymptotique en temps) et d’une impulsion (qui n’est pas
asymptotique en temps). Toutes les m´ethodes utilisant un seul op´erateur sont compl`etement aveugles
décrivent bien la fr´equence mais sont compl`etement aveugles `a l’impulsion parce qu’elle ne r´epond
pas au mod`ele de référence.

Remarque 1.2.On pourrait reformuler toutes ces m´ethodes en supposant que le signal v´erifie le mo-
dèle dual (i.e., asymptotisme en fr´equence) au mod`ele (1.84) :

X(!) =
NX
n=1

An(!) exp
�
i�n(!)

�
+B(!); (1.107)

où l’enveloppeAn(!) présente des variations lentes par rapport `a la phase�n(!), dont les variations
sont elles-mˆemes lentes. Nous serions alors amen´esà n’utiliser qu’un seul op´erateurà savoir̂t(t; !).
La généralisation de la m´ethode “arête et squelette” `a la classe duale des signaux asymptotiques en
fréquence a ´eté faite dans [52, 53].
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Remarque 1.3.Comme on le remarque dans [43], la c´ecité des m´ethodes `a un seul op´erateur (en
fréquence) `a l’égard des impulsions est parfois utile. En traitement de la parole par exemple, la re-
présentation se focalise sur les formants (harmoniques issus de la r´esonance du conduit vocal) et
ignore les “pitchs” (train d’impulsions ´emis par les cordes vocales), ce qui permet d’en faire l’analyse
indépendamment.

Remarque 1.4.Notons la difficulté de lecture de l’analyse spectrale diff´erentielle : il faut pouvoir
interpréter plusieurs graphiques simultan´ement. On ne dispose donc pas de vision d’ensemble du
signal. La fréquence locale du signal peut ˆetre estim´eeà l’aide d’une régression sur la phase (qui varie
linéairement si le signal analys´e est une fr´equence constante) sur la p´eriode où la proportion d’énergie
indique qu’un signal se trouve `a proximité. En résumé, cette m´ethode est difficile d’emploi.

� Deux opérateurs de r´eallocation
La méthode de r´eallocation n’est pas reli´ee à un modèle implicite de signal. Grˆaceà ses deux

opérateurs, la r´eallocation se localise (voir Fig. 1.5) `a la fois en fréquence (sur la sinuso¨ıde) et en
temps (sur l’impulsion) mais ´egalement sur la modulation lin´eaire en deuxi`eme partie du signal test.
La Fig. 1.6 confirme cette assertion. Le signal est une fonction d’Hermite [50] qui n’appartient `a aucun
des deux mod`eles (ni asymptotisme en temps, ni en fr´equence). La distribution de Wigner-Ville de ce
signal est un “anneau” dans le plan temps-fr´equence `a l’intérieur duquel on trouve les interf´erences
qui suiventégalement une sym´etrie sphérique. On constate clairement l’´echec des m´ethodes `a un seul
opérateur : les m´ethodes “arˆete et squelette” font ressortir soit le demi-cercle inf´erieur, soit le demi-
cercle sup´erieur selon l’endroit o`u on initialise l’algorithme `a point fixe tandis que L’ASD, la DFI
et la méthode du “squeezing” donnent des descriptions difficiles `a lire. Par contre, le spectrogramme
réalloué enfin se localise presque parfaitement sur toute la circonf´erence du cercle.

Remarque 1.5.La deuxième partie du signal test en Fig. 1.5 qui est une modulation lin´eaire de fré-
quence (chirp), nous fait voir qu’il existe deux sous-cat´egories parmi les m´ethodes `a un opérateur :
celles qui itèrent la réallocation et celles qui ne l’appliquent qu’une seule fois. On constate que l’on ne
peut disposer de la localisation sur les chirps qu’`a la condition d’itérer la réallocation comme le fait
la méthode “arête et squelette”. Les trois autres m´ethodes (ASD, DFI et “Squeezing”) donnent une
description floue du signal.

Reconstruction

Dans l’ensemble des m´ethodes compar´ees, la possibilit´e de reconstruction du signal `a partir de la
représentation est directement reli´ee au nombre et au type de l’op´erateur de r´eallocation choisi.

Il n’existe pasà notre connaissance de formule de reconstruction pour des repr´esentations r´e-
allouées quelle qu’elles soient avec deux op´erateurs de r´eallocation. Par contre, employer un seul
opérateur rend possible l’existence de la formule de reconstruction du signal mais n’est cependant pas
suffisant.

� Lien au mod`ele
Le fait pour les m´ethodes bas´ees sur un op´erateur de r´eallocation de disposer d’un mod`ele sur le

signal, permet d’en estimer les param`etres (la phase et l’amplitude) ind´ependamment.
C’est le cas

– pour l’analyse spectrale diff´erentielle : on a d´ejà prouvé que la reconstruction approch´ee du
signalétait possible via l’´eq. (1.94). Notons qu’il s’agit d’une reconstruction faite `a partir de
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FIG. 1.5 –Comparaison d’une famille de m´ethodes en relation avec la r´eallocation (signal sans
bruit). (a) le signal est divis´e en trois parties : (i) une sinuso¨ıde de fréquence ´egaleà 0.1à laquelle
se superpose une impulsion au tempst = 32, (ii) un chirp linéaire d’enveloppe gaussienne, (iii)
une gaussienne modul´ee (fréquence0:25). (b) méthode “arête et squelette”,(c) analyse spectrale
différentielle (la proportion d’énergie dans la bande d’analyseR(t; !) : axe de gauche, courbe du
bas ; la phase de la FCT'(t; !) : axe de droite, courbe du haut) avec en pointill´e la régression
linéaire dans la zone o`u R(t; !) est non nul,(d) densité de fréquence instantan´ee,(e) méthode du
“squeezing”,(f) spectrogramme r´ealloué.
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FIG. 1.6 –Comparaison d’une famille de m´ethodes en relation avec la r´eallocation. (a) le signal
est une fonction d’Hermite d’ordre8, (b) méthode “arête et squelette”, initialisation!0 = 2� 0:15,
(c) méthode “arête et squelette”, initialisation!0 = 2� 0:3, (d) densité de fréquence instantan´ee,(e)
méthode du “squeezing”,(f) spectrogramme r´ealloué.
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paramètres extraits de la repr´esentation et non pas de la repr´esentation elle-mˆeme ce qui rend
son utilisation moins ais´ee.

– et les méthodes “arˆete et squelette” : l’´eq. (1.103) garantit une reconstruction directe du signal
avec le squelette. L’arˆete étant connue, la d´erivée seconde��(t) peut alors ˆetre calculée puis-
qu’elle ne dépend que d’elle. On en d´eduit qu’à un tempst fixé et! = _�(t) pointant sur l’arête :

x(t) �
s
j��(t)j
2�

e�i sgnf
��(t)g�=4SKE(t;

_�(t))

h(0)
eit

_�(t)=2: (1.108)

Remarque 1.6.Il n’y a clairement pas de reconstruction possible `a partir de la densit´e de fréquence
instantan´ee, celle-ci faisant un oubli total de l’information d’amplitude.

� Moins de non lin´earité
Une autre raison `a la possibilité de reconstruction pour les m´ethodes `a un opérateur est que la

restrictionà un seul op´erateur introduit moins de non lin´earité dans la repr´esentation que l’utilisation
des deux.

C’est pour cela que la m´ethode du “squeezing” et plus pr´ecisément du “synchrosqueezing” pr´e-
sente l’avantage de poss´eder une formule de reconstructionexactedu signal. Pour prouver son exis-
tence, on doit auparavant pr´eciser quelques propri´etés de la FCT.

Il n’est pas nécessaire d’utiliser une fenˆetre identique `a la fenêtre d’analyseh(t) pour reconstruire
le signalà partir de la FCT. Si on appelleg(t) la fenêtre de reconstruction, l’´egalité suivante est vraie

x(s) =

ZZ
F (t; !)g(t;!)(s)

dtd!

2�
: (1.109)

(où g(t;!)(s) = g(s� t)ei!se�it!=2) à la condition

Z
h(t)g�(t) dt = 1: (1.110)

Si on choisit pourg(t) = �(t), une impulsion de Dirac alors la reconstruction est possible sih(t)
égaleà 1 à l’origine. Selon l’éq. (1.109), le signal s’´ecrit alors comme la marginale en temps de la
FCT :

x(s) =

Z
F (s; !)

d!

2�
: (1.111)

Supposons queh(t) vérifie la conditionh(0) = 1. L’action du squeezing se r´esumant au d´eplace-
ment en fréquence uniquement des valeurs de la FCT, alors `as fixé,SQU(s; :) etF (s; :) sont donc de
somme identique ce qui prouve :

x(s) =

Z
SQU(s; !)

d!

2�
: (1.112)

Le signal peut ˆetre reconstruit exactement par une marginalisation de la FCT modifi´ee par la
méthode du “squeezing” `a la condition que la fenˆetreh(t) soit égaleà 1 en 0.
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Méthode Loc. Loc. Loc. Reconst.
fréqu. impuls. chirps du signal

A. S. D.
p p

D. F. I.
p

A. et S.
p p p

“Squeezing”
p p

Réallocation
p p p

TAB. 1.1 –
Cette table dresse un bilan, dans le cadre de la comparaison faite en Sect. 1.4, des propri´etés dont
disposent chacune des m´ethodes pr´esentées en Sect. 1.4. Pour la signification des acronymes, voir le
texte.

Robustesse au bruit

Pour finir la comparaison, on se propose d’´evaluer la robustesse de chacune des m´ethodes au
bruit. Il s’agit modestement en partant d’un exemple, de se faire une opinion sur les comportements
typiques en pr´esence de bruit de chacune d’entre elles. On pr´ecisera succinctement si des solutions
ont été envisag´ees pour l’am´elioration de la repr´esentation des signaux bruit´es.

� Un opérateur de réallocation
Toutes ces m´ethodes utilisent le mˆeme opérateur de r´eallocation. La différence de sensibilit´e ne

peut donc venir que de la mani`ere de construire la repr´esentation.

� Analyse Spectrale Diff´erentielle
Si on analyse un signal dont la fr´equence est constante dans la bande d’analyse, alors la mesure de

la fréquence par r´egression locale de la phase (cf. Fig. 1.7) donne d’assez bons r´esultats. Si le signal
n’est pas de fr´equence constante (modulation lin´eaire de fréquence par exemple) alors il faut changer
de méthode de r´egression (il faut ajuster une parabole). Il faut donc proc´eder au cas par cas. Pour des
signaux réels, on ne dispose pas de d´emarche syst´ematique.

� Densité de fréquence instantan´ee
Dans la repr´esentation donn´ee par la densit´e de fréquence instantan´ee, le même poids est donn´e

aux points o`u le module de la FCTjF (t; !)j est petit ou grand. Dans le cas favorable o`u le bruit est de
très faible amplitude, on va traiter avec une ´egale importance l’information port´ee par le bruit et celle
portée par le signal. En r´esumé, des perturbations, mˆeme très faibles, vont aboutir `a une repr´esentation
difficile à lire (cf. Fig. 1.7).

Une opération de post-lissage (passe-bas) [43] deDFI(t; !) améliore le résultat mais pas de fa¸con
réellement convaincante.

� Arête et squelette
La concision de la description du signal fournie par le squelette fait sa force mais aussi sa fai-

blesse. La pr´esence de bruit perturbe le d´eroulement de l’algorithme `a point fixe. Cela pose la question
de l’initialisation de cet algorithme: selon le choix du point de d´epart, on peut converger vers l’arˆete
associée au signal, mais on risque ´egalement de finir sur une arˆete associ´ee au bruit. Aux instants o`u
la convergence est mauvaise, le squelette d´ecrit le bruit et le signal est compl`etement oubli´e. C’est par
exemple ce que l’on constate en Fig. 1.7 pour la derni`ere partie du signal : on ne converge pas vers la
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fréquence centrale du logon gaussien mais vers un paquet d’´energie appartenant au bruit.
Ceci compromet l’utilisation du squelette pour des probl`emes de d´etection ou d’estimation. N´ean-

moins, un algorithme robuste de recherche de l’arˆete aété propos´e récemment [19, 18]. On recherche
la courbe du plan temps-fr´equence qui soit `a la fois régulière et le long de laquelle l’int´egrale de
jF (t; !)j est maximum. On r´esout ce compromis par la minimisation d’une ´energie avec des m´e-
thodes de recuit simul´e. L’algorithme donne de bons r´esultats pour la d´etection et la caract´erisation de
chirps [20].

� Méthode du “squeezing”
Le bruit perturbe la r´eallocation et modifie la mani`ere dont sont r´eorganis´ees les valeurs de la FCT

(complexes pour le synchrosqueeze). Deux valeurs de la FCT en opposition de phase peuvent venir se
réallouer en un mˆeme point et ainsi se compenser totalement. S’il s’agit de deux valeurs associ´ees au
signal, de l’information importante est alors perdue.

Les auteurs proposent une solution interm´ediaire qui donne de bons r´esultats sur des signaux de
parole. Elle consiste `a réallouer

�
F (t; !) + jF (t; !)j�=2 plutôt queF (t; !). On perd, en contrepartie,

la possibilité de reconstruction du signal.

� Deux opérateurs de r´eallocation
Une grande partie du document est consacr´eeà l’étude de la r´eallocation dans le cas des signaux

bruités. Nous renvoyons donc le lecteur `a la suite et en particulier `a la Sect. 2.3 o`u l’on fait le calcul
des densit´es de probablit´e des op´erateurs de r´eallocation.

Conclusion

Nous avons mis en ´evidence les liens ´etroits qui unissent les quatre m´ethodes pr´esentées aux-
quelles s’ajoutent la r´eallocation. D’un point de vue pratique, il est raisonnable d’en ´ecarter deux, en
raison des faiblesses de la repr´esentation propos´ee : l’analyse spectrale diff´erentielle, pour sa difficult´e
d’utilisation et la densit´e de fréquence instantan´ee pour sa sensibilit´e particulière au bruit.

Il nous reste trois m´ethodes en lice qui ont chacune les points forts et leur talon d’Achille :

– la méthode “arête et squelette” qui poss`ede de bonnes propri´etes de localisation et la possiblit´e
de reconstruction mais est peu robuste au bruit,

– la méthode du “squeezing” qui se localise parfaitement sur les fr´equences uniquement, et qui
dispose d’une formule de reconstruction exacte du signal,

– la méthode de la r´eallocation qui se localise sur n’importe quelle droite du plan temps-fr´equence,
mais pour laquelle on n’a pas de retour possible au signal.

1.5 Conclusion

On a introduit, dans ce chapitre, le principe de la r´eallocation, `a la fois dans le contexte des dis-
tributions d’énergie quadratiques temps-fr´equence (classe de Cohen) et temps-´echelle (classe affine).
Nous avons insist´e sur le fait que la r´eallocation se fonde sur une r`egle générale que l’on peut envisager
d’appliquer hors du cadre o`u elle aété définie.

Nous avons ensuite pr´esenté quelques propri´etés des distributions r´eallouées dont la plus impor-
tante est qu’elles donnent une solution acceptable au compromis de la pr´esence d’interf´erencesvs.la
localisation sur les composantes du signal. Nous avons, `a ce titre, vu que la localisation que l’on sait
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FIG. 1.7 –Comparaison d’une famille de m´ethodes en relation avec la r´eallocation (signal bruité).
(a) le signal est celui pr´esenté en Fig. 1.5 ajout´e à un bruit blanc gaussien (RSB = 2dB), (b) mé-
thode “arête et squelette”,(c) analyse spectrale diff´erentielle (la proportion d’énergie dans la bande
d’analyseR(t; !) : axe de gauche, courbe du bas ; la phase de la FCT'(t; !) : axe de droite, courbe
du haut) avec en pointill´e la régression lin´eaire dans la zone o`u R(t; !) est non nul,(d) densité de
fréquence instantan´ee,(e) méthode du “squeezing”,(f) spectrogramme r´ealloué.
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parfaite sur les modulations lin´eaires de fr´equence d’enveloppe constante, continue `a être effective,
dans une certaine mesure, sur des modulations non lin´eaires de fr´equence.

Nous nous sommes ensuite focalis´es sur le spectrogramme et le scalogramme. Nous avons mon-
tré que, pour ces distributions, les op´erateurs de r´eallocation peuvent se reformuler de diff´erentes
manières, chacune d’entre elles apportant un ´eclairage nouveau sur le processus de r´eallocation. En
particulier, une formulation `a base de quotient de FCT (resp. transform´ee en ondelettes) pour le spec-
trogramme (resp. scalogramme) permet une mise en œuvre efficace de la r´eallocation de cette distri-
bution.

Enfin, ce chapitre se conclut par une mise en parall`ele synthétique de quelques m´ethodes de des-
cription temps-fréquence du signal qui ont `a voir avec la r´eallocation. Apr`es avoir montr´e les liens
théoriques qui unissent toutes ces m´ethodes, nous en avons fait la comparaison. On a pu appr´ecier
le caractère crucial de l’utilisation de deux op´erateurs pour la localisation de la repr´esentation. En
contrepartie, se limiter `a un seul op´erateur de r´eallocation permet de b´enéficier de formule de recons-
truction qui autorise un retour au signal. Ces formules ne sont pas disponibles d`es que l’on utilise
deux opérateurs (leur non existence n’a cependant pas ´eté prouvée).

45



46


