Table des materes

Introduction 3
Notations 9
1 Le principe de la méthode de €allocation 11
1.1 Principegiéral . . . . . . . . . 11
1.1.1 Refocaliser une distributionless”™. . . . . . ... ... ... ... ..... 11
1.1.2 Langthode deeéllocation danslaclassedeCohen. . .. . ... ... ... 13
1.1.3 Gréralisatiorm’laclasseaffine . .. .. ... ... ... .. ........ 17
1.1.4 Champde vecteur deallocation . . ... ... .. ... ... ....... 19
1.2 La€allocationdu spectrogramme . . . . . . . . . ... 19
1.2.1 Relation avec la phase de la FCT, intetation en tant que dduence instan-
tande et retard de groupelocaux . . . . ... ... ... ... ...... 19
1.2.2 FormulatioraTaide de quotients de FCT, applicatiata mise en ceuvre . . 21
1.2.3 Rdallocation du spectrogramme et approximation de la phase stationnaire . . 22
1.2.4 Ograteur deedllocation et changementathelle . . . . .. ... ... .. 27
1.3 Laallocationdu scalogramme . . . . . . . . .. ... 27
1.3.1 Relation avec la phase de la transfeereh ondelettes . ... . . 28
1.3.2 FormulatioraTaide de quotients de transfoems en ondelettes, appllcatlam
lamiseenceuvre . . . . . . .. e 29
1.4 Une famille de nathodes autour d'uneemeidke . . . . . . .. ... ... ... .. 30
141 PrinCipe . . . . . . 30
1.42 Comparatif . . . . . . . . 37
1.5 Conclusion . . . . . . e 43
2 Quelques exemples de champs de vecteurs deatlocation a7
2.1 Spectrogramme . . . . . .. e e e e 47
211 Impulsion . . . . .. e 48
212 FBQUENCE . . . . . . o e e e 48
2.1.3 LogonGaussien. . . . . . . .. 48
2.1.4 Modulation liraire defequence . . . . . . . .. ... L 49
2.1.5 Modulation liraire de fequence, d’enveloppe gaussienne . . . . . . .. 49
2.1.6 Somme de deux impulsions ou de deegéénces . . . . .. ... ... .. 50
2.2 Scalogramme . . . ... 53
2.2.1 Estimation de I'exposant deoldiéra I'aide du scalogramme . . . . . . . .. 53
2.2.2 Estimation de I'exposant deoldliéra I'aide du scalogrammeallowg . . .. 57



2.3 Statistiques des vecteurs @alidcation du spectrogramme . . . . . . ... ... ..
2.3.1 Statistiques des egteurs degallocation du spectrogramme de

Gabor . . .. e e 64
2.3.2 Statistiques des epteurs degallocation du spectrogramme . . . . . . . .. 68
2.4 Conclusion . . . . . . e 74
3 Des extensions et des agliorations a la réallocation 77
3.1 CEongtrie du champ des vecteurs @allocation . . . . . ... ... ... ..... 77
3.1.1 Phaseepnetrique etcourbesdeniveau . . . . ... ... ... ... ... 78
3.1.2 Potentiel scalaire et lignes de plusgrandepente . . . . .. ... ... .. .. 79
3.2 Réallocationdif€rentielle. . . . . . . . . . . ... .. 82
3.2.1 PrinCipe . . . . . 82
3.2.2 Points fixes par l&gllocation . . . . . ... ..o 86
3.3 Partition. . . . . . e 89
3.3.1 Difféerentesapproches . . . . . . . . .. ... 89
3.3.2 Une proposition bag’sur la eallocation dif€rentielle . . . . ... ... .. 91
3.3.3 Algorithme pour la partition. . . . . . .. .. ... ... ... 91
3.34 Quelquesexemples . . . . . . ... 93
3.3.5 Fusiondepartition . . . . ... ... . 105
3.4 Conclusions sur laegllocation diférentielle et la partition tempsequence . . . . . 116
3.5 Raallocationsuperve® . . . . . . . . . e 117
3.5.1 Superviserlaedllocation. . . . ... ... ... 117
352 Miseenceuvreetsultats . . . . . ... ... ... 119
3.5.3 Conclusionssurlasupervision . . . . . . ... ... . oo 122

4 Application de la réallocation au probleme de la eétection d’'ondes gravitationnelles 125

4.1 Introduction. . . . . . . .. e 125
4.2 Chirps . . . . e 127
4.3 Détection . . . . . .. e 128
4.3.1 Dstectionoptimale . . . . . . . . .. .. ... 128
4.3.2 Dstectiontemps-8quence . . . . . . . ... 131
4.4 Detecterleschirpsligaires . . . . . . . . . . 132
45 Détecterleschirpsenloidepuissance . . .. . ... .. ... .. ... ... 133
4.6 Lexemple des ondes gravitationnelles . . . . . .. ... ... ... ....... 138
4.6.1 Un moele pourla coalescence de binaires. . . . . ... ... ... ... 138
4.6.2 Un dtecteur temps-#quencesimplié™. . . . ... ... ... .. ..... 141
4.6.3 Uneillustration .. . . . . . . . . . . . .. 145
4.7 Conclusion . . . . . . . e 148
Conclusion 151
Annexes 153
A Simplifications des oprateurs degallocation du spectrogramme . . . . . . ... .. 153
Al  Opérateur degdllocationentemps. . . . . . . . . . ... ... 153
A.2  Opeérateur deedllocationen®quence . . . . . .. ... ... ... .... 154
B  Simplifications des ograteurs degallocation du scalogramme . . . . . .. ... .. 155
B.1  Operateur degdllocationentemps. . . . . . . . . . ... ... ... 155

2



B.2  Orerateur deedllocationerechelle . . . . . . ... ... ... .. ..... 156

Densit de probabilié’des vecteurs deallocation du spectrogramme . . . . . . .. 157
Cl Formuledesintegfences . . ... ... ... ... ... ... .. ..... 157
c.2 Densit’ de probabili¢’des vecteurs deallocation, feefre gaussienne, signal

+bruit. . .. 157
C.3  Quotient de variablesedtoires complexes gaussiennes . . . . . . ... ... 158
La méthode de la phase stationnaire. . . . . . . ... ... ... ... ... ... 161
D.1  Quelquesrappels . . . . . . . 161
D.2  Approximation de phase stationnaire des spectres des chirps. . . . . . 161
D.3 Exemplesetcontre-exemples. . . . . .. .. ... ... 163






Introduction

Il est aujourd’hui bien admis que les regentations d’'un signal conjointement en temps et en
frequence @sSentent un &t en soi: elles donnent une description naturelle des signaux non sta-
tionnaires, e.g., dont ladjuence varie au cours du temps, ou provenanegienes transitoires. Le
probléme reste de savoir comment arrieune telle description. Laediarche la plus intuitive est
celle de I'analyse de Fourier court terme qui condud lintroduction duspectrogrammémodule
care de la transfor@é de Fouriea court terme). Ce n’est cependant qu’'une approche parmi d’autres
et une formalisationg¥rale du prol#me aboutia’'la conclusion qu’il n’existe pas une solution in-
téressante mais toute une i Dans le cas des distributions quadratiques, il est maintenant bien
connu que, sous hypake de covariance par rapport aux translations en temps etegrefre, les
differentes solutions admissibles se regroupent dans un ensemble, que I'on@ppsdale Cohen
dont le spectrogramme n’est qu’eiément. Une autre classe de solutions digne ef&itést celle de
la classe affingui rassemble les distributions quadratiques covariantes par les translations en temps
et enéchelle. Dans cette classe sealogrammémodule care’de la transfor®é en ondelettes) joue
un réle matlematiquemeng¢quivalent celui du spectrogramme dans la classe de Cohen.

A l'int’erieur de ces deux classes, il n’existe pas de solution universelle, i.e., valable pour tous si-
gnaux, en terme de lisibigtde la repesentation. On doit, en effet, choisir entregghce dhterférences
(duesa'la nature biliraire de la distribution) eftalement (owélocalisatior) des composantes du si-
gnal (di au lissage utilis"pour atthuer les intedfences). Integfences et elocalisation viennent
compliguer, chacuna leur mangre, la lecture de la repsentation soit, pour les preenés, par des
termes d’interaction peu signifiants (les ineghces), qu'il est parfois difficile degarer de I'infor-
mation pertinente soit, pour la deexne, parce qu’'elle en diminue le contraste.

D’un point de vue pratique et compte tenu de la nature des sigmamalyser, il est difficile au
non sgEcialiste de faire d’abord le choix de la repentation (parmi tout celles qui sont possibles) qui
aboutit au meilleur compromis, et ensuite de lire simplemerddaltat de I'analysestéctionree.

De nombreux travaux orgté dédiésa I'amélioration de la lisibili€ des distributions de la classe
de Cohen et de la classe affine. Latimode de laeallocationrésulte de ceux conduits par Kodera,
Gendrin et de Villedary dans le courant des @ 1970 et Auger et Flandrin qui en ont fait une
récente eactualisation. Son principe est d=arfanger (ouadllouer) les valeurs d’'une distribution
présentant peu d’integfences pour en atidrer la localisation, en s’aidant d’'une distribution bien
localisge (avec, donc, des interEnces). Plus pcigment, cela consistedplacer avec unhamp de
vecteurs deeallocationadéquat les valeurs d’une distribution mal locakgie la classe de Cohen ou
de la classe affine, pour en concentrer les composantes du stake ¢ par lissage).

La méthode deegallocation dont les quadis sont aujourd’hui reconnueset applige dans des
contextes divers avec dessiiltats satisfaisants (voir e.g., [16, 34, 9, 85]). Elle eanmioins un outil
méconnu et son gtanisme est dans certaines situations (e.g., signaux avec plusieurs composantes,
mélanges signal et bruit . ) mal compris.



L'objet de cette thse est d’apporter une meilleure corapension de la ethode deeallocation,
d’en proposer des aatiorations et détendre son champ d’application au delu cadre de I'analyse
(temps-fEquence) proprement dite.

On s’intéressera essentiellementa Ballocation des spectrogrammes et scalogrammes dans la
mesure a celle-ci jouit d’'une plus grande richesse d'interfation et conduid des @veloppements
mathématiques plus simples.

Nos objectifs:

¢ Apporter une meilleure comehension de la ethode deeallocation

La réallocation n'est pas la seule sagie envisageable pour le prebie de la lisibili€ évoqle
plus haut. Nous commenns dans le premier chapitre par faireelyment uretat des connaissances
actuelles concernant laallocation. Nous mettons ensuite@ndence I'existence d'un ensemble de
méthodes ddiées au rafe objectif qui se retrouvent autour d’'une commuealitées. Nous situons
chacune de cesetliodes relativement aux autres en en montrant les aspects communs et en comparant
les descriptions qu’elles donnent du signal.

Dans le dewdme chapitre, hous nous attach@nfaire une description analytique aussi com-
plete que possible du champ de vecteurseddl@cation dans quelques caggqs: d’abord pour le
spectrogramme, avec une gamme de sighaux jouets, ensuite pour le scalogramme, avec des singu-
larités tolderiennes is@és, situation qui @sente un irrét particulier puisque I'on eneatluit que,
comme le scalogramme, le scalogrammalloe peut servir, sous certaines conditiom$a mesure
de la Egulari€ locale des signaux. Enfin, nous comsatis le cas important des signausaibires, et
plus sgcifiguement des signawetErministes auxquels s’ajoute un bruit gaussien stationnaire. Nous
obtenons pour ces sighaux la deasl€ probabilié’des vecteurs deallocation.

Les distributions temps-diuence ne sont pas des fonctions quelconques. Il en estrde pour
les champs de vecteurs dmtfocation. Ces derniers respectent des contraie@sdjfiques pecises
gue I'on se propose de caradser dans le troieime chapitre. En particulier, on montre le lien impor-
tant qui unit le champ de vecteur d=atlocatiora un potentiel scalaire dont iedive exactement sous
certaines conditions.

¢ Proposer des agliorationsa la méthode deeallocation

La méthode deeaallocation @place les quangs de margre discete, i.e., par “bonds” finis, dans
le plan temps-quence. Lesesultats prouvant que le champ de vecteursedéacation est intime-
ment relg a un champ de gradient sugyg par analogie aux syshes dynamiques physiques une
géréralisation continue, laeallocation difErentielle dans laquelle les contributioesérgtiques.a
Iimage de particules, se meuvent continént dans le plan tempseffience selon une vitesseehix”
par le vecteur deedllocation. On montre que cette approche petg Yue comme une extension
d’autres nethodes (les ethodes “agfe et squelette”) psenges au premier chapitre.

Déja constate de margre heuristique, et confiree par les calculs accomplis au derre cha-
pitre, la sensibilié”au bruit (large bande) de laethiode de eéallocation fait figure d’obstacla son
utilisation dans certaines situatioreellesa faible rapport signal sur bruit. Nous proposons en fin
de troiseme chapitre, une agtidration destireéa augmenter la robustesse de la espritation, qui
consistea autoriser lagallocation uniquement lorsque I'on estime se troaproximige d’un signal.
On peut considfer que I'on engage un audit ou ugepervisionen chaque point du plan temps-
frequence sur la pertinence de la mise en jeu dedHacation, et ce au vu d’'informations obtenues
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par le biais de I'utilisation d’un panel de fetiés d’observation.

e Etendre son champ d’application au delu cadre de I'analyse (tempsefilience)

La réallocation aeté initialement introduite dans un but essentiel d’analyse, i.e., avec comme
objectif une arelioration de lisibiliE. Nous envisageons dans ce document I'extension possible de
I'applicabilité de I'approche dans deux directions qui vont awadd T'analyse proprement dite. Au
chapitre 3 d’abord, nous nous ém€ssons une description originale des signaux setgnta une
extraction de composantesatieur dbruitage. Pour ce faire, on s’appuie sur la description du si-
gnal fournie par laeéallocation dif€rentielle pour construire urgartition du plan temps-g#quence
dans laquelle chaquegion est assog€a une composante du signal moekllén fEquence et/ou
en amplitude. Nous comparons lesultats obtenus avec ceux issus de techniques informationnelles
et de traitement d'image. Aps avoir mont’les faiblesses de cette approche, nous proposons des
algorithmes ddéusionpour y rengdier.

Nous nous irgfessons ensuite dans le chapitre 4 au problde la dtection optimale de signaux
moduks en fequence owhirps Il est connu que la formulation tempsfience de ce prabtie
conduita des algorithmes bas’sur I'inEgration de chemin d’une distribution tempsetience, la
condition d’optimali€ $lectionnant le chemin et la distributionexgliats. La mise en ceuvre d’'un tel
détecteur temps-fuence se heurtegsralemen@a’la difficulté du calcul de la distribution temps-
frequence que I'on doit utiliser. C'est par exemple vrai dans le cas important des chirps hyperboliques
que l'on traite dans le etail. Nous montrons que dans cette situation le spectrograreatie e,
plus facilea évaluer, peuefre emplog avec profit en tant qu’estimateur de la distribution centrale
pour notre proldme. Nous appliquons cessultats au prokme sgcifique de la dfection d’'ondes
gravitationnelles. Il esh hoter que ce dernier chapitre constitue une eetitsoi et que ses objectifs,
guidés par I'application, asmenta des contributions originales mais es€uresa’la méthodologie de
réallocation proprement dite. Il fournit cependant une illustration de commesali@cation — en
tant qu’outil dont les propeis sont bien méisées par ailleurs — peut s’'ieggr avec profit dans une
chahe de traitement du signal.

Il est possible de refaire toutes les figures de ce document, si I'on dispose du logiciel Mat-
lab 5 (Mathworks Corp.), eretéchargeant les scripts correspondantiadresse internet suivante:

http://mwww.physique.ens-lyon.fr/ts/publi.html






Notations

Temps-fréquence

Classe de Cohen

We(t,w) = / a(t — s/2)a"(t 4 5/2)e ds Distribution de Wigner-Ville
dsdg N
Ce(t,w) = // Wy(s,OIl(s —t,& —w) 5 Distribution de la classe de Cohen
T
dsdg , . .
to(t,w) . // sWe( (s —t,&—w) o Opérateur deeéllocation en temps
w
dsdg ; . . .
Wy (t,w) . //5 (s —t,& —w) o Opérateur deeéllocation en guence
w
. . dsd¢ . .. .
Co(t,w) = // Co(5,6)6(t —t:(s,8), w0 — Du(s,6)) . Distribution Ballowge
Po(t,w) = (Lo (tw) — t, &p(t,w) — w)’ Champ de vecteurs deaflocation
Po(t,w) = (to(t,w) — 1) +i(0p(t,w) — w) Image dans le plan complexe
Spectrogramme
Flt,w) = /x(s)h*(s — )W g ette/? Transfornge de Fouriea Court Terme (FCT)
Sh(t,w) = | F t,w)|? Spectrogramme
1(t,w) = Wi(t,w) Noyau de paraetrisation

"t w) =1/2 — 0, arg{F"} =t + Re{F/FI} Opérateur deeallocation en temps

O (t,w) = w/2+ Oy arg{F'} = w — Im{F¥/4 "} Opérateur deeallocation en fguence



Temps-€chelle

Classe affine
—b dsd o :
Q. (a,b) = // Wx(s,g)H(S ,a{) ; 3 Distribution de la classe affine
a T
-b dsd .
b, (a,b) // H(S ,a{) sd¢ Opérateur deeallocation en temps
(a, b a 27
—b dsd¢ . , . ,
Wy (a,b) b EW,(s, 611 ,a€ 5 Opérateur deeallocation en guence
a T
d d
wo _/ Ell(s ° 5 Fréquence centrale
a? (a,b) = wo/Wx(a,b) Opeérateur deeallocation erechelle

Qu(a,b) = [ [ (¢, 8)6(b—b,(C,8),a— a.((,5)) AQCQ dsd(
2(¢,s)

Scalogramme
fs—0b 3

Ty(a,b)= [ z(s)y - ds Transforn&e en ondelettes
SY(t,w) = |TY (t,w)|? Scalogramme

H(t,w) = Wy(t,w) Noyau de paraetrisation

wo = /§|\Il(§)|2d§/(27r) Fréquence centrale
bY(a,b) = b+ aRe{T¥/T¥} Opérateur deeéllocation en temps
N awy . z . ’
ay(a,b) = — T Opérateur deeéllocation erechelle
Im {7 )18
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Chapitre 1

Le principe de la méthode de kallocation

Ce chapitre introductif constitue une syasie bibliographique sur laetliode deegallocation. On
en introduit d'abord le principe, lesfihitions des quan&s matlematiques mises en jeu et quelques
unes de leurs prom#és. On se focalise ensuite sur éaliocation du spectrogramme (module earr”
de la transforreé de Fouriern court-terme) et du scalogramme (module €ate’ la transformeé en
ondelettes), deux distributions qui nouserdgsserons particeliement par la suite. Finalement, on
établit un paraktle, dans un formalisme unique, entre lathode deeéllocation et d’autres ethodes
qui partagent des &Es analogues bien que propes iné&pendamment.

Précisons que la section introductive s’appuie essentiellement sur les travaux de éalg6y,
66] (Sect. 1.1.1), et sur ceux d’Auger et Flandrin [5] (Sect. 1.1.2). Les sections 1.2 etlerd ohés
eléments pris dans [5] et des travaux personnels dont certairtegmbliés [40]. Enfin, la syntbse
fait en Sect. 1.4 constitue la contribution principale de ce chapitre.

1.1 Principe geréral

La méthode deeallocation & introduite [67] en 1976 par Kodera, Gendrin et de Villedary. Cette
anrée marque@alement la prerare utilisation du formalisme de la classe de Cohen pour le traitement
des signaux non stationnaires [35]. Pourtant, leesdappo#gés par la rethode deeallocation n’ont
pas profi€ immédiatement de cessultat fort, qui rassemble dans uemé cadre @drique toutes les
distributions d€nergie temps-&quence bilieaires (covariantes par les translations en tempset fr’
guence). Ce n'est quecémment, que Auger et Flandrin [5] ont reformids ices de lagallocation
dans le cadre de cettedttwie et ont mon#la pertinence de la@athode deeéallocation en tant qu’outil
compEmentaire pour I'analyse temp®fience.

Pour peciser les idés fondamentales de leatlocation, nous erclaircirons, dans un premier
temps, le principe dans le cas particulier du spectrogramme [67] par souci de senplicit”

1.1.1 Refocaliser une distribution lisge

La transfornee de Fouriet

X(w)= /x(t)e_m dt, (1.1)

1. Nous emploierons uneféihition de la transformé de Fourier en pulsation padtju’en fiéquence. Les iejrales sans
bornes explicites courent dexo a +oo.
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ou son module caer[X (w)|? le spectre, si I'on est iBtesg par I'énergie, offrent pour les signaux
stationnaires une cara&eisation simple et facila interpgter.

Des que I'on sort de ce cadre, par exemple, lorsquisird mettre ervidence des glissements
de la frequence du signal au cours du temps, localiser dgBnes transitoires, ou caragser la
naissance ou l'extinction d’un signal, il est naturel d’'abandonner la descriptionpararatre (le
temps ou la fequence) et de passeune repesentation conjointa la fois en temps et endguence.

On doit alors se poser le pravhe de dfinir une telle reggSentation du signal. La distribution de
Wigner-Ville est un candidat envisageable pour la descriptiona®llition de IEnergie :

We(t,w) = /x(t—l—s/Q)x*(t—s/Q)e_is‘” ds. (1.2)

On constate en Fig. 1.1a) sur un signal constieide deux modulations l&a@ires de gguence
paralEles, qu’elle €ponda nos esprances : Energie est conceme autour de chacune des lois de
variation de la fequence en fonction du temps des deux signaux. Mais la naturediittnde cette
distribution provoque I'apparition diterférenceqd39] qui se mattialisent par des structures oscil-
lantes (entre valeurs positives egatives) qui viennent en compliquer la lecture.

Il nous faut trouver une solution pour supprimer ces ienfices. Compte tenu de la structure de
celles-ci, le lissage (I'application d’un filtre k&ire passe-bas) de la distribution de Wigner-Ville, est
une solution naturelle.

A ce titre, le spectrogramme (cf. Fig. 1(b)) 5% (¢,w) = | F/(t,w)|? i.e., le module cagde la
transfornge de Fouriea Court Termé (FCT):

Flt,w) = /x(s)h*(s — t)e” W ds et/ (1.3)

peutétre vu comme une version lssde la distribution de Wigner-Ville du signal

dsdg
or

St(tw) = [[ Wl OWils — 1.6 =) (1.4)

par un noyawegald la distribution de Wigner-Ville de la fetre/ ().

Dans les egions @ la distribution de Wigner-Ville ne psente que des interénces, celle-ci
fluctue rapidement entre valeurs positives egatives qui se compensent si on en fait une moyenne
locale. Ceci arane le spectrogramme (cf. Fig. 1(t)) a avoir, dans cesgions, une valeur proche
de 0. Les inteiences sont donc bien@ttEes. En contrepartie, le lissage provogeg¢diément de
la distribution d€nergie dans leggions assoeis au signal (cf. Fig. 1.1d)), ce qui conduit pour le
spectrogramma une perte dessolution et de contraste.

Le principe de lagallocation [67] est de “refocaliser” le spectrogramme suepearfition déner-
gie temps-fequence doree par la distribution de Wigner-Vilfe Cela consista téplacer les valeurs
du spectrogramme de leur point de calcul vers une nouvelle pogitionw), &(¢,w)) donrée par

2. Dans la suite, on afera les notations de la FCT et du spectrogramme lorsqu'il n'y aura pas ataleigsupprimant
les indices concernant le signal et/ou laderutili€s.

3. Dans la version originale, Kodeedal. ont utilisé la distribution de Rihaczekla place de la distribution de Wigner-
Ville. Pour le spectrogramme, I'utilisation de I'une ou l'autre de ces distributibosiét aux n€mes esultats. Ce n’est plus
le cas dans cadreegéral que nousekrirons dans la section suivante. Nousf@rérons la distribution de Wigner-Viligour
ces nombreuses propt’s (de localisation, notamment) [5].
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un barycentrevallg sur la distribution de Wigner-Ville du signal dans un voisinage du plan temps-
frequence dfini par le noyau de de lissa§, (¢,w) de la manére suivante:

(¢, w) = s Wals, ) Wh(s — t,€ — w) dsdg (1.5)
2T
dsd

Gl (t,w) / EWo(s,E)Wh(s — 1, —w) ;f. (1.6)

Le spectrogrammeetllolg s’obtient donc enedgeant les valeurs du spectrogramme dans le
plan temps-fequenceeventuellement en en faisant la somme si deux quenétiivent au mme
endroit :

:/ S5, €08 (1 = 1h(s,€), 00— S (5,6)) T (1.7)

Dans notre exemple en Fig. 1.1, le spectrogrameaéia(é donne une descriptiores simplea’
lire eta interpgter, proche de la repsentation idale (que I'on esgre).

1.1.2 La methode de eallocation dans la classe de Cohen
Geéneralisation

Nous avons dfini les o@rateurs degallocation comme les coordoges du centre de masse cal-
culé sur la distribution de Wigner-Ville du signal prise dans un voisinage du plan teeypsefnce.
Ce voisinage estatérmire€ pour le spectrogramme pHr;, (¢,w), la distribution de Wigner-Ville de
la ferétre. Rien n'empéhea priori de consiérer d’autres types de voisinage. Ceci revient ators °
choisir un noyau de lissage arbitraire pour la distribution que lesiré gallouer.

Soitll(t,w) ce noyau, la distribution qui lui est asses®crit alors comme la convolutiay) de
la distribution de Wigner-Ville du signal:

Cotw) = [[ Wt ms — g o) S (1.8)

On se retrouve alors naturellement dans la classe de Cohen qui rassemblent toutes les distributions
bilineaires temps-&uence covariantes aux translations en temps eegquoédrice [39].
La géréralisation pour ces distributions degs. (1.5) et (1.6) est alors directe [5]

dsdé
to(t,w) = tw// W ( (s —t,& —w) o (1.9)
dsdé
Wp(t,w) = o) / EW,(s (s —t,&—w) 5 (2.10)
On modifie ensuite la distributiafi, (¢,w) de manére identique au spectrogramme :
. dsd
it o) = // Cols, €8 (t — 1u(5,€)s 00 — G (5, €) ;f. (1.11)

De cette mardre, on associa@ chaque distribution de la classe de Cohen, une distribution reedifi”
par la methode deeéllocation. L'utili®¢ de la modification de telle ou telle distributioepEnd de la
nature du noyau de paratnisation. Par exemple, I'application de &aliocation sur la distribution de
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(a) Wigner-Ville (b) spectrogramme
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Fic. 1.1 —Principe de la Ballocation du spectrogrammévoir Sect. 1.1.1). Le signal est foem”
de deux modulations ledires de fequence d’amplitudes gaussiennes. Pour la description temps-
frequence T'aide de distribution bilirgaire, on est confroeta un compromis entre psence d’inter-
ferences, termes oscillants sur la distribution de Wigner-Vé)eet délocalisation des termes signal,
comme sur le spectrogramtti® : le lissage de la distribution de Wigner-Ville a pour avantage aatt”
nuer les interérences puisque les valeurs positivesegjatives se compensent dans la somme daite
l'int'erieur de domaine tempsefguence €fini par le noyau de lissage. C'est qui est illlesan(c) qui
montre la restriction de la distribution de Wigner-Ville au domaine tempgtfEnce qui sert au calcul
du spectrogramme au point margd’un x en(b). En contrepartie, la taille finie du noyau de lissage
conduita unétalement des composantes du signal et domee perte en localisation. Par exemple, la
valeur du spectrogramme au poiten (b) est obtenue par la moyenne des valeurs de la distribution
de Wigner-Ville apparaissant €d). Le principe de la €allocation est de ne plus affecter cette valeur
au point+ mais de la éplacer au poinb, centre de masse des contributions(dl et point plus
représentatif du comportemeanérgstique local du signal. En preciant de la sorte en tout point
du plan temps-EQuence, on obtient le spectrogramrealtoué (f), distribution “refocalisgge” sur la
repartition dénergie donaé par la distribution de Wigner-Ville. Le spectrogramrealtoué présente
des Bsultats satisfaisants en termes de lisibikt de facili€ d'interprétation comme le montre sa
comparaison avec la repsentation idale(e).
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(a) Pseudo Wigner—Ville (b) Pseudo Wigner—-Ville reallouee
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FiGg. 1.2 —Distribution de la classe de Cohen et leurs versions mah§ par la nethode de eal-
location. On présente ici sur la colonne de gauche, quelques distributions classiques de la classe de
Cohen, et en regard sur la colonne de droite, leur versions nesdifpar la rethode de eallocation.

(a) Distribution pseudo Wigner-Ville: noyau de paretrisationll(¢,w) = §(¢) H (w). (c) Distribu-

tion pseudo Wigner-Ville lig : 11(¢,w) = ¢(¢) H (w). En(b) et (d), les distributions eallouées qui

leur correspondent respectivement.

Wigner-Ville pour laquelld1(¢,w) = é(¢,w) donnea nouveau la distribution de Wigner-Ville, et est
donc inutile. On ne dispose pas dmgle quantitative qui permet de savoir quand 'application de la
réallocation est digne d’ietét. Néanmoins, il est naturel de penser qu’elle est jestifdrsqueél (¢, w)
définit implicitement un voisinage du plan tempsdtience (qui donne un seaa notion de centre
de masse local) aux dimensions telles quediatiation des integfences soit suffisante.

Propri étes

On répertorie ici quelques progts des distributions de la classe de Cotealloiges qui sont
intrinsequement Besa la nethode degallocation et doncerifiées par toutes celles-ci). On donne les
preuves sans entrer dans lesalls (on efére le lecteur irgfesga [5]).

e Distribution d’énergie
La réallocation ne fait queeplacer des valeurs. Si la distributiaméallouer est une distribution
d’energie, i.e., sff C.(t,w) dtdw/(27) = ||z||3, alors la distribution as Eallocation estgalement

une distribution c&nergie :
. dtdw
J[ et 52 = el (112)

e Covariance aux translations en temps et esgirénce
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La classe de Cohen est la classe des distributiogrsatijie quadratiques covariantes aux trans-
lations en temps et endgquence. Il est ieressant de savoir si cette dema propréte est conseee
apres €gallocation.

Soit[T', gz](t) = z(t — 7)€", la version transla&g du signat () d’un retardr et d'un dopple#.
Les oggrateurs degallocation d&C'r_,.(¢,w) s'obtiennent en partant desfifiitions (1.9) et (1.10),
et en invoquant la covariance aux translations en temps eeguadnce des distributions, soit pour la
distribution de Wigner-VilldVr_,.(t,w) = W,.(t — 7,w — 6) et pour les distributions de la classe de
CohenCr, . (t,w) = C(t — 7,w — ¢). On en &duit

. 1 dsd

tr, oot w) = SR TpE—) //SWx(s—T,ﬁ—H)H(s—t,ﬁ—w) ;Tf (1.13)
1 dsd

dTT,ex(t7w) = Cx(t —Tw— 0) / fo(S - 7—75 - G)H(S - tvf - w) ;ﬂ_fv (114)

équation dans lagquelle on recomnap®es un changement de variables, lesrapeurs degallocation
deC,(t,w)

7, go(t,w) =7 +1,(t — 7,0 — 6) (1.15)
OT, gu(t,w) =0+ Op(t — 7,0 — 0). (1.16)

Utilises dans Eq. (1.11), ils conduiserat °
CT, po(tow) = Colt — 7,0 — ), (1.17)

ce qui prouve la covariance aux translations en temps eequérice des distributions de la classe de
Cohen galloges.

e Localisation parfaite sur les lignes du plan tempseftience

L'action des oprateurs degallocation se traduit par une compression de chaque composante du
signal le long de leur loi de retard de groupe ou/et égdience instantae. Sur les modulations de
frequence (chirps) legires et d’amplitude constante, on peut montrer qu’ibsaite une localisation
parfaite des distributiongalloges.

2(t) = exp (i(Bt?/2 + wot + 7)) = Cult,w) = 6 (w — (Bt +wp)), (1.18)

Cette prop®t est simplea dmontrer dans la mesure pour ces signhaux la distribution de Wigner-
Ville est elle-méme une distribution de Dirac sur la loi= gt + wy. Les centres de massgs. (1.9)
et (1.10) sont donc locaks récessairement sur cette loi, ce qui prouve (1.18).

Plus ggréralement, les distributionsallowges de la classe de Cohen sont parfaitement leealis”
sur tous les signaux pour lesquels la distribution de Wigner-Ville se localise parfaitemerd-diest-
en plus des chirps, lesgfquences pureg (= 0) et les impulsions (que I'on peut abusivement assimiler
aucasa — o).

¢ Non linéarité et localisation

Dans le cas de chirps non &aires, laeallocation aura un effet de compression similaire, si la
frequence instantae’ou le retard de groupe du signal sont presg@aiisdocalementc’esta-dire
dans un domaine tempseffience dont le support esfohi par les largeurs en temps et eeduence
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FiG. 1.3 —Spectrogrammesaélloués de modulations non lieaires de fequence Pour les mo-
dulations non likairement en fquence, le spectrogrammeatloué posede encore la fois une
bonne localisation le long de la ligne deefflence instanta® (qui provient de la distribution de
Wigner-Ville) et peu d’intedfences (kfitage du spectrogramma)la condition que le signal puisse
etre assimi’ localementi’'une modulation lieaire de fEquence. Ceci est illugtrSur deux signaux
test: un chirp en loi de puissance qui houseigSsera plus particudrement au chapitre 4, et une
modulation sinuslale de féquence d’amplitude constante. Pour ces deux signaux, @septé le
spectrogramméa) et (d), suivi de la distribution de Wigner-Vilig) et (e), et enfin le spectrogramme
realloug (asso@ au spectrogramme de la presré colonnejc) et(f). On note que I'on perd en loca-
lisation aux endroits 0 'hypothese de lirarité locale est moinserifiee (par exemple aux sommets
de la sinusade).

de la fergtre d’analyse. Ceci est illusten Fig. 1.3 avec le spectrogramneeltoug d’un chirp en loi
de puissance et d’'une modulation sinasdé de fequence.

En conclusion, les distributionsallouges gsolvent un compromis, en ayaata fois peu d'in-
terférences et de bonnes pragiéis de localisation. Le prix de ce compromis est la compeXét la

distribution. Les distributionsedllowges ne font pas partie de la classe des distributions quadratiques.
Leur forte non lirgarig fait qu’elles sont moins robustes au bruit, et qu’elles deviennent plus difficiles

a manier matématiquement, comme nous allons le voir dans la suite du document.

1.1.3 Generalisation a la classe affine

La classe affine regroupe les distributionsriérgie temp&chelle quadratiques et covariantes par
les translations en temps etechelle!. Ces distributions gCrivent comme des versions modég de

4. Les variablea etb désigneront respectivement dans ce cadrehi€lle et le temps.
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la distribution de Wigner-Ville

Qw(a,b)://Wx(s,f)H(S : g) dsdt (1.19)

par un lissage particulier que I'on qualifieadfine La forme du noyau varia chaquechelle. Pour les
échelles: > 1 (resp.a < 1), c’est une version dila€ (resp. contrae€) en temps et contraa (resp.
dilatée) en fEquence du noyau deférencdl(¢,w). Cela ne nous engehe pas de continuampouvoir
appliquer I'idée de refocalisation par laallocation des contributions tempskielle vers la distribu-
tion de Wigner-Ville par des centres de masse locaux.dfanition de I'opérateur deeallocation en
temps se dduit directement

by(a,b) X e) // (‘9 : 5) dsdf. (1.20)

La nature particuéite du lissage affine nous obligepasser par I'interadiaire d’une dfinition

frequentielle
Gy, b) X / £ Wo(s (‘9 : 5) dsdf. (1.21)

gue I'on convertit ensuite eechelle par

ay(a,b) =

1.22
Oy (a,b)’ ( )
olwy = [[£&I1(s,&) dsd¢/(27) est la fEéquence deeférence du noyall(t,w) (de normeL!(R)
unité).

On pro@de ensuita la Borganisation des contributions tenmgxdiélle de la fme margre qu’en
éq. (1.11)

2
Q. (a,b) = // Qx(C,s)é(b - l;x(C,s),a— dx(C,s)) AQ(CC )dst, (2.23)
a la différence, toutefois, de I'ajout d’'une mesure qui garantit que la distributialfortEe soit de
méme somme que la distribution standard.
Notons que dans cette classesgldl du spectrogramme dans la classe de Cohen, est le scalo-
grammmesy (a, b). Il se cfinit commesSy (a, b) = |T2¥ (a, b)|2, le module car'de la transformé en
ondelettes,

T¥(a,b) = /x(s)\/iazb*(s = b) ds, (1.24)

ou comme le membre de la classe affine dont le noyduli(dgv) = W (¢, w) est une distribution de
Wigner-Ville. Nous nous y irgfesserons eretkil un peu plus loin.

Les distributionseallolges de la classe affinetitent de propefés similairesa'celles de la classe
Cohen (voir [5] pour les @monstrations Savoir : ce sont des distributiongdgrgie, covariantes aux
translations en temps et echielle, et elles sont parfaitement locaéis 'sur les grhes signaux que la
distributions de Wigner-Ville (modulations kires de #guence, impulsion de Diracgefjuence).

Au dela de la classe de Cohen et de la classe affine etlhadie de eéallocation peuefre gne-
raliste pour toutes les classes de distributions dont les membres sont obtenus par le lissage d’'une
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distribution de eférence (unitaire, g¥ralement) mSentant de bonnes progtés de localisation sur

une gamme de signaux utiles. Les distributi@@ldges Ieriteront de ces promiés tout en profitant

du peu d'interérences dans la distribution less"Cela fait de la ethode, un processuggral et
sysEmatique pouvant s'appliquard’autres types de distribution tempsdtience (la classe hyper-
bolique [80], par exemple). Nous nous restreindrons cependant dans ce document aux distributions
temps-fEquence et tempsehelle.

1.1.4 Champ de vecteur de&allocation

Dans les deux chapitres suivants, nousfgneérons voir I'action de lagdllocation comme la mo-
dification du plan temps-&guence et de la distribution tempg¢dtience qu'il contient, par le champ
des vecteurs degghlacements

Po(t,w) = (t, — t,0, — W), (1.25)

plutdt que par celle des epateurs (1.9) et (1.10).
Pour les calculs, il nous sera commode d’une part d’assimiler le plan teegpsefice au plan
complexe { pour la partie eelle etv pour la partie imaginaire),¢q. (1.25) devenant alors

Pu(t,w) = (fp — t) + (& — w), (1.26)

et d’autre part, de normalisete champ des vecteurs deallocation par les largeurs temporelle et
frequentielle du noyau

1/2 1/2
At = (/ 11(t, w) dtdw) Aw = (/ WHI(t,w) dtdw) ) (1.27)
27 27

ce qui condui’

t.o—t &p—w)\!
z tv = = 9 - ” 1.2
ra(t,w) ( Al Aw ) (1.28)
ou bien dans le plan complexe, par
f. —t Wy — W
tw) =2 paiid ) 1.2
ra(t,w) = == i (1.29)

1.2 Lareallocation du spectrogramme

Dans le cas particulier du spectrogramme, d’autres formulations sont possibles poersteu”
de réallocation (1.5) et (1.6). Chacune d’entre elles a une eiglEcifique ou ouvre les portesde
nouvelles interpatations.

1.2.1 Relation avec la phase de la FCT, interfatation en tant que frequence instanta-
née et retard de groupe locaux

Nous savons &ja que le noyau de paratmisationll(t,w) du spectrogramme dans la classe de
Cohen est la distribution de Wigner-Ville de la &ré (cf.€gs. (1.4) et (1.8)). Les epateurs de

5. Pour nemoire, le champ de vecteurs @dmlocation se @sentera sans couvre-chef si on luieael sa dimension.
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réallocation sont donc des centres de masse ealdahs des voisinages qui ne sont pas quelconques
mais relésa une galitt physique. Ceci justifie le fait que des liens existent entre lesabgirs de
réallocation et des grandeurs qui ont un sens physigeré.av”

Dans un premier temps, il est possible de reformulerédsitions (1.5) et (1.6x I'aide de la FCT
ou de transformés lirgaires analogues du signal. Ceci est fait en Annexe A et coadl@guation
(A.9) pour I'opérateur en temps, que nous rappelonsiici:

// s Wy(s, )Wi(s — 1, —w) d;df = Re {Fﬁ*(t,w) /sx(s)h*(s — t)e™* ds e“‘”/z} ,
(1.30)
et pour 'oErateur en gquence (cf. (A.15)):
/ EWL(s, ) Wh(s —t,& —w) % =wS(t,w) —Im {Fﬁ*(t,w) /x(s)h’*(s — t)e™* ds e“‘”/z} .
(1.31)

A partir de ces deux nouvelles formulations, il est ietiat détablir le lien des oprateurs de
réallocation aux efivées partielle® de la phases(t,w) = arg{F(t,w)} = Im{log F(t,w)} de la
FCT, simplement en notant qéep(t,w) = Im{0:F/F}(t,w) etd,p(t,w) = Im{0,F/F}(t,w)
[67]

"t w)=1/2 = 0,0 Ol (t,w) = w/2 + dsep. (1.32)
Leségs. (1.32) sont importantaglusieurs titres :

— Information de phase

elles nous informent que les eqaiteurs degdallocation inégrent I'information de phase de la FCT
dont on n'a pas tenu compte pour le calcul du spectrogramme puisque que I'on en garde uniquement
le module.

— Frequence instanta® et retard de groupe locaux

Avec une gorganisation dans lex)s. (1.32) des termes de phases de la FCT, on peut mettre en
évidence que l'oprateur en temps peetre interpete en tant que retard de groupe du signalavu °
travers la feefre/(¢)

bty = —0,arg{ [ x (@ (e - e gL 133)

et de mangte duale, I'opfateur en quence, en tant queesfjience instantae’du signal filte"dans
une bande de éjuence dfinie par la feefre

Ol (t,w) = d; arg { / z(s) (h(s — t)e=1)” ds} : (1.34)

Ceci nous permet de donner une nouvelle inegdion du fonctionnement de laaflocation du
spectrogramme. La valeur du spectrograntfié, «’) correspond I'eénergie de la “partie” du signal
contenue dans un voisinage tempasgiience cergrsur(t,w) aux dimensions figés par les tailles
temporelle et fequentielle de la fegtfe. La Eallocation du spectrogramme regroupe en ueenm”
position lesehergies de chacune des “parties” du signal qui ontdmefetard de groupe et leeme
frequence instantae’

6. Pour simplifier les notations, on remplacéya@s par I'ecriture plus compact;.
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1.2.2 Formulationa I'aide de quotients de FCT, applicationa la mise en ceuvre

Il est également possible de relier leseppteurs deaallocation directemerst des FCT (sans en
prendre la phase). Il s’agit de recommn@dans I'inEgrale du membre de droite dedj. (1.30) la FCT
du signal assoega une feetreégaleath(t) :

//5 Wy(s, )Wi(s — 1, —w) d;if =

Re {F;h (t,w)Fﬁ*(t,w)} 18t (t,w), (1.35)

et celle de I&g. (1.31) une FCT asse&é une feetre€gale la éfivée deh(t) :

dsdg B
o

/ £ Wa(s. Wi(s — 1.6 — w) —tm { F (1 w0) FE (1 w) |+ wShw). (1.36)

Les ofErateurs degallocation s’expriment alos|’aide de quotients de FCT [5]

th
ih (t,w)=1t+Re {%} (t,w) (2.37)
dh/dt
dfj(t,w) =w-—1Im { xF } (t,w). (1.38)

On peut en faire de erhe avec le vecteur deepglacement normaks(@qg. (1.29)) parAt, ici égal
a la duge de la feafre (dénergie unie) Aty = ([ ¢*|h(t)|? aht)l/2 et Aw, égala la largeur de bande
de la fergtreAw, = ([ w?|H (w)[? dw/(27))"/?

1 Fth i i/t

Ces expressions sonef importantes pour la mise en ceuvre du spectrograreatieug. Elles
permettent de remplacer le calcul direct des centres de giiadaux (tes caiteux) ou la @fivation
de la phase de la FCT (avec toutes les potds d'instabilié’que cause soreddulement) par un
algorithme efficace qui sesume par:

I"evaluation des trois FCT du signal leas’sur les trois fetfesh(t), th(t) etdh/dt,

leur combinaison selon lexs. (1.37) et (1.38),

le calcul du spectrogramme en prenant le moduleaderia prenegre,

la réallocation des valeurs du spectrogramme, proprement dite, setprf1’.7).

Cette derreteétape misa part, le cat de calcul du spectrogrammesatiowg varie erD (N M log M),
avec unechantillonage d&/ points en temps et/ points en fequence. Son utilisation pratique pour
des prob¢émes €els de traitement du signal est donc tadait envisageable. Qui plus est, une mise
en ceuvreegcursive de cet algorithmeedd propoge Ecemment [87]. On peut alors penser utiliser le
spectrogrammeecillog pour des applications en tempgek”

Si la ferétreh(t) est gaussienne,

h(t) = = /ANT12=8/(20%) (1.40)
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seulement deux FCT seron¢egssaires, puisque dans ce cas, lestfesh(t) etdh/dt sont propor-
tionnelles

dh 2
(1) = = (1/\)th(1). (1.41)

Il est alors remarquable que le champ eéalldcation normalis’ené€q. (1.39) prend la forme
particulierement compacte

Vo
= — = 1.42
Tl’ A ij Y ( )

étant donesAt, = A/v2 etAwy, = 1/(V2)).

1.2.3 Reallocation du spectrogramme et approximation de la phase stationnaire

Koderaet al, dans leur article [68], mettent en avant un argument supefitaire pour montrer
I'importance des ograteurs degallocation pour la caragtisation du signal. Le point deegart de cet
argument est I'application de I'approximation de phase stationadadormule de reconstruction du
signala partir de la FCT. Une erreur de calcul fait que I'int@tation qui enesulte est errage. Dans
cette section, on reprend cette&én la mettant au net. Nous en profitons pour prolongeflexion
et montrons qu'il est possible eféndre le eSultata la reconstruction approeb’de la transforge
de Fourier fractionnaire du signal en utilisant simplement quelques valeurs de la FEdsstudes
points ai le vecteur degéllocation okit & des contraintesegphetriques pecises.

Reconstruction du signal et approximation de phase stationnaire

Rappelons tout d’abord que la FCT n’est autre que le produit scalaire du sighal
F(t,w) = /x(s)h@w)(s) ds, (1.43)

avec tous legléments d'une famille de signa@€mentairesi; . (s) = h(s — t)eiwse=«/2 tous
déduits par une translation en temps et egfrénce d’'un signal de#érenceh(t).

e Inversionde la FCT
A temps et fEquence continus, la famille sur laquelle on projette, dispose de suffisamralént d'”
ments pour que I'on puisse revenir au signal par la recombinaison suivante :

dtdw
o) = [ [ Pt G (1.44)
T
Si h(t) est une feafre Eelle, on peuteparer les termes d’amplitude et de phase comme suit
2(s) = / / |F(t,w)|h(s — t)eileltw)tws=tw/2) déﬂ (1.45)
T

ce qui montre que le signaésiulte de I'in€grale double d’'une fonction dont les oscillations sont
réglees par la phase(t,w) de la FCT. Sous certaines conditions de variation relative des termes
d’amplitude et de phase, il existe pour ce genre dijnale, une mthode de calcul approeh, dite
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dela phase stationnairé(voir, par exemple, [92]): si le module de I'egrande varie lentement par
rapporta la phase (condition que nous supposerafige), alors ses valeurs alternativement posi-
tives puis mgatives vont se compenser quand on en fait la soraffexception des pointsola phase
stationne, c’esa-dire

O (p(t,w) +ws —tw/2) =0 (1.46a)
O (p(t,w) + ws — tw/2) = 0. (1.46b)

¢ Phase stationnaire et @pateur de gallocation

Pour la clart” de I'expog, nous nous placerons dans la situation la plus simplié éxiste un
unique point stationnairg;, w;) qui vérifie leséquations pEéédentes. As dEveloppement desgs.
(1.46) et compte tenu des relations (1.32) qui lient la phagew) aux ogErateurs deadllocation
du spectrogramme, orediit que ces derniers doivent respecter au point,) les deux conditions
suivantes:

O(ts,ws) —ws =0 (1.47a)
t(ts,ws) = s. (1.47Db)

L 'equation pecddente signifie que le point stationnaire assadievaluation approcke dez (s)
est celui—€q. (1.47b) — qui vient sesgllouer au temps — €q. (1.47a) — tout en restaata méme
frequence. Ceci est illugtisclgmatiquement en Fig. 1.4.

e Reconstruction approge

Dans le cas d’un unique point stationnairg dé plus, la matriceativée seconde de la phase
de I’intégrande?fw)(cp(t,w) — tw/2) est non @gerérée, l'intégrale double (1.45) strit sous forme
approclee [92] :

x(s) = 2mi|det a(ztw)(cp(t,w) - tw/2)(ts,ws)|_1/2F(t5,ws)h(t&ws)(s). (1.48)

Cetteéquation montre que la reconstruction appexldu signal peuttfe conduite seulement
avec les quelques valeurs de la FCT prises aux points du plan teempefice o’le vecteur de
réallocation respecte la condition (1.47). Cela meeeidénce I'importance de ces derniers pour la
description temps-&quence du signal.

Le seul obstacla [a mise en ceuvre de la formule de reconstruction appeo¢h48) est Bvalua-
tion nungrique du @terminant

det 9, (¢ — tw/2) = 0} 0020 — (OF 0 — 1/2). (1.49)

Il est possible de passer outre cette diffieldti calculant lesativées successives de la phase
¢(t,w) en fonction de direntes FC¥ selon le neime principe qu’en Sect. (1.2.2). Letdfminant
(1.49) s’obtient alors par

det 0, ) (¢ — tw/2) = Im{ f"m{f™} — (Re{f*""})”, (1.50)

7. Nous nous irdfesserons enetfiil a I'approximation de phase stationnaire au chapitre 4. L'annexe D y al¢ul'a
totalement consaeg, mais uniquement pour le calcul appredintégrales simples. L'argument de phase stationnaire
invoque ici pour les ingégrales doubles est celui qui est commongnt admis, bien que nous le sachiorisoerable (cf.
Annexe D).

8. Nous€luderons la dmonstration de §. (1.50).
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une combinaison de six FCT (trois si la &€ est gaussienne), du signal, chacune assadine
fenétre differente

o Fth\ 2 t2h
i) = () o) = e (150
Fdhjdiy 2 2k /de?
) = (L) (o) - St (152
h grdh/d dh/d
pian oy = T ) (1.53)

W(taw) ~

Pour reconstruire le signal, il n'est donc paassaire de disposer de toute la FCT, que 'on sait
par ailleurs tes redondante, pour revenir au signal. Il suffit de restreindre la FCT aux points station-
naires : cette description tempduience parcimonieuse du signal est en fait identique au “squelette”
propo€ par les rethodes de “a@te et squelette” [33] que nousgsenterons plus eretil en Sect.

1.4. Bien gu'ils aboutissert une neime description du signal, il est important de signaler que le rai-
sonnement fait ici et celui empleydar les rethodes “agfe et squelette” sont défents: on proede

ici aussia I'application de I'argument de phase stationnaire, mais pas surdeeemquantés (cf.
Sect. 1.4). En ce qui concerne l'algorithme de reconstruction du signal, celui que ewivmds$ et
celui des nethodes “agfe et squelette” difirent totalement aussi bien danséaue dans leur mise
en ceuvre.

Il est entendu que nous ne proposons ici aucurereritle validié” de I'approximation faite ici,
ce qui serait pourtantatessaire. En particulier, il serait én€ssant de savoia, fergtre h(¢) fixee,
pour quelle classe de sighaux, les termes d’amplitude et de phase dgrkintie danséq. (1.45)
respectent les conditiongeoéssairea 'approximation de phase stationnaire.

Reconstruction de la transformée de Fourier du signal

Les conditions (1.47) font appata une dissyrefrie entre les variables temps etdtience. Ceci
est di'au fait que I'on veuille reconstruire le signal dans son extension temporelle. On peut penser au
cas dual de la reconstruction de la transfeende Fourier du signal quiegfit

xX© = [[ Feo) 0 5. (1.54)

ot la famille de signauelémentaires seatiuit deH (w) parH, ,(€) = H (£ — w)e~€teit/2,

Si h(t) esta syn€trie hermitienne ff (w) est Eelle), on peut alors suivre leemie raisonnement
pour obtenir une reconstruction appreetdeX (¢). Cette fois, les points stationnaires sont ceux qui
vérifient

O(ts,ws) =& (1.55a)

t(ts,ws) —ts = 0. (1.55b)

Ce sont donc maintenant les pointse: (1.55b) — qui viennent seallouera’la fréquence —
€g. (1.55a) — tout en restant alemeé instant (cf. Fig. 1.4).
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Reconstruction de la transformée de Fourier fractionnaire du signal

On peut encore gy¥éraliser le processus en essayant d’obtenir la reconstruction apprdeha
transfornge de Fourier fractionnaire d’angle(dans] — =, 7]) du signal:(¢), définie par

Yl = e L(s & d 1.56
(5)_W x(s)exp(sina(?msa—sﬁ—l—gcosa)) s (1.56)

si a est différent ded ou 7. Poura = 0, cette transformation est l'idergit{ °(¢) = x(¢). La trans-
formée de Fourier d’angle = /2 est la transforreé de Fourier au sens classiqué’?(¢) = X (¢).
La transfornee de Fourier fractionnaire est i de mar@ire biunivoque au signal (dafd(R)).

Le paranetre« permet de passer contiment de I'axe des tempasl’axe des fequences. On peut
associera’chaque transfore® fractionnaire la droit®(®) du plan temps-Equence qui passe par
I'origine et fait un anglex avec I'axe des temps. On peut vdiX®) comme un axe gradupar la
variablet (o« = 0: I'axe des tempsy = 7/2: I'axe des fEquences).

La reconstruction dé& (%) (¢) se fait par la somme double

X@ () = / / Ft,0) 1) () d;i“, (1.57)

des€léments de la famille de projection, quemEndent de maaie compligee du signal deaférence
HE)():

H((a))(f) = H(a)(f — (tcosa + wsin a))

t,w

COS &

t
expt (%) + f(—tsin a + wcos a) + (t2 sin a — 2tw cos @ — w? sin a)) , (1.58)

pondirés par la valeur de la FCT correspondante.

Si H(@)(¢) est Eelle (ce qui est, par exemple, vrailgit) = =—1/4~t"/2 quelque soit I'angle
«) alors on peut appliquer laemie proedure que pour les deux calculepFdents. Les pointswla
phase de I'irtgrande est stationnaire,@sent aux deux relations suivantes

O(t,w) —€sina+cosa (tsina —wcosa) =0 (1.59a)
t(t,w) — cosa —sina (tsina — weosa) =0, (1.59b)
qui se traduisent sur les egteurs degallocation par
(Cu(ts,ws) — ws) cos a — (f(ts,ws) - ts) sina =0 (1.60a)
t(ts,ws) cosa 4 O (t,,ws) sina = €. (1.60Db)

Ces deux relations signifieneghgtriguement que les points stationnaires sont ceux q@g— -
(1.60b) — viennent seedllouer au point d’abscisgedans le sysime de coordore€s efinies sur
D) et—éq. (1.60a) — paratlementi cet axe (le point doit seepplacer sans changer de coordean”
sur I'axe dualD(“+7/2)), Ceci est illuste’en Fig. 1.4.

On peut,a l'aide de cesasultats, ghéraliser les rathodes “agfe et squeletted des directions
obliques dans le plan tempsefiuence en suivant laemie ¢¢marchea’savoir la restriction de la FCT
aux points stationnaires. Cela ajdété propog poura = « /2 (transfornge de Fourier classique)
dans [52]. Il par&™naturel de dire que, pour garantir une description parcimonieusle fitli signal
(et cor€lativement, pour disposer d’une bonne reconstruction du signal), oerétiatconsieter,
selon la nature du signal, une direction pliugli’'une autre. Il serait ietessant alors de savoir quelle
direction principale choisir pour un signal dann”
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frequence

FiG. 1.4 —Vecteurs de eallocation aux points pertinents pour I'approximation de phase station-
naire. Cette figure dcrit la configuration que doit respecter lesespteurs de eallocation (7, &),
pour que le poin{?,w) ou ils sont calcu¥s soit un point stationnaire (cf. Sect. 1.2.3), i.e., un point
pertinent pour I'approximation de phase stationnaire. Le vecteureddlocation est indige par une
fleche.(a) Reconstruction appro@® du signak:(¢) au temps = s. Le vecteur deeéllocation in-
diqué sur la figure respecte les conditiofis47) le point(¢,w) est donc un point stationnairéb)
Reconstruction appro@e de la transfor@é de Fourier du signaX (w) a la fréquences = £. Le vec-
teur de Ballocation indiqe sur la figure valide les conditior{4.55) (c) Reconstruction appro@e

de la transfornee de Fourier fractionnaire du signal (*)(w) (a = 7/4) pourw = ¢. Le vecteur de

(*t,"w)

frequence
Fasl

temps

reallocation peseng’ici respecte les conditior{.60)
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1.2.4 Ogerateur de réallocation et changement &chelle

Nous pecisons ici une propeté dont nous aurons besoin dans les chapitres suivants. Il s’agit
d’etablir la relation entre le champ de vecteur éallocation du spectrogramme du signal @ildiiin
facteur\ avec celui du spectrogramme du signal cacaNec une fegtfe comprinee par le reie
rapport.

Soitz(t) = vAz(At) la version dilage (siA < 1) ou compringe (siA > 1) du signalz(¢). Un
changement de variable= \s dans la éfinition de la FCT (1.3) de \(¢)

F;LA (t,w) = e/2/X /w(u)h* (% — t) eiwu/A d/\_u (1.61)

nous permet de transformer une dilatation sur le signal par une compression setria fen”
' (t,w) = FIY (AL w/ ). (1.62)
Y 9 xr 9

Pour les opfateurs degdllocation, on utilise la formulation (1.32) en fonction de la phase de la FCT
dans laquelle on irege le Esultat pecddent

R . hyya

i (t,w) == — 0. (arg F (/\t,w//\)) (1.63)

t
2
~h W
w“(t,w)_a

+ 0y (arg Fjl/A(At,w//\)). (1.64)

Le développement deedivées partielles suivi d’'une factorisationegliate

°h . l & hyya
i) =15 - (arg 227 ) (M, w0/) (1.65)
A
O (tw) = A (% + 0, (arg Fjl”) (/\t,w//\)) (1.66)
conduit au esultat suivant:

“h ~h
i (tw) =1 (Mw/A) /A (1.67)
OF (tw) = ADr M (M, w/A). (1.68)

. h , . N
Les champs de vecteurs deatfocations?”, (t,w) et des."/*(t,w) sont donc identiques condi-
tion de regarder un des champs dans unesystde coordore€s anamorphespuis de faire porter
'anamorphose sur le champ luieme.

1.3 Lareallocation du scalogramme

Le scalogramméy (a, b) = |T) (a, b)|? est I'équivalent dans la classe affine du spectrogramme
dans la classe de Cohen. Il s’obtient par un lissage de la distribution de Wigner-Ville du signal

S¥(a,b) = // Wgc(s,{)Wd,(S - b,ag) d;if, (1.69)
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avec un noyau qui est lui-emie la distribution de Wigner-Ville du signal deféfence qu’utilise la
transforn@e lindaire qui lui est assoega savoir 'ondelette’(¢). Nous rappelons que la particularit”
du lissage affine nous obligefaire intervenir un oprateur sup@mentaire en &Quence que I'on
convertit ensuite eachelle

B (a, . 5)%( , 5) dsdg (L.70)
& (a, Ww( , 5) dsdg (1.71)
iy (a,b) = wo /Y (a,b) (1.72)

en utilisant la fEquence centrale du noyau qui, dans le cas du scalogramme, est aussi celle de I'onde-
lette (d'énergie unié)wy = [ &|W(E)]* dE/(2T).

Pour les nefnes raisons que pour le spectrogramme, la forreeifigie du noyau de lissage du
scalogramme va induire des progtéis sgcifiques sur ses epateurs degallocation.

1.3.1 Relation avec la phase de la transforége en ondelettes

Similairemen@&’la Sect. 1.2.1, une reformulation de®gieurs degdéllocatiora’l'aide de FCT ou
de transformeés analogues (faite en Annexe B) aboutit aux depations suivantes: pour I'egdteur
en temps d’'une paref. (B.10))

//SWx(s,ﬁ)W¢(8 - ag) dsdS _ g, {T;f’*(a,b)/sx(s)%lﬂ(sgb) ds}, (1.73)

et celui en fEquence d’autre pareg. (B.16))

J[ematsom (S tae) S8 < L {1 [a Sz (220 ash s

On note%( ) = ¥(t/a)/+/a la famille des ondelettes utik®’ Il n'est plus possible dtrire
epr|C|tementb comme la @fivée de la phase dl’id’(a b) et donc comme un retard de groupe
comme cétait le cas pour le spectrogrammesaimoins, Equation suivante

(0.0 = e ffs;(%(;__bz;)dig} ’ (1.79)

montre qu'’il s'interpete comme un temps moyen du signalavtravers I'ondelette>, (¢) (celle-ci
étant abusivement congitte comme une densitle probabili).

En revanche, on peut faire appar@’explicitement dansdq. (1.74) la dfivée de la phase de la
transfornge en ondelettes

&% (a,b) = O arg {/ z(s); (s —b) ds} , (1.76)
qui est donc homagnea une fEquence instantae’du signal filte’dans la bande dedijuence efer-

minée pany, (¢). Dans ce cadré,’ (a, b) peutétre dscrit en tant quéchelle instantaeédéfinie comme
le rapport de la #quence centrale, par la fequence instantae’
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1.3.2 Formulationa I'aide de quotients de transfornees en ondelettes, applicatioa la
mise en ceuvre

Des formulations qui permettent le calcul efficace desraggurs degdllocation existenédgale-
ment pour le scalogramme. Celles-ci @t mises erevidence pour les scalogrammeedase d’on-
delettes prenant la forme d’une sinud®imultipliée par une enveloppe (comme I'ondelette de Morlet
gue nous verrons plus loin) dans [5]. D’autres obtenues dans [40] conwetamntes les ondelettes
feront I'objet de cette section.

On fait appardfe dans IEq. (1.73) la transfore€ en ondelettes avee(¢)

// s Wgc(s,{)Wd,(S - b,ag) d;if =b50(a,0) + Re {1V (a, )T (,b)},  (L77)

et dans IEqg. (1.74) celle d'ondeleti&) /dt

/ £Wx(s,£)W¢(8 - bvag) dsdf 1, (T @01, h)} . (@.78)

2T a

Trois transformees en ondelettes suffisent donc au calcul desadeirs deegdllocation dans la
mesure a’ils se mettent sous la forme des quotients suivants::

. Tt aw
i = S 54 = — 0 . 1.7
by (b, a) b—l—aRe{Tw} at(b,a) I (79777 (1.79)

Le nombre de transfore&s seaduita deux pour I'ondelette de Morlet

¢(t) — 7r_1/4A_1/2 6—152/(2A2)-|-m0t7 (1.80)
puisque I'on a, similairemerat [a ferétre gaussienne pour le spectrogramme :
dvp 1 .

Des simplifications existerdgalement pour un autre type d’ondelette, dite de Klauder. Nous le
verrons en Sect. 2.2.

¢ Algorithme rapide pour lagallocation du scalogramme

Dans le cadre tempsehelle discret, les calculs des trois transfeemien ondelette! (a, b),
Tﬁ’(a, b) et T;Wdt(a, b) peuvenietre accomplis efficacement [2, 41] patrtilisation des algorithmes
rapides issus de la ¢orie de la multiesolution [29]. Nous proposons dans [2, 41] un algorithme
d’evaluation de chacune de ces transteesien ondelettes sur une grille quasi-continue avec des
ondelettesplines Une seule multisolution suffit au calcul des trois transfaes en ondelettes. Par
ailleurs, les ondelettesplinesprésentent deux avantages:

— au sein de l'unigue mul&@solution, on construit trois bancs de filtres ass®eilx trois onde-
lettes. Avec ce type d’ondelette, ils sedliisent S simplement les uns des autres.

— Il n’existe pas BCessairement de muksolution assoega toutes les ondelettes. En effet, I'on-
delette doit satisfaire certaines conditions. Une solution corsisteiver une ondelette respec-
tant ces conditions, en restant proche (au sens de la nbtipar exemple) de I'ondelette avec
laguelle on @sire analyser le signal. Les ondele$ptinesdéfinissent un vaste ensemble qui
s’avereétre un cadre naturel et efficace pour ce genre d’approximation.

29



On obtient finalement un algorithme assez flexible (grille quasi-continue, large choix d’onde-
lette) au cot de calcul eduit (enO (N M), avec N nombre d&chantillons du signal e/, nombre
d’echelles slectionrges, au lieu d& (N2M) pour une mise en ceuvre standard) ce qui permet I'uti-
lisation de la €allocation pour des signaux de grandes tailles.

1.4 Une famille de nethodes autour d’'une neme icke

Nous pEsentons ici quatre etiodes aux objectifs analogueselui de laeallocation:
i. I'analyse spectrale diéffentielle [46, 62],
ii. ladensit de féquence instantae’[43],
iii. les méthodes “agfe et squelette” [33],
iv. la méthode du “squeezing” [72, 30].

Chacune d’entre elles se trouve impléguplus ou moins fortement dans un pmhbE sgcifique
(traitement de la parole, analyse de sighaux musicaebection de modulations deefijuence.. . ),
mais finalement, ce sontlesemies quant@s matiematiques qui sont utikse's, seul leur emploi didfe
selon le cas.

Nous commencerons par uneepentation de leur principe en insistant sur les justifications des
choix effecti€s. Nous ferons ensuite une comparaison entre ces quathoades ajogtesa la -
allocation selon trois crtres choisis pour mettre en luené leurs principales diéfences. Ce sera
I'occasion de tests communs sur quelques signaux.

Un travail similaire aeté fait dans [73] ou plus succinctement dans [30]. Mais, celui qui est pr’
seng ici, qui est la contribution principale de ce chapitre, se singularise @é@ddarits pour deux
raisons:

1. les liens que I'on peut tisser entre toutes cethodes y sont psengs clairement dans un
formalisme unique,

2. les tests faits sur des signaux communs montrenet8het les limitations de chaqueathiode.

1.4.1 Principe
Précisonsa’nouveau quelques notations qui nous seront utiles par la suite, comme celle de la FCT
F(t,w):
Flt,w) = / 2 (0 (5) d, (1.82)

O fiy0)(8) = hs — t)e™?e~ /2 Rappelonggalement lesds. (1.32)etablies en Sect. 1.2.1, qui
précisent commeng partir de la regéentation polaire de la FCF,(t,w) = | F(t,w)|exp(i¢(t,w)),
on déduit les oprateurs degallocation:

tt,w) =1/2 — 0, O(t,w) =w/2+ 0pp. (1.83)

Toutes les rathodes que nous allonsgsenter, utilisent (parfois implicitement) un nede pour
le signal. On le qualifie greéralement déormantiqugou de “modulation model”) en traitement de la
parole. Le signal y estatrit par une somme de signaux maekiEn amplitude et endgquence

N
p(t) =Y An(t) exp(ib,(t)) + b(t), (1.84)
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sous des hypotses de variations lente$ des envelopped,, (¢) par rappore’leur phase respective
6, (1) et (i) de la fequence instantael,, (t) = 6,,(t) soit:

A0 1 b (1)
< 0n(t)‘ et e, (1.85)
ou“ " "et" " ”designentleseélivées preneres et secondes respectivement.

Ces deux hypotbses contraignent le sigreakertains types de non stationnaritomngment les
dérives lentes deéguence. On accepte les sighauxatgmies transitoires (forte variation d’amplitude
et de féquenceh condition qu’ils se dfoulent lentement. On peut dire que le sigrefid’comme
tel, est faiblement non stationnaire. 8i = 1, on ditégalement que le signalt) se situe dans la
limite asymptotiquéen temps) ou qu’il est un signal asymptotique [33]. On inclut dafis(que I'on
supposera toujoursegligeable) les erreurs de malibation et le bruit d’'observation.

Idéalement, on aimeraiedfire le signal dans le plan tempgdgience par la collection des lignes
de fréquence instantaeiv,, (t), le long desquelles on pourrait suivrevtlution de I'amplituded,, (¢)
(ou de I'énergieA? (t)). Il s’agit pour toutes les sthodes psSenges ici d’obtenir une telle repsen-
tation du signal et ce, en mettant I'accent sur le contraste et l&findle du €sultat.

Notons que ce que propose C. Berthomier dans [12] geatvu comme un pcurseul toutes
ces techniqueséellocation comprise) : il suggeé de neler I'utilisation de la fEquence instantae’et
une mesurenergetique locale pour construire une repentation conjointe en temps etdtience du
signal.

Analyse spectrale diferentielle

e Contexte
L'analyse spectrale diéifentielle aeté appligi€e aux signaux de sonars animaux (chauve-souris)
[45] et plus coneguemment au traitement de la parole [62].

e Probléme pog”
On se propose de faire le suivi des variations dedgudence du signal obserdans une bande
frequentielle donee et ce le plus finement possible [46].

¢ Solution envisagé

En limitant le moetle (1.84)a N = 1, le signal se simplifie em(t) = A(t) exp(if(t)). La
méthode s’appuie sur l'introduction de deux quaegithoyennes [46] d’'une part(?), la pulsation
moyenne du signal dans un voisinage du tem(m&fini par la fertre.(¢)) telle que, pour une &
guencev donrée,

/exp {i(@(t)s +00) LA™ (s — t)e ™ ds = /exp(i@(s))h*(s — t)e " ds, (1.86)

et d’autre partd(t), 'amplitude moyenne du signal dans lemé voisinage :

Alt) /exp {i(@(t)s+60) } h*(s — t)e ™ ds = /A(s) exp(i6(s))h* (s — t)e " ds. (1.87)
Notons bien que, si7/w correspondala (pseudo-)griode du signal autour du tempslors les

€gs. (1.86) et (1.87) sont degdligsécrites sur le premier terme (le “fondamental”) developpe-
ments en afie de Fourier.

31



On en d&duit une approximation locale du signal :
z(t) ~ A1) expi(@(t)t—l—@o). (1.88)

Il s’agit alors de faire une estimation des quagimoyennes(t) et A(t) du signala partir de la
FCT. Pour ce faire, on simplifie le membre de gaucheetg [(1.87), et on reconntda FCT du signal
dans son membre de droite

F(t,w) = A(t) H* (Aw(t)) e (Bsttirrw/zet) (1.89)
ol Aw(t) = @(t) — w.
Si H (w) est Belle (:(t) esta syn€trie hermitienne), on obtient (en prenant le module) pour I'am-
plitude
At) = %, (1.90)
et (en @rivant la phase) pour la pulsation
dp(t,w) = tdAw/dt+ Aw(t) + w/2, (1.91)
équation, qui en recourant aux hypesies faites sur le signalfw/dt faible), conduie
Aw(t) = =5 + dp(t.w). (1.92)
ou bien avec les relations (1.88) °
Aw(t) = O(t,w) — w. (1.93)

L equation (1.93ptablit clairement le lien entre I'analyse spectraleat#fitielle et la rathode
de @allocation. La diffrence de #quenceAw(t) n’est autre que l'oprateur de éplacement en
frequence de laedllocation. On sait, par ailleurs, que ceeogteur est reéia la fréquence instantae”
du signal filte par I'analyse de Fouri@rcourt-terme (cfeq. (1.34)). Le principe de I'analyse spectrale
differentielle est donc de calculer l&€ience instantae’du signal @lectionre dans une bande de
frequence pour en mesurer finement les fluctuations autour d=jiaeince centrale d’analyse.

On déduit de (1.88), (1.90) et (1.93), 'approximation locale du signal en fonction de la FCT et de
I'opérateur deeéallocation en &guence:

[F(t, @)
H(&(tw) —w

x(t) = ) exp {i(d(t,w)t—l—@)} . (2.94)
Remarque 1.1Pour des raisons de gbde calcul, on choisit une fetre/(t) rectangulaire. Dans ce
cas, la FCT peut se calculeraursivement et I'oprateur deeéllocations (¢, w) admet une forme &s
simple®. Notons enfin que la éuence centrale esta priori arbitraire. Cependant I'approximation
(1.94) sera d’autant meilleure que la &€ d’'observation est cert’sur la fequence “principale” (
i.e., correspondarat la pseudo-@riode) du signal.

9.Sik(t) = 1r(¢t) est une feafre rectangulaire, de largellircent€e suro alors sa dfivée estgalea la somme de
deux distributions de Diracdh/dt = —6(t + 1'/2) + §(t — T'/2). La FCT du signak(¢) de ferétredh /dt s’écrit donc
simplement comme la d#fence du signal pria deux instants distants dé(a un terme de phaseqs). Ceci conduid”
uneéconomie conskiefable de calcul lors de la mise en ceuvreede(1.38) pour Bvaluation deb(t, w) mais au prix de la
pauvre€ de I'analyse spectrale faite par la & rectangulaire.
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¢ RepeEsentation graphique propes’

Les choix d’affichage faits sont surprenants et s’expliquenérsent par les limitations des
moyens informatiques dedpoque. On choisit de montrer pour uneduencev (i.e., fréquence cen-
trale d’analyse) doreg(ASD) :

— la phase de la FCF(t,w) (on pratique uneagression lieaire pour trouver la équences(t)),

— la proportion dénergie dans la bande anaes? (t,w) = | F(t,w)|*/ [ |F(t,w)|* dw/(27).
Densite de frequence instantage

e Contexte

Le contexte d’application de la dernsitle féquence instantae [43] est celui du traitement
(analyse) de la parole, et plusegifiquement celui de la localisation et du suivi de formant. L'auteur
n'admet pas de made explicite sur le signal mais les seuls exemplesasaitins [43] entrent dans le
cadre du modle formantique (1.84).

e Probléme pog”

La méthode se fonde sur une analogie avec leesgstauditif (moinselaboge que celle faite
dans [30] que nous examinerons plus loin). L'observation de®sst ‘auditifs semblent montrer
que le traitement du son par l'oreille interne (la membrane basilaire en particulier) s’apparente (aux
basses &juences essentiellement) au passage du signatens un banc de filtres proche de celui
utilisé pour calculer la FCT (et plus itEment encore de la transfoemén ondelettes, voir plus loin).
Pour le traitement (analyse et reconnaissance) de la parole, ére’dohc important d’abandonner
une description spectrale utilisargfiérgie seulement et de prendre aussi en compte l'information de
phase. Ceci aene l'auteura faire une nouvelle interptation de la FCT insp&€ par “I'image d'un
groupe de fibres nerveuses adjacentes towemnllées sur une seule eieme fiéquence”.

¢ Solution envisagé

On calcule la FCT poudd valeurs de la gquenceo,, = {mAw},,—1.y Sépages d’'un pas
d’echantillonnage\w donrg. On obtient alorsi{ signauxy,,(t) = F(t,w, ) qui sont similairesa’
ceux qui sont obsees sur les nerfs auditifs ategart de la membrane basilaire. On se propose de
regrouper tous les signagy, () qui ont la n€éme féquence instantae’et de placer cette information
dans une matric®FI1(¢,w). On pro@de de la maeire suivantea'un tempg fixe, on incEmente
DFI(¢,w,) & chaque occurrence d’une valeurde, w,,) dansw, — Aw/2,w, + Aw/2] et ce pour
toutes les valeurs den et den. La quanti€ DF1(¢,w,) que nous calculons est au finegdle au
nombre de signaux,, (t) qui ont approximativement au temp$a méme féquence instantael,, .

On normalise ensuiteF1(¢,w,,) &lanormel! (R) unité. On obtient donc un histogramme empirique
qui s’assimilea’ une densé{de probabili) de fEquence instantae.

Il est important de remarquer que l&duence instantae’du signay,, () estégalea la valeur
de l'opérateur deeéallocation en gquences(t,w,,) selon Iéq. (1.34). Cela montre que la deesit”
de fréequence instantae’et la €allocation s’appuient sur une commureadtidée : on pourrait efinir
la densi€ de féquence instantae’comme leeSultat de I'action de I'oprateur deeallocation en
frequence sur une matrice tempsefuence unifor@ment remplie dé (suivie d’'une normalisation
en normel!(R)).

¢ RepeEsentation graphique propes’
On affiche simplemendF1(z,w) en niveau de gris.
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“Ar éte et squelette” ou “ridge and skeleton”

Cette nethode est certainement la plelsboee d’entre toutes. Elle est issue de la collaboration
de nombreuses personnes, majoritairement @edlé marseillaise”.

e Contexte
Les nE¥thodes “agfe et squelette” ordté utilisées pour le traitement de signaux musicaux [33,
32, 53], la ettection et la caraetisation de modulations desfijuence [20].

e Probléme pog”
Le probEme pos’est celui de I'extraction et de la camgsation de signaux modzs’en ampli-
tude et en fequence dans la limite asymptotique.

¢ Solution envisagé

Cette neéthode afé essentiellement congite dans le plan tempexhelle et pour la transfore”
en ondelettes, mais elle exjdlement valable pour la FCT. L&d est de tirer profit du cadre asymp-
totique pour faire I'approximation de phase stationnaire de la FCT. Oreéuitdine repgSentation
temps-fEquence simpliéé et non redondante du signal $iguelett a partir de la restriction de la
FCT a certaines lignes importantes du plan tempstiience (learétes.

Pour pgsenter les choses, il est plus simple de camsidque le signat(t) = A(t)e?®) et
la fenétre h(t) (réelle) sont deux signaux asymptotiques, i.egisdént au maele (1.84), bien que
cette hypotbse soit irealiste en ce qui concerne la &rg. En effet, la naturea‘court terme” de la
fenétre est totalement antagoniste avec les contraintes dalen(id84). Nous neettirons pas le cas
(traité dans [33]) plus raisonnable mais plus compdigai le signal est asymptotique et la &ré
gaussienne, puisqu’il eme aux refnes esultats.

La FCT du signal mis sous la forme

Ft,w) = / As)h(s — )i (06 —wstiwi2) g (1.95)

peutétre clairement vue comme uneegtale oscillante qu’il est possibleayaluer par I'approxima-
tion de phase stationnaire [92]gjd évoqleée pecdemment en Sect. 1.2.3 adtdilléee en Annexe D).
Cela consista approcher la FCF'(t,w) par la valeur de I'inégrande (moyennant une correction de
module et de phase) aux poinisla’phase de celle-ci est stationnaire :

05(0(s) —ws +tw/2) = 0. (1.96)
Supposons qu'’il existe un seul point¢,w) qui vérifie I'eq. (1.96), on a alors en ce point
é(ts(t,w)) = w. (2.97)

L'hypothese d'unici€’ du point stationnaire que nous venons de faire, signifie donc que-la fr’
quence instanta® du signab = 6(¢) associea une fEquences donrée, un et un seul instant
Dans I'approximation de la FCT [92]

AT gisnl I (1) (1, — )i, (1.98)

16(2,)]

(nous avons retirla dEpendance d& = t,(¢,w) ent etw pour simplifier la lecture), on voit claire-
ment que certains points stationnaires sont plus importants que d’autres. En particulier, les points qui

Ft,w) =
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vérifientt, (t,w) = ¢ puisqu’ils permettent de relier directement la FCT au p6int) a la valeur du
signal ert. L'ensemble de ces pointgfinit une courbe dans le plan tempesetience que I'on appelle
I'aréte Qui plus est, la pertinence de I&€E pour la description du signal se trouve condienpar
d’autres arguments. En effet, il est simple de montrer geguidtion de cette courbe est simplement
celle de la ligne de &fquence instantaels = 6() du signal. De plus, I'afe dessine un chemin
particulier sur le module de la FCA.¢ fixe, I'eq. (1.98) montre que 8i(t) est maximum e alors le
pointt, (¢,w) = t indique le maximum déF'(¢,w)| (si on réglige I'influence de la efivée seconde au
dénominateur). L'agfe est donc la ligne qui relie tous les maxima (casalf constant) def'(¢,w)|.

En pratique, I'extraction de |'&teé gagne en pcision si on utilise la phase de la FOTt, w), qui
vérifie selon

plt,) = 0(1) = =, (1.99)
aux points de I'aefe selon kEq. (1.98). De la éfivation de IBquation pecdente et avecdq. (1.97),
on déduit

dip(t,w) =w/2, (1.100)
qui se eecrit aussi:
Ot,w) —w=0. (1.101)

On fait donc ici la connexion entre lesetiodes “agfe et squelette” et laedllocation puisque
les points de I'agfe sont les pointsiola réallocation est stationnaire erefience. Notons que cette
propriété est conseee lorsqu’on abandonne I'hypabe d’asymptotisme sur la fetné [33].

Il est alors naturel de proposer I'algorithragpoint fixe suivant pour la recherche des points de
I'aréte : on se placa un temps, on initialise la rechercha une fEquencev, arbitraire et on re la
procddure

Wnt1 = w(t,wy), (1.102)

jusqu’a convergence, c'est-direw,, 11 ~ w, (pointfixe). Le pointt,w, 1) faitalors partie de I'afe.
Autrement dit, cet algorithmeepete le processus deallocation en &fuence jusga convergence
vers un point ala réallocation est stationnaire.

e Description graphique propes
La repesentation finale que I'on donne du signal est la restricii§ii(¢,w) de la FCTa son
aréte. Elle éfinit ce que I'on appelle lsquelettePour tout(t, w = 6(¢)) situé sur I'aEte,

2T isenlB)}7/ 4 (1) (0) =1/, (1.103)

16(0)]

Le squelett& KE (¢, w) est nul en tout autre point.

SKE(t,w) =~

M éthode du “squeezing”

e Contexte
La méthode du “squeezing” [30, 72]&t€ utilisée en traitement de la parole (suivi de formant
pour la reconnaissance de locuteur).
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e Probléme pog”

La méthode du “squeezing” s’appuie en preng approximation (comme la deresté féquence
instantaee) sur une analogie avec le sysE auditif. Les observations montrent en fait que la mem-
brane basilaire (organe de perception de I'oreille interne) effectue weratapi analogua celle d’'un
banc de filtres passe-bande dont legjfrénces centrales graduent logarithmiquement la bande-de fr
guence audible. Cela correspond [30¢€e que fait la transfore® en ondelettes, ce qui justifie son
utilisation pour le traitement de la parole.

Malheureusement, une tellecdmposition est &s redondante. O. Ghitza propose dans [44] un
algorithme de compression de l'information dont lathode du “squeezing” va s’inspirer. Le principe
de cet algorithme est le suivant:

en sortie de chaque filtre du banc, @tufere un signal oscillant. Onectionne ce signal
autour d’'un temps fixe au moyen d’une festfe,

et dans ce voisinage, on compte le nombre de ses passageuil (fronts montants) qui sont
sepags d'une certainegriodeT’.

On stocke ce nombre dans la matrdde! (¢, 7').

On recommence I'ggration pour toutes les valeurs possibkesifiterieur de la feafre d’ob-
servation) de la @fiodeT.

On obtientainsi une description du signal noeak.l.H. (“Ensemble Interval Histogranmd)deux
dimensions que I'on peut voir comme une egehtation tempsdrjuence dans la mesuneb™! joue
le r6le d’'une fEquence instantae.

On se propose d’utiliser cesads pour faire une modification nondiaire de la transfore€ en
ondelettes.

¢ Solution envisagé

La méthode du “squeezing” e uniquement formelé pour la transfore€ en ondelettes (pour
les raisongVvoqlees ci-dessus). Pour 'homexggité de cette section, noesendrons cette formulation
alaFCT.

Dans le cas oz (t) = Aexp(iwpt), On aimerait comprimer (“to squeeze”) I'informatioa (@
mankre de Ghitza) contenue dans la FCT pour qu’elle se restraigna minimum. La FCT de()
s’écrit

F(t,w) = H*(wy — w)eitlomw/2), (1.104)

Cette FCTF'(¢,w), vue comme une fonction dainiquementy fixe), est un signal dont les oscil-
lations harmoniques sordgulieres et directement reésaw,. Cela suggre de eaffectert'(¢,w) ala
frequencgw/2 — i(9,F/ F)(t,w)) puisque cette quandést uniforrementegaleaw,. En pro&dant
de la sorte, on obtient une nouvelle repehtation tempsduencesQU (¢, w) du signalegalea 0
partout, exce’'sur la ligheo = wy. On admet que la compression ainsi faite est raisonnablement
effective pour les signaux respectant le rai@d(1.84).

Le lien qui unit la nethode du “squeezing” et |@allocation est clair puisque I'on utilise finale-
ment I'opérateur deeallocation en fguence, vu la relation

o(t,w) = % +1Im {@TF} (t,w) (1.105)
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(la partie Eelle ded; F'/ F' est nulle). Formwd autrement, la ethode du “squeezing” effectue leal-
location (en fEquence uniqguement) de la valeur complexe de la FCT.

e Description graphique propes

La réallocation d&'(¢,w) en moduleet phase (que I'on appellgynchrosquee}e

d
SQU(t,w) = /F(t,{)é(d(t,{) — w)%, (1.106)

a pour avantage de disposer d'une posséilé retour (exact) au signal.

On peut manmoins voir sur les quelques tests avec des signaeis)ide parole [30] queaffecter
la valeur complexd’(¢,w) n’est pas la meilleure solution. On propose dans [30] toute une gamme de
variantes ba=e sur des grandeurs (module B¢, w) seulement, avec poerdition,. .. ) a réallouer
vers (t, w(t, w)), desquelles onatuit autant de repsentations tempsdguence.

1.4.2 Comparatif

On se propose ici de faire une comparaison dethodes pF&§enges ci-dessus en trois points: les
deux premiers concernent les implications du choix d’'ue¢hode basé sur un ou sur deux efs-
teurs de eallocation en termes decalisationde la repesentation et de possibditiereconstruction
du signal. Le dernier point concernertdbustessde la repesentation au bruit. Il est bien entendu que
cette comparaison n’a rien de systatique mais qu’elle est simplement faite pour avoir uee s
differences entre les points de vues en lice.

Localisation

Dans I'ensemble desettiodes compaEs, la capadatde localisation d’une regsentation sur un
signal done’est directement r&& au nombre et au type de leqateur degallocation choisi.

e Un opérateur de Eallocation

Il apparaf que les nethodes que nous venons degenter qui utilisent, toutes, un seukbogteur
de rallocation, sont intimement rekksa des hypotbses faites sur le signal. Si le sighacrte de
ces hypotkses, i.e., ne respecte plus le miedformantique (1.84), alors la regzentation n'a plus de
raison de continuea fonctionner correctement et en particulier en termes de localisation.

Par exemple, la Fig. 1.5 illustre ce que donne chageate pour un signal test dont la prenei
partie est compa® d’'une fEquence pure (asymptotique en temps) et d’une impulsion (qui n’est pas
asymptotique en temps). Toutes lesthodes utilisant un seul egdteur sont comptement aveugles
décrivent bien la fequence mais sont congbément aveugles I'impulsion parce qu’elle nespond
pas au modle de gférence.

Remarque 1.20n pourrait reformuler toutes cesthodes en supposant que le sigregifié le mo-
déle dual (i.e., asymptotisme erefience) au mede (1.84):

N
X(w) =) An(w)exp(i0,(w)) + B(w). (1.107)

ou I'enveloppeA,, (w) présente des variations lentes par rappdd phas®,, (w), dont les variations
sont elles-refes lentes. Nous serions alors agsn’utiliser qu'un seul oprateura’ savoiri (¢, w).

La géréralisation de la mthode “a€te et squeletted la classe duale des signaux asymptotiques en
frequence &t faite dans [52, 53].
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Remarque 1.3Comme on le remarque dans [43], lact des nethodesa un seul opfateur (en
frequencern I'egard des impulsions est parfois utile. En traitement de la parole par exemple, la re-
présentation se focalise sur les formants (harmoniques issus dsdaarice du conduit vocal) et
ignore les “pitchs” (train d’'impulsionsmis par les cordes vocales), ce qui permet d’en faire I'analyse
indépendamment.

Remarque 1.4Notons la difficulg de lecture de I'analyse spectrale di#ntielle: il faut pouvoir
interpéter plusieurs graphiques simuléanént. On ne dispose donc pas de vision d’ensemble du
signal. La féquence locale du signal peaité estingea I'aide d’une ggression sur la phase (qui varie
lineairement si le signal analygst une guence constante) sur larjpde ai'la proportion dénergie
indique gu’un signal se trouveeproximi#e. En Esung, cette nethode est difficile d’emploi.

e Deux oErateurs de eallocation

La méthode deeallocation n’est pas r@é€a un moele implicite de signal. G¢ea ses deux
opérateurs, lagallocation se localise (voir Fig. 1.8)la fois en fequence (sur la sinust¥) et en
temps (sur 'impulsion) maisdgalement sur la modulation &aire en deuxdme partie du signal test.
La Fig. 1.6 confirme cette assertion. Le signal est une fonction d’Hermite [50] qui n’appartientin
des deux moeles (ni asymptotisme en temps, ni eequence). La distribution de Wigner-Ville de ce
signal est un “anneau” dans le plan tempegfréncea l'interieur duquel on trouve les interénces
qui suiventegalement une syetrie splerique. On constate clairementthec des mthodes un seul
opérateur : les rathodes “agfe et squelette” font ressortir soit le demi-cercleiidlr, soit le demi-
cercle supfieur selon I'endroit o on initialise I'algorithmea’point fixe tandis que L'ASD, la DFI
et la méthode du “squeezing” donnent des descriptions difficlége. Par contre, le spectrogramme
réallog enfin se localise presque parfaitement sur toute la ciecente du cercle.

Remarque 1.5La deuxeme partie du signal test en Fig. 1.5 qui est une modulatieailia de fe-
guence (chirp), nous fait voir qu’il existe deux sousegatfies parmi les Bthodesa'un oErateur :
celles quiierent la €allocation et celles qui ne I'appliquent gu’une seule fois. On constate que I'on ne
peut disposer de la localisation sur les chirpsaga’ condition d’i€rer la Eallocation comme le fait

la méthode “a€le et squelette”. Les trois autregtinddes (ASD, DFI et “Squeezing”) donnent une
description floue du signal.

Reconstruction

Dans I'ensemble desethiodes compaEgs, la possibiléde reconstruction du sigralpartir de la
representation est directement ediau nombre et au type de leqateur degallocation choisi.

Il n'existe pasa notre connaissance de formule de reconstruction pour dessezpationse-
allouées quelle qu’elles soient avec deuxengiéurs deeallocation. Par contre, employer un seul
opérateur rend possible I'existence de la formule de reconstruction du signal mais n’est cependant pas
suffisant.

e Lien au moele

Le fait pour les nethodes ba=s sur un ograteur deeallocation de disposer d’'un meleé'sur le
signal, permet d’en estimer les paretnes (la phase et 'amplitude) iadéndamment.

C’estle cas

— pour I'analyse spectrale déféntielle: on a éja prou que la reconstruction apprah du
signalétait possible via Bg. (1.94). Notons qu’il s’agit d’une reconstruction faggartir de
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Fic. 1.5 —Comparaison d’'une famille de mthodes en relation avec laegllocation (signal sans
bruit). (a) le signal est divig’en trois parties: (i) une sinusdé de fEquenceegalea 0.1a laquelle
se superpose une impulsion au temps 32, (i) un chirp linéaire d’enveloppe gaussienne, (iii)
une gaussienne modkd (frequence).25). (b) méthode “aréte et squelette”(c) analyse spectrale
differentielle (la proportion d&nergie dans la bande d’analydgt,w): axe de gauche, courbe du
bas; la phase de la FCT(t,w): axe de droite, courbe du haut) avec en poietilil régression
lineaire dans la zonewR(t,w) est non nul(d) densi€ de féquence instanta®,(e) méthode du
“squeezing”,(f) spectrogrammeadlloué.
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FiG. 1.6 —Comparaison d’'une famille de mthodes en relation avec laegllocation (a) le signal
est une fonction d’Hermite d’ordrg, (b) méthode “aréte et squelette”, initialisation, = 27 0.15,
(c) méthode “aréte et squelette”, initialisatiow, = 27 0.3, (d) densi€ de fléquence instantae,(e)
méthode du “squeezingf) spectrogrammeaélloué.
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paranetres extraits de la repsentation et non pas de la repehtation elle-erhe ce qui rend
son utilisation moins a&s.

— et les nethodes “agte et squelette”: €q. (1.103) garantit une reconstruction directe du signal
avec le squelette. L'até étant connue, laativée secondé(t) peut alorsetre calcue puis-
qu’elle ne é&pend que d’elle. On erediit qua un temps fixé etw = §(¢) pointant sur I'aete:

O] _;aonriione/a SKE(E 0(1)
(1) ~ %e en{i() /4%@@@)/; (1.108)

Remarque 1.6ll n’y a clairement pas de reconstruction possiblgartir de la densitde fequence
instantaee, celle-ci faisant un oubli total de I'information d’amplitude.

e Moins de non liearité

Une autre raisom la possibili€ de reconstruction pour lesetifodesa’un opgrateur est que la
restrictiona un seul opfateur introduit moins de non Bafri€ dans la re@sentation que I'utilisation
des deux.

C’est pour cela que la ethode du “squeezing” et plusgmi€ment du “synchrosqueezing’gr’
sente l'avantage de pa=dgr une formule de reconstructiexactedu signal. Pour prouver son exis-
tence, on doit auparavantgmiser quelques progtés de la FCT.

Il n’est pas ®cessaire d'utiliser une fetre identique la ferétre d’analysé (t) pour reconstruire
le signala partir de la FCT. Si on appellg?) la ferétre de reconstructiondgali€ suivante est vraie

2(s) = / / F(1,0)g (g (9) déi“. (1.109)

(00 gt ) (5) = g(s — t)e'wse/2) 3 ]a condition

/h(t)g*(t) dt =1. (1.110)

Si on choisit poug (t) = é6(¢), une impulsion de Dirac alors la reconstruction est possitiét$i
égalea 1a l'origine. Selon IEqg. (1.109), le signal strit alors comme la marginale en temps de la
FCT:

dw

z(s) = /F(s,w) o (1.1112)

Supposons quk(t) vérifie la conditionz(0) = 1. L'action du squeezing sesumant au ejlace-
ment en fEquence uniquement des valeurs de la FCT, aleifixe, SQU (s, .) et F'(s, .) sont donc de
somme identique ce qui prouve::

z(s) = /SQU(S,w) Z—b; (1.112)

Le signal peutefre reconstruit exactement par une marginalisation de la FCT medfr la
méthode du “squeezingi [a condition que la festfeh (t) soitégalea’l en O.
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Méethode Loc. Loc. Loc. || Reconst.

frequ. | impuls. | chirps || du signal
A.S.D. v v
D.F.I. v
A.etS. Vv Vv Vv
“Squeezing”| +/ Vv
Réallocation| ./ Vv vV

TAaB. 1.1 —

Cette table dresse un bilan, dans le cadre de la comparaison faite en Sect. 1.4, degpchgni
disposent chacune desthodes mSentes en Sect. 1.4. Pour la signification des acronymes, voir le
texte.

Robustesse au bruit

Pour finir la comparaison, on se proposewdiluer la robustesse de chacune deshades au
bruit. Il s’agit modestement en partant d'un exemple, de se faire une opinion sur les comportements
typiques en pESence de bruit de chacune d’entre elles. Gatigera succinctement si des solutions
ontété envisagés pour I'arelioration de la re@Sentation des signaux brest”

e Un opérateur de Eallocation
Toutes ces mthodes utilisent le Brhe ograteur degallocation. La diffrence de sensibiéithe
peut donc venir que de la mam€ de construire la repsentation.

— Analyse Spectrale D#fentielle

Si on analyse un signal dont leffence est constante dans la bande d’analyse, alors la mesure de
la fréquence paregression locale de la phase (cf. Fig. 1.7) donne d’assez bsultats. Si le signal
n'est pas de #uence constante (modulatiord@ire de fequence par exemple) alors il faut changer
de nethode deegression (il faut ajuster une parabole). Il faut donc pdee au cas par cas. Pour des
signaux eels, on ne dispose pas dentBirche systhatique.

— Densit de féquence instanta®

Dans la repesentation dorg€ par la densitde féquence instantae; le néme poids est doren”
aux points o'le module de la FCTF (¢, w)| est petit ou grand. Dans le cas favorabld®bruit est de
tres faible amplitude, on va traiter avec wgale importance I'information pae’par le bruit et celle
portée par le signal. Eresung, des perturbations,enie tes faibles, vont abouti tne repesentation
difficile a lire (cf. Fig. 1.7).

Une oEration de post-lissage (passe-bas) [43Ddid(¢, w) améliore le Bsultat mais pas dedan
réellement convaincante.

— Aréte et squelette

La concision de la description du signal fournie par le squelette fait sa force mais aussi sa fai-
blesse. La mrSence de bruit perturbe lemulement de I'algorithme point fixe. Cela pose la question
de l'initialisation de cet algorithme: selon le choix du point @épadrt, on peut converger vers ke
assoote au signal, mais on risqegalement de finir sur uneet€ assoe€ié au bruit. Aux instantsuo”
la convergence est mauvaise, le squelegitile bruit et le signal est comgtement oubé’ C'est par
exemple ce que I'on constate en Fig. 1.7 pour la deenpartie du signal: on ne converge pas vers la
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frequence centrale du logon gaussien mais vers un pacregrdie appartenant au bruit.

Ceci compromet I'utilisation du squelette pour des peotds de dfection ou d’estimation. &n-
moins, un algorithme robuste de recherche det@agete propog récemment [19, 18]. On recherche
la courbe du plan tempsefiquence qui soia la fois Eguliere et le long de laquelle liegrale de
|F'(t,w)| est maximum. Onasout ce compromis par la minimisation d’ueeefgie avec desen’
thodes de recuit simalL’algorithme donne de bonssultats pour lagtection et la caraetisation de
chirps [20].

— Méthode du “squeezing”

Le bruit perturbe lagéllocation et modifie la ma@ié dont sontaérganiges les valeurs de la FCT
(complexes pour le synchrosqueeze). Deux valeurs de la FCT enitigpde phase peuvent venir se
réallouer en un e point et ainsi se compenser totalement. S'il s'agit de deux valeurseessaai’
signal, de I'information importante est alors perdue.

Les auteurs proposent une solution intediaire qui donne de bonesultats sur des signaux de
parole. Elle consista féallouer( F(t,w) + | F'(t,w)|) /2 plutét queF (¢,w). On perd, en contrepartie,
la possibili€ de reconstruction du signal.

e Deux oErateurs de eallocation

Une grande partie du document est consear’etude de lagallocation dans le cas des signaux
bruités. Nous renvoyons donc le lecteula'suite et en particuliex [a Sect. 2.3 o 1'on fait le calcul
des densis de probablé des oprateurs degdllocation.

Conclusion

Nous avons mis emvidence les liengtfoits qui unissent les quatreethodes ESentes aux-
guelles s’ajoutent lagdllocation. D’un point de vue pratique, il est raisonnable @earter deux, en
raison des faiblesses de la repehtation propes : I'analyse spectrale déféntielle, pour sa difficudt”
d'utilisation et la densé'de féquence instantae pour sa sensibiétparticulere au bruit.

Il nous reste trois mthodes en lice qui ont chacune les points forts et leur talon d’Achille :

— la méthode “a€te et squelette” qui posde de bonnes progtiés de localisation et la possiblit”
de reconstruction mais est peu robuste au bruit,

— la méthode du “squeezing” qui se localise parfaitement sur Eguighces uniquement, et qui
dispose d’'une formule de reconstruction exacte du signal,

— laméthode de lagallocation qui se localise sur n'importe quelle droite du plan tenmgagsnce,
mais pour laquelle on n'a pas de retour possible au signal.

1.5 Conclusion

On a introduit, dans ce chapitre, le principe dedalldcationa’la fois dans le contexte des dis-
tributions dénergie quadratiques tempgdience (classe de Cohen) et terapkelle (classe affine).
Nous avons insistsur le fait que lagéllocation se fonde sur unegle gerérale que I'on peut envisager
d’'appliquer hors du cadreucelle agte définie.

Nous avons ensuite ggeng” quelques propetés des distributionsellolEes dont la plus impor-
tante est qu’elles donnent une solution acceptable au compromis desénpe’ d'intedfencews.la
localisation sur les composantes du signal. Nous awas,titre, vu que la localisation que I'on sait
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FiG. 1.7 —Comparaison d’'une famille de mthodes en relation avec lagllocation (signal bruig).
(a) le signal est celui pgSen¢’en Fig. 1.5 ajowga un bruit blanc gaussierRSB = 2dB), (b) mé-
thode “aréte et squelette’(c) analyse spectrale défentielle (la proportion d¢nergie dans la bande
d’analyseR(t,w) : axe de gauche, courbe du bas; la phase de la &G w) : axe de droite, courbe
du haut) avec en pointla régression lieaire dans la zonewZR(¢,w) est non nul(d) densi€ de

frequence instanta®,(e) méthode du “squeezing’{f) spectrogrammegalloug.
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parfaite sur les modulations Baires de fguence d’enveloppe constante, contindre effective,
dans une certaine mesure, sur des modulations neaiigs de &quence.

Nous nous sommes ensuite focafisur le spectrogramme et le scalogramme. Nous avons mon-
tré que, pour ces distributions, lesevpteurs deaallocation peuvent se reformuler de ditfntes
manigres, chacune d’entre elles apportanegtairage nouveau sur le processusetdlocation. En
particulier, une formulatioa base de quotient de FCT (resp. transtereh ondelettes) pour le spec-
trogramme (resp. scalogramme) permet une mise en ceuvre efficaceediideation de cette distri-
bution.

Enfin, ce chapitre se conclut par une mise en paleaByntretique de quelquesetiiodes de des-
cription temps-fequence du signal qui oatvoir avec la eallocation. Apes avoir mong’les liens
théoriques qui unissent toutes cesthbdes, nous en avons fait la comparaison. On a pleeajgpr”
le caractre crucial de I'utilisation de deux epateurs pour la localisation de la repentation. En
contrepartie, se limitest Un seul opfateur deeallocation permet dedpéficier de formule de recons-
truction qui autorise un retour au signal. Ces formules ne sont pas disporgslegid I'on utilise
deux orateurs (leur non existence n'a cependangt@prouee).
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