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[Chapitre I : Fonctions de R dans R : rappels |
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1. Notations et rappels

L’intersection de deux ensembles F; et By s'écrit By N E, , Leur union s’écrit By U Es

...,_..__.._...—_.__._..-._...._....._‘..__.___..-_—..___.._..__._.-_.—._—._._—._..—_...—_._._—_..—._..-_..—._-_.-_...._.

Les ensembles de nombres classiques sont :

R =] — 00, +oo[=ensemble des réels - R+ = [0, +co[=ensemble des réels positifs
R* =] — 00,0[UJ0, +-0o[=ensemble des réels, zéro exclus (voir figure F1)

N =ensemble des entiers naturels : 0,1,2,3,.... A

7, = ensemble des entiers relatifs ...,-3,-2,-1,0,1,2,3,....

Q = ensemble des nombres rationnels! : p/qoup€ Z,q € N*

Un segment est, par définition, un intervalle fermé borné. Par exemple [a,b] ol a et b sont deux réels finis

(c'est-3-dire non infinis) . ,
Un voisinage du nombre réel a est une partie de R qui contient un intervalle ouvert non vide de centre a

z+a StT>—a |

On rappelle que |z + af =,{ Cd—a siT<—a

On rappelle que vz2 = |z| mais que V3 =z

1Curiosité : Un nombre est rationnel si et seulement si la suite de ses décimales est périodique & partir d’un certain
rang; essayez! ce sera élucidé au chapitre V : Séries réelles
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Les formes indéterminées sont classées en trois types :

e 0/0, co/o0 , dont l'indétermination peut &tre levée grice au théoréme des croissances comparées ou
w 4 la régle de L’Hopital (§. 10,th. 17) ou bien encore par l'utilisation des développements limités.
\&é@? e (.co, 00— 00, quise raménent aux cas précédents
L .
& &\ e 0%, 0¥, 1% qui se traitent en travaillant leur logarithme. Par exemple, on peut rencontrer, en cours
F de probabilité, lim ( - ﬁ) qui ne vaut pas 1 mais e™¥.
N n—+o0 n

Traditionnellement on pose y = f(z) et on représenté la fonction f par un graphe, appelé Cy, dans le plan
orthonormé ol I'axe des z est horizontal (abscisses),et ’axe des y vertical (ordonnées).

Quand on cherche la limite de f(z) quand z tend vers a, cela ne nécessite pas que f soit défini en a. “Tendre
vers a ” n'implique pas “atteindre a” .

“ ”

Un développement limité d’une fonction f au voisinage de nécessite que f sﬁztkﬂeﬁme en a.

‘U" 10 %m\ JAME O \»w\’ \{MA %?A F
2 Définition d’une fonctlon SN %YA oc\\‘ A Lm\e AmoRe doam

- s Yoacken
'{Mm&'@\?ﬁ Def.1 : Une fonction f de E dans F' est un procédé qu1 3 tout élément x dans F associe au plus un
élément noté f(z) dans F. E et F s’appellent respectivement ensemble de départ et ensemble d’arrivée.

kw\s o Il peut y avoir des éléments de E auxquels la fonction f n’associe aucun élément de F'.
\Y

D Eg o Dans ce chapitre, les deux ensembles F et F' sont Pensemble R.

Def.2 : Le domaine de définition de f , noté Dges(f), est I'ensemble des z de F qui ont un associé dans

6}‘ x F. On dit que f(z) est 'image de z et que f(z) a pour antécédent z.
e Dyes(f) CE (ici,R). Si E = Dyes(f) , la fonction s’appelle une apphcatlon C\'Q‘\Wh ‘\ \CL

q:‘@, CL\,\N-\ T
o Une fonction de F dans F' peut toujours se transformer en application de Dyes(f) dans F; il suffit de
restreindre I’ensemble de départ au domaine de définition. Q&_ \~ N a0

R

o Les occasions qui font que Dges(f) peut étre plus petit que R sont les suivantes : P
“\_ . . > Un dénominateur ne doit pas étre nul ¢ RAY B Ak \x
]
L’argument d’une racine carrée doit étre positif ou nul ‘jG aR &W \“C\ ve\le

Von axieeedsn
b“t L Q'\( A_ J}e,o\& \m&i&

L’argument d’un logarithme doit étre strictement positif

>
>
> L’argument de arcsin et de arccos doit appartenir & [-1,41]
> L'argument de argch doit appartenir & [1,+o00[

>

L’argument de argth doit appartenir & ] — 1,+1]

< Def.3 : Le domaine de valeurs de f noté Dyg(f) est Pensemble des valeurs f (z) obtenues quand z
2 parcourt Dges(f).
@ Ce domaine de valeurs est aussi appelé ensemble image de f et est noté Zm(f)




Dyat(f) =Im(f) C F (ici,R)
Lorsque tous les éléments de Iensemble d’arrivée ont au moins un antécédent, la fonction est dite
surjective. 2> p F= Dt |

Une fonction f non-surjective peut étre rendue surjective , simplement, en définis
ensemble d’arrivée. Par exemple : } C

@ Lorsque chaque irﬁage n’a qu’un antécédent, la fonction est dite injective.
o ~ Une fonction f non-injective peut 8tre rendue injective , simplement, en restreignant l’enSemble de

départ & un ensemble plus petit que Daes(f) [voir fig. F2). Par exemple :
- I z€R — 22 € R n’est pas injective, mais g : ¢ € R™ +— 22 € R est injective.
. : - e Une fonction 2 la fois injective et surjective est dite bijective. Par exemple :
h:z€R™ +— 22 € R est bijective. ’

" ¢ Voir figure F2

sant Zm(f) comme W&
Yor 9052

f:xz e R+ a? € R nest pas surjective, mais g : 7 € R +— 22 € RT est surjective. (
, P A
O

2\ R
('5) Bornen
Une fonction f de la variable réelle z est dite bornée sur un intervalle I g'il existe M € RT tel

Def4 :
@ que ‘ ‘ mal T
’ veel, |f(z)| <M

Def.5 : Une fonction f de la variable réelle z est dite majorée sur un intervalle J s'il existe M € R tel

que
Veel, flz)<M

@ | Une fonct;ion f de la variable réelle z est dite minorée sur un intervalle I s'il existe m € R tel que

vzel, \f(a:)_>_m

o Une fonction bornée sur I est majorée et minorée sur I et réciproquement.

Def.6 : Une fonction f de la variable réelle z est dite
siVa,bel, a<b = f(a)< f(®)

- croissante sur un intervalle I -
_ décroissante sur un intervalle I siVa,b€l, a<bdb = f(a) > f(b) A
— monotone sur un intervalle I si f est croissante sur [ ou(exclusif) décroissante sur 1.

o Quand les symboles < et > peuvent &tre remplacés respectivement par < et > , on rajoute, & ces adjectifs,

1'adverbe “strictement”.

3. Fonction réciproque

Lbrsqu’uhe fonction f de E dans F' est bijective, sa fonction réciproque, notée traditionnellement 1
existe, avec des domaines de définition et de valeurs fixés :

* i

Dyes () = Tm(f) e Tm{f ™) = Daes (f)

= e La notation f~! n’a rien & voir avec 7

o Attention dans la recherche de l'expression de la fonction réciproque : une fois qu’on 2 exprimé z en
~ fonction de y & partir de f, il ne faut pas oublier d’échanger les symboles = et y. Par exemple la
" fonction f : z € —00,0] = f(z) = e=%" admet pour réciproque la fonction g : = €] — 00,1] +=—
g(z) =—v—-Inz
e Les graphes d’'une fonction f et de sa réciproque f~* sont symétriques. par rapport a la premiére
bissectrice ; en particulier, si Cy admet une tangente horizontale au point de coordonnées (a,b) et
une asymptote verticale & 'abscisse z = ¢, alors le graphe Cj-1 admet une tangente verticale au point

de coordonnées (b, a) et une asymptote horizontale en 'ordonnée y = c.(voir figure F3)
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4. Opérations sur les fonctions

> On peut multiplier une fonction par un réel A; par définition (\.f)(z) = X.f(z)

> On peut additionner, soustraire ou multiplier 2 fonctions & condition que 'intersection de leur domaine
de définition ne soit pas vide; par définition (f & g)(z) = f(z) + g(z) et (f.9)(z) = f(z).g(z) et on a
Daef(f £ 9) = Daef(f9) = Daes(f) N Daes(g)

> On peut effectuer le quotient de 2-fonctions défini par (f-)(

_ fl=)
" g(z)
et on a Ddef( ) = Ddef(f) NDger(g) — {les valeurs de z telles que g{z) = 0}

>- On peut composer 2 fonctions en écrivant la définition (f o g)(z) = flg(z)]
a condition que le domaine de valeurs de g soit inclus dans le domaine de définition de f et on a

Dies(f 0 g) = Dges(g) — {les valeurs de z telles que g(z) ¢ Dges(f)}

5. Déformations de la courbe représentative d’une fonction

Soient 7 et 7 les vecteurs unitaires respectifs de I'axe des abscisses (0z) et de ’axe des ordonnées (Oy) et
k une constante réelle positive.

> y=g(z) = f(z) +k : Cy est le translaté de Cf, d’un vecteur k—f
> y=g(z) = f(z+k) : Cy est le translaté de Cy, d’un vecteur k4

> y=g(z) = f(kz) : Cy résulte de I’étirement de C¢ selon de Oz, d’un facteur 1/k si 0 < k < 1 et d’une
compression de Cf selon de Oz, d’un facteur ksi & > 1

> y = g(z) = k.f(z) : C, résulte de 'étirement de Cj selon de Oy, d'un facteur k si k > 1 et d’une
compression de Cy selon de Oy, d’un facteur 1/ksi0 <k <1 ‘ oS

6. Elements.de_sym@tme—dme_fonntmn_ 4 - \Fw A

Def.7 : La question de la parité d’une fonction ne se pose que si son Dges(f) est symétrique par rapport &
0. Dans ce cas,

- sl Vz € Dges(f) f(—z) = f(z) , alors f est paire.

- 8i V2 € Dges(f) f(—z) = —f(z) , alors f est impaire

- sl Yz € Dye(f) f(—x) # f(z) et f(—z) # —f(x) , alors f n'a pas de parité définie (vo1r fig. F4-c).

r—o Le graphe d'une fonction paire est symétrique par rapport & Paxe Oy d’équation z = 0 (voir figure
F4-a) \

e Le graphe d'une fonction impaire est symétrique par rapport & l'origine de coordonnées (0,0) (voir
figure F4-b)

L Une fonction impaire définie en z = 0 est nécessairement nulle en x=0.

o Lorsque deux fonctions fi et fo sont telles que fa(z) = f1(—z), leurs graphes respectifs sont symetnques
par rapport & 'axe Oy. Exemple : fi(z) =€ et : fo(z) =2

¢ Lorsque deux fonctions f; et fo sont telles que f2(z) = — fi(—z), leurs graphes respectifs sont symétriques
par rapport & l'origine de coordonnées (0,0). Exemple : fi(z) = /= et : fo(z) = —v/—z

Th. (1) : Le graphe de la fonction f admet pour axe de symétrie la droite d’équation z = q, si

Vh tel que (adh) € Dges(f), fla+h)=fla—h)

- 4-




Th. (2) : Le graphe de la fonction f admet le point de coordonnées (a,b) comme centre de symétrie, si

>< Vh ,tel que (a % h) € Daes(f) 5 f(a+h)—£f(a—h)‘=b |

— N ~ . ; PSP == ——
On montre ce dernier théoréme grace a ]a remarque suivante : si , dans le référentiel (0, 7 7 ), le point I de
——

coordonnées (a,b) est un centre de symétrie pour un graphe, cela signifie que, dans le référentiel (I, ¢ 7 ),

la fonction est impaire.

2. Périodicité diunefenetion

Def.8 : Une fonction f est dite périodique sur un intervalle I C Dge(f), si et seulement si il existe un
X réel fini strictement positif o tel que - ' :
IR . Yzeltlquezs+acl , f(:r:-l;a)=f(a:) ,

ur «, la plus petite de celles-ci s'appelle la période de f.

Sl existe plusieurs valeurs numeriques po

de T', on peut restreindre son étude 4 un intervalle [a,d]

e Lorsqu'une fonction f est périodique, de pério
( _]:)) : le graphe complet se déduit du graphe sur [a,b] par

quelconque de longueur T appartenant & Deef

translations successives en z, d’un vecteur +T 4 o
o Il faut &tre trés prudent quant-2 la somme ou le produit de 2-fonctions périodiques et ne pas se risquer
3 “nventer des théorémes” : '

> La somme de 2 fonctions périod
tion périodique. Par exemple : f(z) = sinz + sin(rz) . Tracez-la sur votre calculette graphiquel.

Pour cela, il faut que leurs périodes respectives T et T, soient commensurables c’est-a-dire qu’il
existe 2 entiers ny et ng strictement positifs tels que ny 11 = nyTy ; Dans ce cas, la fonction f1+ f2

est périodique, de période T' = nyTy.
Par exemple : la fonction f définie par
F(z) = ag + arsin(wz) + by cos(wz) + agsin(2wz) + b2 cos(2wz) + as sin(3wz) + b3 cos(3wz)
ot les a; sont des coefficients constants ainsi que la pulsation cﬁ; elle.a pour période 2m/w
> Le produit de 2 fonctions f1 et fo T-périodiques n’est pas nécessairement une fonction
périodique de période T'; exemple : la fonction f définie par (sinz).(cosx) est de période 7

et non pas 2.

3 Liﬁites (\rcif (fw“{"? fevt b W (L}wq@)

La notion de limite est 1a base des définitions de la continuité et de la dérivée, c’est dire son importance.

iques quelconques f et fz n’est pas nécessairement une fonc-

Def.9 : Soient a et A réels.On dit que :
1im+ f(z) = Asi f(z) s’approche de A autant que nous voulons, pourvu que T s’approche assez de a
T .

par. valeurs supérieures. Alors A s’appelle la limite & droite. On écrit aussi A = f(a+0)-

rL‘lim flz)=B si f(z) s’approche de B autant que nous voulons, pourvu que z s’approche assez de
—a— ? :
o par valeurs inférieures. Alors B s’appelle la limite & gauche. On écrit aussi B = f(a—0)

Si les limites unilatéres existent et sont égales & une méme valeur L alors lim-f(z) = L
C . s : ) . . . . T—a

s

nous voulons. : @';e\’). Ew\m

(91\ c\ﬁ-"‘\\ﬂ
= on Qa_ wle Q\‘(‘(L*%/L“\ N /3; \»&A th\\b} oy 2r A

B¢ 1
Py~ Ve & w\euvh& o0 q\};g

o La fonction n’est pas obligatoirement définie en a. Il suffit qu'elle soit définie aussi proche de _g_qg\g,_

e la limite & droite et-la limite & gauche constituent les limites unilatéres ' teo 7
Qx;\-ne de ¥ en (L} QC\.- \rﬂ\edT (’)v?— &»6(5 w00, \'@‘“ o &er"‘&*' “;_@C

b Gg) B V“}f”‘f( \R%Wm 'W@e\mi:&«\' e
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o L peut étre Infini, a restant fini; dans ce cas /

Si L=+0c0 \ Si L=—-0c0

\ f(z) n’a pas de limite ~ ,.///

Traditionnellement on écrit

pourtant
lim f(z) = +o0 T

La demi-droite (z = a, y > 0) // La demi-droite (z = a , y < 0)
est une asymptote verticale c/ est une asymptote verticale
au graphede f

¢ g peut etre 1nﬁni, L restant fini; on dit que

hm f(z hm fz) =
a:—&—oo
si f (z) s’approche de L abant
que nous voulons, pourvu ue
=z prenneune valeur

positive &G—— ~ Ea’cwe
/ T —————— s assez grande en valeur absolue 4 \

La derm—dée y=L,z>0) , La demi-~dwpite (y = L, z < 0)
est une/ asymptote horizontale est une asymptote horizontale

. 3ugraphede f \ { \

i |
M a. = oo X L = Ko alon OJMS“ Fove hor\_éow\e»w-ém 1\
[0 9]

o
—2 o s azob oF Lo+ dons m‘a\rb LY cen

e

1 &
i\ 3
'\ §

w‘ “'n \07(.: +(50
w .
fian \';‘;ZL =0

S\
= O%

¢ g et L peuvent étre tous deux infinis; on peut rencontrer les 4 situations
Jm f@)=+teo , lm fle)=-co, lm fz)=+too , lim f(x)=—cc

Dans ces cas, il est judicieux d’affiner l'information en précisant le type de branche infinie; la
méthode infaillible est la suivante :

P Sy

¥
{ calculer lim fz )
z—+co I

— Siag est nul, on a une branché para'mrection Oz
— Sia; est infini , on a une branche parabolique de direction Oy

=a

— Si a; est un nombre fini non nul ,

calculer Jm [f(z) — a1z] = ag

> Si ay est un nombre fini, f admet pour asymptote oblique la droite d’équation y = ayz+ a2
> Si ay est infini, f admet pour direction asympotique oblique la droite d’équation y = a1z
Exemples :
- le graphe de y(z) = Inz admet, quand z — +00), une branche parabolique de direction 0z
- le graphe de y(z) = e™* admet, quand z — —o0), une branche parabolique de direction Oy
- le graphe de y(z) =z + 3+ ;53 admet, quand z — =00, 'asymptote oblique d'équation y(z) = z+3
- le graphe de y(z) = z — /= admet, quand z — +o0, la direction asymptotique définie par la droite
d’équation y(z) =z '
Plus de détail sur le comportement de f(z) quand z tend vers l'infini est obtenu en effectuant un
développement limité de f(z) au voisinage de P'infini, dit développement asymptotique (Chapitre
1-§15).

R
lm Mf"” “3% o
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{ fonctions ; dans le cas du quotient, il faut, en plus, la non-

Lois algébriques sur les limites Th 3):
Si on a affaire a des fonctions ayant des limites finies, alors
une somme d’un nombre fini de

La limite d’{ un produit d’un nombre fini de
un quotient de deux

3 la somme

fonctions est égale au produit p des limites de ces
au quotient ‘ o

nullité de la limite du dénominateur .

Th. (4) de passage & la limite dans une inégalité entre fonctions

Si nl:m.r(x1 f(z)=1Ly , %1_1{(11 g(z) = Lo et si, au voisinage de a, f(z) < g(=) , éulors Ly <Ly

Th. (5) d’encadrement (ou du sandwich ou des gendarmes)

Sif(z) < g(z) < h(z) etsi  lim flz)=L= :};I_I,I},h(x) , alors alcgrzg(x) =L

Y

o
¢S f(z)<g(z) - et limf (€) =+oo alors lim g(z) = +oo
e Si f(z) < g(z) et %13 g(z) = —co alors lim f(z) = —o0 .

e Si 0<f(z)< g(z) et %Er}zg(:z:) =0  alors gl_r)r}lf(:z) =0

Th. (6) des croissances comparées

VaeN*, limz*lhz=0 lim — = lim z%€ lim
) . z—0 v T o T——00 z—+00 &

Th. (7) de la limite monotone
Soit un intervalle I =]a, b€ R et f une fonction mon‘otone de I sur R. Alors

e en tout point ¢ € I, f admet une limite finie a droite, notée f(c*) et une limite finie 4 gauche, notée

f(c™) telles que ‘ :
f croissante = f(x7) < F(¢) < f(ct) , f décroissante = F(et) < fle) £ fc7)

o lim, .+ f(z) =L ot L est .
e finie <= f est croissante et minorée ou bien décroissante et majorée

e —00 si f est croissante mais non minorée

e oo si f est décroissante mais non majorée

o lim, - f(z) = Ly-ou Ly est .
o finie <= f est croissante et majorée ou bién décroissante et minorée
e 0o §i f est croissante mais non majorée '

e —oo si f est décroissante mais non minorée

o Ce théoréme a son homologue pour les suites réelles au Chapitre IV.§7, c’est ce qui justifie qu’on Pait

signalé ici.

- 7.
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Def. (10) de 2 fonctions équivalentes : La fonction f de I C R dans R est dite équivalente a la
fonction g au point z =a =
Il existe un voisinage V de a et une fonction € de NV dans R tels que

7li“r»rtlle(a:)zO et VzelnV , f(@)=[1+¢(=)].9(z)

‘OU BIEN
La fonction f de I dans R est dite équivalente & la fonction g au point z =a <=
11 existe un voisinage V' de a et une fonction ¢ de I NV dans R tels que

lmg)=1 et VoeelInV , f(z)=4()g(x)

o Cette définition a son homologue pour les suites réelles au Chapitre 1V,§9.

,é/. Continuité d’une fonction -

Def.11 : La fonction f est continue en & = a , si a appartient & son domaine de définition et si lim f(z)
T—a

existe et vaut f(a).

<_> o Les différents types de discontinuité, finie, infinie, sont présentés sur un graphique (voir figure F5).

e Sont continues sur leur domaine de définition, les fonctions polynémiales, rationnelles, trigonométriques
L (et leurs réciproques), exponentielles, logarithmes, racines. Néanmoins, la continuité & I’extrémité d'un
intervalle de définition est restreinte & une continuité & droite ou a gauche.
]_-_'o Le domaine de continuité Deone(f) d’une fonction f est inclus dans son domaine de définition Dyef(f)
[’o Si a n’appartient pas au domaine de définition de f mais xlilzx+ flz) = z]iril_ f(z), on dit que la
discontinuité de f en a est réductible ou écartée. On définit une fonction “parente” f continue en a
en posant

L ?(x)={ f(z) si z € Das(f)

igr}lf(m)) si z=a

On dit que f est le prolongement par continuité de f. Certains logiciels graphiques effectuent ce
prolongement sans vous le dire, en tragant le graphe de g quand vous demandez celui de f.

Par exemple la fonction f définie par f(z) = EE_E n’est pas définie en z = 0, mais y est prolongeable

-
E N . sing
X par continuité car lim — =1
z—0 T

Th. (8) - Opérations algébriques sur les fonctions continues : Si les fonctions f et g sont continues
en a, alors, f+g, fg, cf(ol c est une constante), sont continues en a; pour étre aussi continue en a, la

fonction 7 demande en plus g(a) # 0

Th. (9) : Si une fonction g est continue en a et si la fonction f est continue en g(a), alors f o g est continue
en a

Th. (10) de la bijection réciproque : Soit f une fonction continue et strictement monotone sur un
intervalle I. Alors

fest une bijection de I sur J = Im(f) (ensemble image par f de I)

la fonction réciproque f~* est continue, strictement monotone sur J et de méme sens de variation que f

Th. (11) de la valeur intermédiaire (voir figures F6)
Soit f une fonction continue sur [a, b] telle que f(a) # f(b)

Alors, pour tout nombre u dans ] f(a), f(b)], il existe au moins un nombre c dans Ja, b[ tel que f(c) = u.

- &




o Autrement dit, la courbe représentant cette fonction f sur Iintervalle [a,b] coupe nécessairement
au moins une fois I’ horizontale d’équation y = u & une abscisse ¢ dans Ja, bl.
e En particulier si f(a) et f(b) sont de signes opposés, cela agsure l'existence d’au moins une racine (z=

¢) pour D’équation -f(z) =

na

Cela permet de trouver, par approximations successives, les racines d’équations transcendant S comme* %
15\

z +Inz = 0. [voir fig. I-6] Seo P BTN

(o apelle Ammée e

)\ occisunen {’{

@. Dérivée (premiére) d’une fonction (0 QLmLLe o\u h Y o

d =
C’est une autre fonction de z. On la notera E—Ji( ) ou f’ (z). g % "‘>"“ o &

—

Def.12 : La dérivée de f en = = a peut exister & condition que a € Deont(f) - Dans cette condition, elle

est définie par la limite, si elle existe du taux d’accroissement :

lim M : si cette limite existe, on la note f'(a) ou mieux —ﬂ——)—(a: =a)
zT—a T —a : dz
" o Les cas ol la fonction f est dite non dérivable en a bien que € Deont(f) sont les suivants :

[{\ > les dérivées & droite et & gauche de a ne sont pas les mémes
ny .

> la dérivée en z = a est infinie
e La valeur de la dérivée en z = a égale la pente de la tangente au graphe de f en z = a.

'équation de cette tangente est r—— fla)=(z—a)f (J ‘ R
¢ Le domaine de dérivabilité Dy (f) d’une fonction f est contenu dans son domaine de continuité Deont(f)

e Les dérivées des fonctions élémentaires que vous connaissez par coeur sont le résultat du calcul de la

limite-définition.
o Le signe de f/(z) donne le sens de variation de f(z)
> S f(z) >0, f(z) est croissante en z; la tangente en  a une pente positive
> Si f'(z) < 0, f(z) est décroissante en z; la tangente en T a une pente négative
> Si f'(z) =0, f(x) est ni croissante ni décroissante en z; la tangente en x, de pente nulle, est

horizontale.
™o Recherche d’un extremum relatif d’une fonction continue : la figure F7-a rappelle la définition

d’un extremum relatif et d’un extremum absolu sur un intervalle.
El. La condition nécessaire & l'existence d’un extremum en & = a sont :(voir figure F7-b)

o flexisteenaet f'(a)=0 -
o sinon f' est infini B ‘gf‘%\ ’u:\\\v\f '
e sinon ' est différente & droite et & gauche de a donc n'existe pasen a ,
E Une condition suffisante est que f’ change de signe de part et d’autre de alvoir figure
F7-c)] : o . ,
_e Attention Lorsque une fonction f est définie par morceaux, le calcul de la dérivée au poing frontlere

demande de revenir & la définition de la dérivée en ce point.
22 si z €]—00,1]

Ex.1:f:z— f(z)= est dérivable en z = 1.

2¢"71 s z>1
z? si z €]—00,1] .
Ex.2:f:z— f(z)= - i n’est pas dérivableen z = 1. -
2¢=(==1) s z>1

|® Attention Lorsque une fonction f, dérivable sur un‘intervalle sauf en a , admet en a un prolongement
par continuité f et qu’on se pose la question de l'existence de la derlvee 7! en a,deux strategles sont

possibles :

9.

azcwfi |




?ﬁ‘:

e

> Si f' admet une limite L en a (les deux limites unilatéres égales et finies), alors f ' =L

> Si f/ n’admet pas de limite en a, on ne peut rien en conclure : il faut explicitement calculer

(w) f(a)

:c-+a —a

Ex.1:f:z — f(z) = z%sin <i) est prolongeable en = = 0; sa prolongée f est dérivable en

z = 0, mais f’ n’admet pas de limite quand z tend vers O car elle oscille indéfiniement entre -1
et +1.

si -
Ex.2:f:z— f(z)= _11_;£ est prolongeable en = = 0; sa prolongée f est dérivableen z =0,

limg .o f'(z) existe et F(0) = Jim f'(a)

Th. (12) - Opérations algébriques sur les fonctions dérivables :
Si les fonctions f et g sont dérivables en a, alors f +¢, fg, cf(ou c est une constante), sont dérivables en
a:

X (f£ q)'(a) = f'(a) £4'(a) (f9) (@) = F'(a)g(a) + F(a)g'(a) (cf) = cf'(a)

Pour &tre aussi dérivable en a, la fonction 5— demande en plus g(a) # 0 et alors

(1Y ) s@f (@) - fa)g'(a)
<g> (a) = 9%(a)

Th. (13) de Rolle sur un intervalle borné :
X Si f est une fonction continue sur [a, b] et dérivable sur ]a,b] telle que f(a) = f(b). alors il existe au moins
une valeur ¢ €]a, b telle que f'(c) =0.

e Les figures F8-a et F8-b montrent I'importance de la condition de continuité pour satisfaire le théoreme
de Rolle.

o La figure F8-c illustre le fait que “A entraine B” n’induit pas que “B entraine A”.

Th. (14) de Rolle sur un intervalle non borné :
Si f est une fonction continue sur [a, +oo[ et dérivable sur ]a, +oof telle que liril f(z) = f(a). alors il existe
. . T=-0Q

au moins une valeur ¢ €]a,+oo] telle que f'(c) = 0.

Si f est une fonction continue sur [a,b] et dérivable sur Ja,b[ , alors il existe au moins une valeur ¢ €]a, b[

telle que

© 7 ~ % Le théoréme de Rolle a pour conséquence le théoréme des accroissements finis :
" Th. (15) des accroissements finis : '

-1 _ g

E L’expression précédente, écrite sous la forme f(b) = f(a)+ (b—a)f'(c) constitue la formule de Taylor
Lagrange & l'ordre 1.

o Cela signifie qu’en = = ¢, la tangente au graphe de f est parallélle & la sécante joignant les deux
extémités [a, f(a)] et [b, f(b)]. [voir fig. F9]

o Ce théoréme permet de démontrer des inégalités par le biais de a < ¢ < b et de ses conséquences sur
f'(e)-

e En posant h = b — a , ce théoréme peut étre formulé en prédisant ’existence de 8 tel que 0 < 6 <1 et
fla+h) = f(a) + hf'(a+6h)

e Le théoréme des accroissements finis a une extension si on rajoute une condition sur la dérivée, c’est
ce qu’on appelle I'inégalité des accroissements finis ci-dessous.

- 10-
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( .
1o nulles en a (ou dont la limite en a est nulle)

Th. (16) Inégalité des accroissements finis :

— Soient :

'5( | i) deux réels a et b tels que a < b
ii) une fonction f de [a,b} dans R, continue sur [a, b], dérivable sur ]a, b
iii) et dont la dérivée f' est bornée sur Ja,b[ , avec m = inflg(f') et M = supjqpi(f")

Alors : m.(b—a) < f(b) — fla) < M.(b—a)

Cela aussi peut servir a démontrer une inégalité.

* Th. 17 - Regle de I'Hopital : _ .
Soient I C R et leréel a € I. Si f et g sont deux fonctions

e continues de I dans R

o dérivables sur I ou I — {a}
e telles que ¢’(z) est non nul au voisinage de a

alors lim = lim

z—a g (:1; z—a g’ (a;)

' s ' e 0 o
Cette régle permet de lever les indéterminations du type 0 ou —

Cette régle est valable si a = £00
pliquer cette régle que si toutes les conditions n’est pas satisfaites; sous peine

ol Te (Te T

Il est impératif de n’ap
d’aboutir & un résultat faux.

o Cette régle s'applique aussi aux limites unilateres
e Il peut arriver qu'une premiére application de la régle de L’Hoépital ne léve pas une indétermination ;
dans ce cas , on peut utiliser & nouveau cette méme régle sur ce résultat , pourvu que toutes les
éL. conditions soient satisfaites. '
A1 o :
i/\g Dérivée seconde d’une fonction - dérivées d’ordre n

X '[Bef.13 . La dérivée seconde d’une fonction est la dérivée de sa dérivéeJ

96 o L1

Elle se note f”(z) ou mieux ac—im— [ — —

T; Le signe de f”(z) donne le sens de courbure : ' .
> si f/(z) > 0 la pente de Cy est croissante; donc la concavité est tournée vers le haut (comme
X pour y = z%) donc la convexité vers le bas. On dit alors que la fonction est convexe, ' .

. b si f’(z) = 0, cela signifie qu'en = la pente passe par un extremum ; le graphe Cy n’a pas de
e courbure, il se comporte localement comme une droite.
T—‘o Le rayon de courbure R(z) au point d’abcsisse z dune courbe d’équation y = f(z) est donné par

14 (ﬁf_@)z} 7 .
. d
PR R(z) = 7 f:z'v) a condition que dzi;(f ) existe

dz?
Le rayon de courbure d'une droite est infini; celui d’un cercle est constant; celui de toute autre
squation y = az® + bz +¢

courbe varie avec z; par exemple, le rayon de courbure de la parabole d’éq

est R(z) = -
Cest-A-dire au sommet, ol il vaut R(0) = 1/2a.

- 11-
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e La recherche d’un point d’inflexion en z = a consiste en la recherche d'un changement de signe f”(z)
de part et d’autre de a. Cela signifie qu’en z = a la pente de Cy passe par un extremum; celui-ci
peut étre fini ou infini. Si la dérivée seconde f” existe en z = a point d’inflexion, alors nécessairement
f"(a) = 0. Mais lexistence de f” n’est pas nécessaire pour avoir un point d’inflexion; par exemple
flz) = £%/3 admet un point d'inflexion en z = 0, malgré une dérivée seconde qui y est infinie.

X |Def.14 : La dérivée d’ordre n d’une fonction f est la fonction obtenue en dérivant n fois cette fonction.

n fois
PNy
ou f{z) ou f"..(z)

X Def.15 : On dit qu’une fonction est de classe C™ si elle est n fois dérivable et si sa dérivée n-ieme est
continue.

6. Convexité vé eonvtyt domw

X Def.16 : On dit que la courbe C¢ représentant la fonction f est convexe entre les points A et B d’abscisses
respectives a et b si la corde AB est au dessus de la courbe pour tous les points situés entre a et b

f()

Elle se note

ceci s'écrit analytiquement (voir éléments de démonstration en figure F10)
YA€ [0,1], Fl(1—XNa+ ] <(1—-2A)f(a)+ Af(b)
On a vu au §11, que le signe de f”, quand celle-ci existe, peut aussi seeronvethW
seconde positive (négative) entraine courbe convexe (concave). /7 a\NMﬂY \mu\r & B 1\,0\101\

{ \ynom< &oad&\% (fgﬁ
. Formules de Taylor-Lagrange , de Mac-Laurin "y @@&mww“*‘“

' wxk coben Qe acc‘%mk wd a0 durwssS
Th. (18) de Taylor : Soient deux réels a, b et n € N, et une fonction f € C™([a, b],R), qui, sur ]a, b[, admet
une (n + 1)-iéme dérivée, alors 3 ¢ €]a, b tel que

f(b) = }T_L_: Q;—la)i F®)(a) + (b( +)1)’ f(""'l)(c) (Taylor-Lagrange & lordre n)
k=0 :

o|Le dernier terme s’appelle le reste de Lagrange car ¢’est lui qui I'a explicité, aprés le travail de Taylor
concernant la somme sur k. Ce reste est trés utilisé pour démontrer des inégalités faisant intervenir
les termes de cette somme; en effet, a < ¢ < b se répercute en une inégalité contenant f (”+1)(c).

Pour la démonstration, la fonction auxiliaire telle que ¢(a) #(b), & laquelle on applique le théoréme

de Rolle est
o(z) = Z Gl m) A2 k() — f(b) + A—(———-Ll- ot A est le réel constant tel que ¢(b) = ¢(a) =
pard (n+ 1)

Pour n = 0, on retrouve le niveau du th. des accroissements finis.

En posant h = b — a, on trouve la formulation

p(n+1)

n+1)'f("+1)(a+9h) ol 0<f<1

2 (n)
flat B) = @)+ 2'@) 4 (@) ok ) +

La valeur de 8 dépend de h.
En posant a = 0 et h = z, on obtient :

f(z) = Z f""( 0) +

=k (n

zhtl
] —— f("t1(gz)  (Mac-Laurin & Vordre n)
La valeur de # dépend de la valeur de z.
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“AM. Développement limité (DL) d’une fonction & l’ordre n au
voisinage de z=a '

Au voisinage d’un point z = a, la formule de Taylor donne une approximation sous forme d’un polynéme
en (z-a) ayant un nombre limité de termes. '

Def.17 : DL d’ordre n au voisinage de z=a :2 o
z—a T—a z—a)
% 1) =10+ 222 @+ E5L ) 4ot e+ Bale )
ot Rn(z—a) appelé reste, désigne un terme qui tend plus vite vers 0 que (z—a)" quand z tend vers a
donh Ve de/ ’ :
e Le DL amputé du reste s’appelle la partie réguliere du DL ou partie principale du DL.

. oD \OL
e On trouve quelquefois la notation Rn(z - a) remplacée % par o[(z — a)")]; V'indice n est supérieur ou

égal au dernier terme de la partie régulidre ; en effet celle-ci peut avoir certains termes nuls.

e En se limitant & 'ordre n et en omettant le reste, on obtient ’équivalent d’ordre n : au voisinage de

- > A lordre 0,le graphe C; est approximé par la fonction constante f(z) ~a f(a)
> A Pordre 1, le graphe Cy est approximé par la tangente en z = a & Cj,
F(@) ~o fa)+ (z —a)f'(a) ; c'est I'approximation affine
> A Tordre 2, le graphe Cf est approximé par une courbe du second degré; c’est 'approximation
parabolique
> A Pordre n, Cf est approximé par une courbe de degré n, d’équation y = Po(z — a) , polyndéme en
(z — a), de degré n

e Dans les calculs de limites de f(z) quand z tend vers a, des indéterminations peuvent &tre levées
en remplagant f(z) par son équivalent au voisinage de a & un ordre suffisant.

e Les DL peuvent s’ajouter, &tre multipliés par un réel, &tre multipliés entre eux, se dériver, s'intégrer,

se composer. Cela demande une certaine vigilance concernant la cohérence des ordres des DL ...
que nous mesurerons lors des exercices en Travaux Dirigés.

Attention , les restes ne s’ajoutent pas, ne se multiplient pas,...etc.

e En considérant des voisinages successifs autour des valeurs discrétes a1, ag, as,...etc réparties sur le

domaine de définition d’une fonction f, on peut I’approximer par une fonction en escalier définie
par morceaux ol on utilise ’approximation d’ordre 0 : :

f(a1) six est voisin de ay

f(z) = f(ag) siz est voisin de ap
f(a3) siz est voisin de a3
...ete ‘

~ Cette derniére remarque constitue la base de la définition de D'intégrale de Rieman (Chapitre II)

Def.18 : DL & P’ordre n au voisinage de z=0:
Au voisinnage de 0 & Pordre n :

T z? "
£@) = £0) + 27O + T 1O + ot SO o l(2))

e Le DL, au voisinage de 0, d’'une fonction paire (impaire) est un pélynomé pair (impair). ,

2Rappel : Ecrire, qu’au voisinage de a, f = o(¢) signifie que f est négligeable devant ¢ . Plus précisement :
il existe e tel que f =¢.¢ et lime=0
. fonaed
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¢ Les DL au voisinage de 0 sont connus ou facilement retrouvés, ou tabulés.Un DL au vmsmage de a peut
touJours se ramener 4 un DL au voisinage de 0

— en posant le changement de variable X =z —a

— en posant le changement de fonction g(X) = f(z — a)

~ en calculant le DL de g(X) au voisinage de X =0

— et enfin en revenant & la variable initiale =

., Développement asymptotique d’une fonction f

[ Par extension on définit le développement asymptotique au voisinage d’un infini . Le DL 3 'ordre n

d’une fonction quand z tend vers l'infini est obtenu en posant le changement de variable X =1 /z , ce qui
donne une nouvelle fonction g(X) = f(z); on développe alors g & 'ordre n au voisinage de X =0 et enfin,
on remplace X par 1/z. Le résultat est, & Pordre n, de la forme

n
1 .
f(m)zz %—}—O(F) ol ukG]R

Position de la courbe par rapport a son asymptote oblique :
L’application 3 I’étude des branches infinies des courbes est fructueuse. Donnons un exemple avec la

. 1
fonction f telle que f(z) = wz,e_%_;f.

Au voisinage de £ = %00, et & l'ordre 1,

Ceci montre qu’a I'infini, le graphe Cy admet, comme “courbe-asymptote”, la parabole d’équation
= 52 23

y=z"—5z+ % .
De plus,au voisinage de l'infini,

f@) -y~

y 6z

ce qui montre que en 0o , le graphe Cy est au dessous de la parabole-asymptote tandis que en —oo , le
graphe Cy est au dessus. "

16. Plan d’étude compléte d’une fonction f

Cela contient la synthése des paragraphes ci-dessus et consiste donc & :
— Déterminer son domaine de définition ; en déduire les points qui demandent un calcul de limite (points
exclus de Dgs(f), points frontiére entre morceaux, £00)
— Calculer ces limites et en déduire son domaine de continuité (Rappel : Deont(f) C Daes(f)) et les
comportements asymptotiques; effectuer les prolongements par continuité quand ils sont possibles
— Repérer les éventuels éléments de symétrie qui permettent de restreindre P’étude & un intervalle plus
petit que Dger(f)
— Repérer les éventuelles propriétés : de signe constant, périodique, bornée
— Déterminer le domaine de dérivabilité et calculer la dérivée [ rappel : Dyger(f) C Deont(f) ], voir ol f
s’annule et en déduire 1’éventuelle existence d’extrema locaux
— Construire le tableau de variation
— Préciser la position des éventuels points d’inflexion
— Tracer le graphe
> en indiquant les axes Oz et Oy gradués d’échelles linéaires régulieres
en dessinant les asymptotes ou les direction asymptotique
en notant les coordonnées des extrema locaux
en dessinant les tangentes intéressantes (notament en ces extrema)
en indiquant les coordonnées des points d’inflexion
en dessinant V'allure de la courbe compte tenu de ce qui précéde

AR VAR VAR VAR V)
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17. Compléments

Complément I-C1 : fonction élémentaire

Une fonction élémentaire est une fonction définie par une formule contenant un nombre fini d’opérations
— algébriques : les 4 lois arithmétiques, élévation & une puissance ou extraction d’une racine, logarithme
ou exponentielle dans une base quelconque

— trigonométriques
Une fonction non élémentaire peut avoir les modes de définition suivants :

— DI’énoncé d’une liste de valeurs numériques (z,y)

- — plusieurs formules mathématiques, comme les fonctions définies par morceaux
. oo
— la somme d’une série, comme par exemple E uy, cos(kx)
s . k=1

T
d
une intégrale par exemple le logarithme intégral f(z) = / ﬁ noté quelquefois li(z)
0 .

- une équation différentielle id(;ﬂ(x) = —[f(z)]?
- ete
Complément I-C2 : Lois algébriques sur les dérivées de fonctions
dlf(z) £ 9(z)] _ df(z) | dg(z) d [f(z)g(=)] _ df (x) dg(z)
iz de T de iz~ dz Y@@ g

f(z T T
58] s s
dz [9(2) ]?

Complément I-C3 : dérivée d’une fonction de fonction

i

Soit une fonction f de la fonction g qui, & z, associe f[g(z)] = fog(z). Si g est dérivable en a et f dérivable
en g(a), alors, f o g est dérivable en a. '

. On rappelle la regle de dérivation :

En posant u = g(z), % [gim)] = dJ; (5) y dﬁ;g:)

sin(ln z°)
d[e ] _ sin(lna®) o cos(lnz®) x 1 5zt

E le :
xemple o | o
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Complément I-C4 : Fonctions hyperboliques
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Complement 1-C5 : Fonctions hyperboliques réciproques
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Complément I-C6 : Relations entre fonctions hyperboliques réciproques et fonction
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1. L’intégration en tant que limite d’une somme de Rie-
mann : intégrale de Riemann

Def.1 : Soit une fonction f de la variable réelle ¢, continue sur l'intervalle fermé et borné [a,b]. On
approxime cette fonction par une fonction en escalier de n marches de giron At = (b — a)/n , centrées
respectivement sur des abcsisses t1, t2, ... t, (Chapitre 1,§8).

On calcule I’aire algébrique comprise entre cet escalier, ’axe des t horizontal et les deux limites verticales
t=aett=">,aetdétant deux constantes :

i=n
Sp = Z f(t;)At  qui s’appelle somme de Riemann
i=1
L’approximation de l'aire sous f est d’autant meilleure que n est grand; & la limite ( hm Sn) on obtient

un nombre infini de marches dont le giron tend vers zéro. Cette limite s’appelle 1ntegrale deﬁme de f entre
a et b et s’écrit avec le symbole f (S allongg).

t=b b
f(t)dt ou, plus simplement, / f(t)dt
a

t=a

3

$3

iy 2

A
/‘?‘}\
iy KN

+
I

\

A

4

f‘i"

-‘-— B Y

o, O

e On reconnait la variable d’intégration ¢ (variable muette) contenue dans 1'élément différentiel dt,
la borne inférieure a, la borne supérieure b, I'intégrant f(t)

o Cette intégrale définie est un nombre algébrique

e Du point de vue dimensionnel

@ =1 @) = [/fnﬂ o0
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Par exemple, en thermodynamique ol P et V sont respectivement une pression et un volume,
Vb
[ P(V).dVJ = M.L*T~? = une énergie
Va

e La définition ci-dessus vaut aussi pour des fonctions présentant sur [a, b] un nombre fini de points
de_discontinuité finie ou réductible.

2. L’intégration, en tant que tentative de réciproque de
la dérivation - Primitive - Intégrale indéfinie ou définie

Def.2 Primitive : :
Soient deux applications f et F', de la var1able t € I C R, dans R. On dit que F est une primitive de f

sur [ si,

sur I, 'application F est dérivable et F'(t) = f(t) ce quiéquivaut & dF(t) = f(t).dt

t' e Par exemple, la fonction f : z +— f(z) = {F208

' e Si F' est une primitive de f, toute fonction du type F'+ C , ol C est une constante quelconque,

est encore une primitive de f.
"La dérivée d’une fonction, quand elle existe, est unique, mais il y a une infinité de primitives,.

quand on en trouve une.
On utilise la notation / f(t)dt, qu’on appelle intégrale indéfinie, sans spécification de bornes

et on écrit

/ f(t)dt =F(t)+C ou C est une constante quelconque

e La constante C est déterminée si on impose une condition & la primitive.
e On montre qu'il y a, entre I'intégrale de Riemann et la primitive ci-dessus définie, la relation :

b
/ f(t)dt = F(t) — F(a) |

Cette dernitre intégrale o des bornes sont spécifiées s’appelle une intégrale définie

Th. 1 : Théoréme fondamental de Darboux : Toute fonction f continue sur un intervalle [a,b] admet
des primitives sur [a,d] et est donc intégrable sur cet intervalle.

z.slng_ giant continue sur [0, 7] est intégrable entre 0

et w
¢ Relation de Chasles : Soient a, b, ¢ trois réels tels que a < b < ¢ et f une fonction continue de

[a,c] dans R . On montre que /cf(t)dt = /--b f(t)dt + /bcf(t)dt

Def. 3 : Fonction continue par morceaux : Une fonction de [a,b] dans R, avec a < b est dite continue

par morceaux sur [a, b] si
- f posstde une limite & droite en a et une limite & gauche en b

- la restriction de f & ]a, b]
w i) soit est continue sur ]a, b
I ii) soit admet un nombre fini de points de dlscontlnulte en lesquels f admet une limite &

droite et une limite & gauche.
Ces fonctions sont dites Cp([a, b])

- 25-




e Une fonction continue est continue par morceaux (1 morceau!)
e Les fonctions en escalier sont continues par morceaux.
o felm(lab]) = |f|€Cm([a,b])

e Par exemple la fonction,

dont le graphe est dessiné

ci-contre, est :

- continue par morceaux sur [b, d]

- non continue par morceaux sur [a, d]

J? Th. 2 : Toute fonction continue par morceaux sur [a, b] est intégrable sur[a, b] (donc bornée).

ésormais, dans toute la suite, nous élargissons le cadre des fonctions continues aux fonc-
tions continues par morceaux sur un intervalle fermé borné.
La définition de l'intégrale de ces fonctions utilise la relation de Chasles sur les divers morceaux; la
valeur numérique de la fonction aux points de discontinuité n’intervient pas.
La borne inférieure n’est pas nécessairement inférieure & la borne supérieure.

Les propriétés :

/ . Prop.l:/af(t)dt=0

b a
\/ e Prop. 2 : Interversion des bornes : / ft)dt = — / f(t)de
a b

v

Prop. 3 : Relation de Chasles , quelle que soit la relation d’ordre entre a, b et ¢

/a ’ Ftydt = / " )it + /c ’ Hoydt

Prop. 4 : Linéarité : /a b(f+9)(t)dt= / bf(t)dt+ / bg(t)dt et / b(k.f)(t)dt:k. / ’ f()dt

e Prop. 5 :Pour les fonctions positives

<_

- b b
o~ b B 5a) a<b et f>0surlab, = / f@)dt>0 (siaZb,/ f(t)dt_<_0)
A} ,,-‘ a
w s b ¢
© > bb) f>0sur[a,b] et / fdt=0 => f(t)=0 VtE€ [a,b]ol f est continue.
b
\%& - > 5¢) f 2> 0 et continue sur [a,b] , alors / fA)dt=0 <= f(t)=0 Vi€ a,b
°S : a

| b b b b
e Prop. 6 :Comparaison a<bet f<g = / ft)dt < / g(t)dt (si a>b, / ft)dt > / g(t)dt>
a a a a

. ) b
e Prop. 7:Encadrement:a <b et Vi€ [a,b], m< f(t) <M = m(b—a) </ f)dt < M- a)
CpE¢ = 0= I envee el

EPrOp. 8: Sia<b, alors, ’/a f(t)dt) / 1)) dt éx' %(—z = mfzc W
[® Prop.9: Si a<b, etsilexiste M >0 tel que |g(t)] < M Vt€ [a,b], alors,

b
/a F(®)-9(t)dt

[rwal < |[ 111

e Prop. 11 : Si a est un réel fini et f une fonction continue sur [—a, a], alors

b
< [Irlar

e Prop. 10 : <

Y a
il f impaire sur [~a,a] = f(t)dt =0 et f pairesur[—a,a] == f (t) dt = / f(t) dt

-
{\ (W )
K _a
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/sht.dt: cht+C /cht.dt: sht+C /1_

4. Intégrale fonction de sa borne supérieure

En remplagant, & la borne supérieure, le nombre b par la variable x et en travaillant toujours avec des
fonctions f € Cm([a, b]), on définit la fonction F' & valeurs réelles telle que

Fizelol — F(m):/aw‘f(t)dt

qui a les propriétés suivantes :
e Prop. 1: F est continue sur [a,b]
Prop. 2 : Si f > 0 sur [a, b], alors F' est croissante sur [a, b]
e Prop. 3 : F est dérivable en tout point = de [a,b] olt' f est continue et F'(z) = f()

e Prop. 4 :Si la fonction f est continue sur [a,b] , alors F est de classe C* sur ]a,d] .

TTJne des applications de l'intégrale fonction de sa borne supérieure est la définition de la fonction de

répartition F' d’une variable aléatoire continue de densité f(¢) :

ﬂ@=[;ﬂﬂﬁ

5. Théoreme de la moyenne

&U|'Th. 3 : Théoréme de la moyenne : Si une fonction f est continue sur un intervalle [a;d], il existe un

nombre ¢ entre a et b tel que

b . g
/f®#=®—®ﬂ@

: !%(rﬂ =
(,Ce nombre f(c) est la moyenne de f(t) entre a et b. Ex ontre 3ot T
, Ly %{5)
6. Techniques de calcul des intégrales indéfinies ou définies

Il s'agit de trouver une primitive F(t) et, si I'intégrale est définie, d’effectuer la différence
F(borne supérieure) — F(borne inférieure). La connaissance que vous avez des dérivées de fonctions
élémentaires équivaut & la connaissance de primitives. Il s’agira donc de se ramener & des types

d’intégrales indéfinies connues :

T

[ gartl dt A
Sias#=1, /t“dt=a+1+0 7=1n‘|u+03 /etdt=et+C /cost.dt=sint+C’

-dt dt C—dt
sint.dt = —cost+C /———— = arctan t+C */ = arcsint+C */
Jemtai Jixe Ve Vi-v

dit
t2

= érccos t+C

‘ dt '
= argth t+C /—zar sht+C
I V1412 I ,

=argcht+C

" Quand la primitive n’est pas imniédiate, il faut tatonner en essayant diverses tactiques :

o Le changement de variable , qui, une fois posé, implique trois conséquences : /" (@ —> 2\
> la différentielle change. g To 0 2t
£ R

> lintégrant change.

> les bornes d’intégration, s’il y en a, changent.

3Si vous oubliez le symbole “valeur absolue”, cela génére une erreur quand t est négatif.
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e Quand on a un quotient, l'effectuer ou faire apparaitre , au numérateur, le dénominateur ou la
dérivée du dénominateur.

e La décomposition en éléments simples, quand on a une fraction rationnelle de polyn6mes (voir
Compléments C1,C2,C3).

o L’intégration par parties , lorsque la fonction f(t), impossible a intégrer directement, peut se
mettre sous forme d'un produit U(t) x dV(t) de deux parties . On peut alors montrer (Cours

Ecue 52U6MT11 de G. Guiffant 2006/07 page 55-56) €es fin oc) Ints )
T A\ %%/ (con)

b b .
/ U) x dvit)=[UE) x VP - / V() x dU()

Toute Part réside dans le choix astucieux du découpage en deux parties. ' WA TR
‘ g . . * \1 \n(/m'x,\ 8{— ;;;—75/);
e Deux intégrations par parties successives X e . (LA . X
T I S v
g= 9

e La lindarisation de degré 2 des fonctions trigonométriques

2 l+cos2t 5, 1—cos2t 9, 1—cos2t

p= 2982 t= -
wst=" sin 2 M= T s 2t

e Le calcul & l'ordre le plus bas, puis ’élaboration d’une formule de réduction ou de récurrence.

7. Intégrale généralisée dite aussi intégrale impropre

Le mot “généralisé” est employé pour signifier que la fonction qu’on integre entre a et b n’est plus continue
par morceaux sur Uintervalle fermé borné [a,b]. Cela se produit de diverses fagons :

— i) Une ou les deux bornes sont infinies , c'est-a-dire I'intervalle d’intégration n’est plus borné
)

~ ii) La fonction n’est pas définie en a, en b ou en un point (ou un nombre fini de points) entre a et b
et elle n’y est pas prolongeable par continuité. Exemples : fonction continues sur [a, ] ou sur ]a, b]
ou sur ]a, 8] ou sur ([a,b] — ¢ €]a, b[).

~ iii) un mélange des cas précédents

Def.4 : Fonctions localement intégrables : On dit qu’une fonction f est localement intégrable sur I si
I, éventuellement privé d’un nombre fini dé points (soit I') appartient & Dyes(f) ¢ et si pour tout segment
J inclus dans I’, la restriction de f & J est continue par morceaux.

2400 est considéré comme un point, de méme que —oo

SRR

Exemples : la fonction f : z — In(tanz) est localement intégrable sur I = {0,7/2] car il suffit
d’enlever 2 points, 0 et /2 & I'; par contre elle est non localement intégrable sur I = [—7/2,7/2)
parce qu'il faut enlever l'infinité de points de [—-7/2,0]

Pour q’une fonction soit intégrable sur I, il est nécessaire qu’elle soit localement intégrable.

C’est donc la premiére chose a vérifier et a signaler.

Pour définir les intégrales généralisées, on passe alors par la notion de limite.

L’existence de ces intégrales se trouve donc asservie & I’existence de ces limites.

N~
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Def.5
Cas a) Une ou deux bornes infinies

:w f)dt= _lim / Foa e /_ ; Fdt=_tim_ : F(t)dt

+c0 ) o Y
/_ . flt)dt = 3112100 /2 f)dt + yll’l_llploo /a f(t)dt o o est un réel fini quelconque.

Voir commentaire ci-dessous

Les deux limites constituant la derniére définition doivent exister indépendamment 'une de

Pautre et le résultat ne doit pas dépendre du nombre a. Autrement dit, si P'une des deux li-
mites n’existe pas (est infinie), alors le premier membre de I'équation n'existe pas.

e Attention
, +00 e
fds # Bm [ f(e)ds
L—++400

—c0 -z

Par exemple : [ sin(t)dt =0 mais [Fsin(t)dt diverge.

Cas b) ou c) : bornes finies mais fonction non définie ou non continue en a, b ou ¢

| b
Dees(f) o0 Deam£) [ e

g—at

7 a,b] | lim /bf(t)dt

[a;8] lim /: f(t)dt

z—b~

’ T b
[0,5] - ¢ €]a, b] im [ f()d+ lim, /m 70

z1—=C¢ Jo

écédente : S'il y a un point t = cde discontinuité entre a et b, on décompose

Commentaire de la ligne pr
grables. Les deux limites

Vintégrale en deux intégrales, dea acet de c 4 b, chacune étant localement inté
doivent exister indépendamment. ' :

oo gt /+°° dt /+°° 1 =2 »
. , & _1 e 3 dt = 1 (Gaussienne
. Vo ( )

Exein les du cas a) : — =4 =

oo
/ t dt n’existe pas..

-

1 1 1
Exemples du cas b ou ¢) : / g = 400 / Intdt= -1 / —In|t| dt=2
< - -1 0 -1

Def.6 : On dit, d’une intégrale généralisée aboutissant 3 une limite infinie,
est divergente. Celle qui aboutit & une limite finie existe et est dite convergente.

qu’elle n’existe pas ou qu’elle

.90,




° Proprletes des intégrales généralisées : Attention, la propriété de linéarité n’est satisfaite que si on
traite des intégrales convergentes ; exemple : :’ °°(l — 1)dt = 0 alors que f 1.dt diverge.

o Applications de la notion d’intégrale généralisée en cours de probabilité :

> Moment my d’ordre k£ d’une variable aléatoire réelle continue de densité f(t) :

my = / +°°t’° f() dt

—-CQ

> Le moment my, d’ordre 1 étant la moyenne m, on définit aussi ux, moment centré d’ordre k,
par :

w= [ T —m) ) dt

-0
Le moment centré d’ordre 2 est la variance.
> Intégrales concernant la Gaussienne ou loi normale M(u, o) d’espérance m et d’écart-type o :

1 [t - 1t -
Normalisation & 1 : e 3T g =1 Moyenne : = te 3T gt = I3
ovV2r J- o2 J-
Variance : = t2 —5(E)? dt] - p? =g?
[0'\/ 21

> Intégrales concernant la loi exponentielle de paramétre ), réel constant :

+00 +oo
Normalisation & 1 : / de™Mdt=1 Moyenne : m = / M.e Mt = <
0 0

00 1
Variance : [ / At2.e'>‘tdt] -m?= i
0 A

Premier critére de convergence : Si le calcul de la primitive est facile, il suffit d’étudier 'existence des
limites définies en Def.5

8. Critéres de convergence des intégrales généralisées de fonc-
tions C,,(I) positives

—

Th. 4 : Théoréme fondamental pour les fonctions positives :
e Cas gauche : Soient a et b deux réels tels que —00 < a < b < 4+00. On pose I =]a, b]. Soit une fonction
f € Cn(I) positive.
b _ b
Alors F:z— F(z) = / f(t) dt est décroissante sur I et / f(t) dt existe < F' est majorée sur
. ferd a
I

i
e,

b
Si elle n’est pas majorée, alors / f(¢) dt diverge selon lim+ F(z) =
a . T—a

e Cas droit : Soient a et b deux réels tels que —0o < a < b < +00. On pose I = [a, b[. Soit une fonction
[ € Cr(I) positive.

2 b
Alors F:z — F(z) = / f(t) dt est croissante sur I et / f(t) dt existe & F est majorée sur I.
a a

b :
Si elle n’est pas majorée, alors / f(t) dt diverge selon linl;l F(z) = +00
a —0™

Voir figures F1. o
—ol TRRTES T Q,{U\\P\Q s %( ) Cc@mi d‘wi)«;))
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o g

Th. 5 : Critére de comparaison : : /
- Hypotheses du cas droit ET
une fonction g € Cm(I) positive

- Hypothéses du cas gauche ET
une fonction g € Cm(I) positive t

telle qu'il existe ¢ € I tel que Vt €leb[ 0< F() <9()

b

A0 i jﬁ/
WAL & @ ;
7 : : ol T |
@ /- WA
' |

r)oﬂil

- |- Hypothéses du cas gauche ET
une fonction g € Cn(I) telle que g ~ fquandz —a

+ et f est de signe constant au voisinage de a™.

b . .
/ g(#) dt (ce qui ne signifie pas qu’elles sont égales!).

st B
T ANt e Y
JO Jé_‘—E—_—\ dL&!g Eﬂzu’\&" avt
= )

Th. 6 : Critére d’équivalence : ' 4 \/ C

- Hypothses du cas droit ET : en™ ‘/(C‘ 4

une fonction g € Cn(I) telle que g ~ f quand z — b~ et f est de signe constant au voisinage de b™ N ’t’
E

122

9. Critere de convergence par la convergence absolue

b ' . b :
_’7 Def.7 Si / |£(£)} dt converge, alors on dit que / f(t) dt converge absolument.
a a

{

L

t Ehﬂ Une intégrale absolument convergente est convergente.

10. Intégrales célebres

On utile souvent, comme référence daris le cadre du critére de comparaison,

les intégrales de Riemann :

Th. (8) des intégrales de Riemann : Soit  €R

/foodt converge & a > 1 /ldt converge < a<l
e g | ) 1 g

ces intégrales divergent.

Si o ne satisfait pas ces inégalités,
Ce théoreme permet de démontrer le suivant :

Th. (9) de lintégrale de Bertrand :
Soient @ et b deux réels, P’intégrale de Bertrand

oo di ' ‘
/ W converge‘@ a>1 ou a=1cet b>1

- Les intégrales de Wallis W, =
quand n est trés grand (formule de Stirling)
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11. Plan d’étude d’une intégrale

e Sl n'y a pas de bornes, intégrale indéfinie; chercher une primitive
e S'il y a des bornes a et b
o> Si 'intégrant est continu sur [a,b] , Vintégrale est intégrable

> Si lintégrant n’est pas continu sur [a, b], on a une intégrale impropre; vérifier alors que l'intégrale
est localement intégrable, et, si c’est le cas, diviser lintervalle d'intégration en morceaux puis

passer par les limites

12. Compléments

Complément II-C1 : Polynémes irréductibles dans R

Les polynémes irréductibles sur R sont

— les polyndmes de degré 1, du type (z ~ p) oupeR

- les polyndmes de degré 2 sans racine réelle, du type (z% + px + g) ob p et g sont deux réels tels que

p?—4q <0
Tout polynéme P(z) , dans les réels, se décompose de maniére unique en un produit de polyndmes irréductibles.
Par exemple :
1= +1-2v2)(® +1+2v2)

Pour ceux qui se poseraient des questions : tout polyndme & coefficients réels, en z € R, de degré impair, a
au moins une racine réelle ; donc il est réductible en produit de polyndmes de degré inférieur & 3.

Complément I1-C2 : Fraction irréductible dans R

. Pz A . s . . \ : y
Dans la fraction (z) de deux polyndmes en z est dite fraction irréductible si, apres avoir factorisé le

numérateur et le dénominateur, ceux-ci n’ont aucun facteur commun.

Complément II-C8 : Décomposition en éléments simples

e PAE) o . 12 , .
Toute fraction irréductible ngg s'écrit de manitre unique sous forme de la somme d’éléments simples (dits

aussi fractions élémentaires) : il s’agit de la somme de termes du type

A Az+ B 9
——— ou H————= Ol —4q9 <0 n,meN*
(z—p)" (z® +pz+ )™ P ’
Les lettres A, B, C, D, E, ... utilisées ici sont des coefficients réels constants spécifiques & la fraction traitée.

Voici les différents types de cas possibles dans R :

e Le dénominateur Q(z) a 2 racines réelles simples z; et za. Alors il existe deux coefficients constants A et
B tels que:

P(z) _ A + B
(m—xl)(mfxz)—m—ml T — I

e Le dénominateur Q(z) a 1 racine réelle simple z; et 1 racine réelle triple 3. Alors il existe quatre
coefficients constants A, B, C et D tels que
P(z) A B + c D

G-o)@-m) z-o1 s-2 @-zf (@ zaP

e Le dénominateur Q(z) contient, entre autres, un polynoéme de deuxi¢éme degré sans racine réelle . Exemple :

P(z) _é+Bm+C
(z)(z2+4) z  z2+4
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o Le dénominateur Q(z) contient, entre autres, un bolynﬁme de deuxiéme degré sans racine réelle et a la
puissance 2 . Exemple :
P(z) _ A +B:n+C'+D:z:+E
(z-2)(z2+1)2  z—-2 z2+1  (a2+1)

Complément II-C4 : Primitives non explicitables

Toute fonction élémentaire a pour dérivée une fonction élémentaire. Par contre il existe des fonctions conti-
nues dont la primitive ne peut pas s’expliciter sous forme de fonctions élémentaires. C’est le cas de

sint

] ]
/ edt, /e"dt, /f—dt ,-/sin(tz)dt, /cos(et)dt, /\/t3+1 dt , L , /——dt
—c0 ¢ . Int t
13. Figures

L/\/\# s ?(F) -

ﬂzgc%

: (AL ‘:;t- . , \k
5 Fostron mafose 87 ot mig
o« ) e >+ D
Pl —2 et - ..Ff?-)*‘-’ !°”+
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Chapitre 111 : Equations différentielles ordinaires (EDO), d’ordre 1 et 2
Solutions dans R

0. Plan

1. Généralités ‘ ,

9. EDO du 1" ordre, 4 variables séparables : 3/ A(y) =B(z) (1)

3. Points communs & la résolution des EDO linéaires du 1°7 et giéme ordre aux programmes
4. EDO linéaire du 1¢7 ordre : ¢/ + yP(z) = Q(z) (2)

5. EDO linéaire du 2™ ordre, & coefficients constants avec second membre : ay” +by' +cy = f(z) (3)

6. Compléments

1. Généralités

Ce qui suit est un rappel des résultats et techniques de résolution. Pour plus de détails ainsi que les
démonstrations, voir le poly de P. Dantan pour MT112 de 1999-2000, distribué avant No&l.

e On rappelle
> le nombre i, imaginaire pur, tel que 2 =-1
> Pexpression exponentielle d’un nombre complexe : elotiv)e = 2% [cos(wz) + isin(wz)]

Dans tout ce chapitre, les symboles y, Yo, ¥1, ¥2 désignent des fonctions & valeurs réelles de la
variable réelle z, continues .

Les symboles ', 5, ¥3, ¥p désignent leur dérivée respective , par rapport & z..
Quelquefois, pour ne pas alourdir 1’écriture, nous avons omis “(z)” aprés les symboles de fonctions.

e Une EDO d’ordre n est une relation entre la fonction y et ses dérivées jusqu’a 'ordre n . Nous ne
traiterons ici que des casoun =1 ou 2.

L’adjectif ordinaire est consacré au cas ot y est une fonction d’une seule variable appartenant & R

e Résoudre une équation différentielle consiste a trouver les fonctions y de la variable z satisfaisant
cette équation [ ou la fonction, si des conditions initiales doivent &tre satisfaites].

On dit qu'une EDO est linéaire si
vy et yo solutions de FTEDO = y1+y2 et ky, solutions de la méme EDO, ou k € R

Par exemple
Y=l [ arctan(Vz"®) ] n’est pas une EDO linéaire

/
?—;— =In [ arctan(Vz™S) ] est une EDO linéaire

o Au programme des concours 2010, on peut lire (sic) :

> Pour les VETO
- 3 variables séparées
— linéaires de premier ordre
_ linéaires du second ordre & coefficients constants (mail du 8/09/2009 : avec second membre
“sous la forme d’un polynéme ou d’un polynéme X une exponentielle ou la somme de deux
fonctions de ce type; les exponentielles peuvent et )]

> Pour les AGRO .
— Equation différentielle linéaire du premier ordre : méthode de variation de la constante

— Equation différentielle linéaire du second ordre 3 coefficients constants & second membre
constitué d’un polyndéme ou du produit d’un polynéme par une fonction trigonométrique.
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2. EDO du 1¢ ordre, & variables séparables : ¢ A(y) = B(z) (1)

A et B étant des fonctions continues de R dans R, connues, elle s’écrit aussi :
A(y) dy = B(z) dz

Elle se raméne donc 3 une opération déja apprise : intégration par rapport a z dans le membre de droite,
par rapport 4 y dans le membre de gauche ; c’est-3-dire que pendant cette derniére intégration, y joue tem-

porairement le rdle d’une variable.
e La solution peut se présenter sous forme explicite { y(z) = ... ] ou sous forme implicite
[ F(z,y) =0] :
e Il y a une constante d’intégration dans chaque membre; on les regroupe en une seule K Sans autre
information que (1), la solution générale de I'EDO & vana,bles séparables est la famille de fonctmns

engendrée par toutes les valeurs que peut prendre, dans R , la constante K.

i

se réduit & une seule fonction
Remarquez qu'une EDO du 1°7 ordre, & variables séparables n’est pas nécessairement linéaire.

o Cas particulier important pour la suite : ¢//y = B(z) ou y’ = y.B(z)

A part la solution triviale y(z) = 0 Yz , on doit résoudre % = B(z) dz

ce qui donne Infy| = ( / B(z) da:) +C ou C est une constante réelle quelconque:
ou, en prenant ’exponentielle des deux membres [y| = ([ B@ dz)+C  _ C o/ VB (z) do)

ou, en posant +el =K

y(z) =K e(/B@) 45) oy K est un réel quelconque

3. Points communs a la résolution des EDO linéaires du 1%
et 2%M¢ ordre aux programmes

o On utilise les abréviations suivantes :
GSSM = solution géné‘ralel de I’équation sans second membre, notée y,(z)
PASM = solutionparticuliére de I’équation avec second membre, notée y1(x)
"GASM = solution générale de Péquation avec second membre, notée y(z)

° L’expressmn consacrée “sans second membre” veut dire avec un second membre nul. L’expression
consacrée “avec second membre” veut dire avec un second membre non nul.

- | L’adjectif “linéaire” pour les EDO d’ordre 1 et 2 que nous allons étudier se justifie en ce qui concerne
P’équation homogene , c’est-3-dire ’EDO sans second membre.

¢ On démontre (voir poly de cours Dantan) que :

[GASM = GSSM + PASM__ soit_y(z) = 36(2) +11(0)]

11 peut étre astucieux de regarder des le début s’il y a une PASM évidente. par exemple :
4y’ + 5y =6 admet y;(z) = 6/5 Yz comme PASM.
o +y — 2y =e® admet yi(x) = €” comme PASM.
11 ne reste alors plus qu'a résoudre 'EDO sans second membre.

e Il est facile de vérifier que
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- pour une EDO linéaire du 1*” ordre

{ 5:13?532328 } = 1+ estsolution de o/ +yP(z) = Q1(@) + Qa(=)

- pour une EDO linéaire du 2% ordre A coefficients constants

ay'{ + bya + cYyy = fl(OJ) } — + 1 b 4 " b , _
{ ay’2/+by'2 +eyg = fz(:L‘) Y1 + y2 est solution de ay. + by + e fl(iB) + fz(ﬂ:)

~ pour une EDO non linéaire comme celle de Bernoulli ce principe n’est pas valide.

¢ Lorsque des ‘conditions initiales’ sont données, elles doivent &tre appliquées & GASM ; elles fixent alors
la, (1¢” ordre) ou les (2°™¢ ordre) constante(s) d’intégration.

4. EDO linéaire du 1 ordre : ¥ + yP(z) = Q(z) (2)

P et Q étant des fonctions continues de R dans R, connues. Le second membre est Q(z). 1 y a 3 étapes
dans la résolution :
l}QDEtape 1 ; GSSM = Recherche de la solution générale y, de I’équation homogene associée(c’est-
a-dire sans second membre) :

[V, +1.P(z) =0 (2a)|
C’est une EDO A variables séparables. Le cas particulier du paragraphe précédent nous indique que
la solution générale de (2.a) est '

volz) = K e/ P@4=] o3 K est un réel quelconque

llg>Etz—).pe 2 : PASM = Recherche d’une solution particuliére y; de I’équation avec second membre

Vi +:P@) = Q) (2h)]

par la méthode de variation de la constante : K devient k(z) , fonction k de z & trouver.

On cherche une solution particuliére y; de ’équation (2.b) sous la forme
y = k(z) eI/ PE@]
Pour cela, on calcule la dérivée
i = K (z) e W P@E] _ k(z) P(z) eI/ Pe)ds]

et on reporte dans (2.b), deux termes se compensent et il ne reste plus que :

TN Q(z)
Ke) = o~/ P(a)da]
C’est-a-dire une équation & variables séparables dk = —-——C‘—?—(—a—:z——
o~/ P(z)dz]

dont la solution donne l'expression explicite de k(z).
La solution particuliére cherchée est

(@) = o) 1/ P@]

IJgEtape 3 : GASM = Obtention de la solution générale de ’équation (2) avec second membre :

(4@ = 0@ + ()] (29)

Soit, au final,

y(z) = [K + k(z)] e [[PG@)] oy K est un réel quelconque

Sans autre information que (2), la solution générale de ’EDO linéaire du premier ordre est la famille de fonctions
engendrée par toutes les valeurs que peut prendre, dans R , la constante K. '
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5. EDO linéaire du gieme ordre, a coeflicients constants :
avec second membre :  ay’ +by +cy=flz) (3)

Les coefficients a , b , ¢ sont des réels constants et f est une fonction continue connue. Le second membre est
f(z). Ly a 3 étapes dans la résolution : _ '
l]g:’Etaq:)e 1 : GSSM = Recherche de la solution générale y, de I’équation homogéne associée

(c’est-a-dire sans second membre) :
" / _
|:yo + by, +cyo =0 (3.aﬁ

= 0 Vz] est solution triviale mais improductive. On cherche donc une solution générale

Bien siir [yo(z)

de (3.2) sous une forme astucieuse
Yo=¢€% reR

Cest-a-dire en fait qu’on cherche les valeurs réelles ou complexes de r qui rendent y, solution de (3.a).
Les dérivées successives étant 1}, =re™ et y, = 72 €% | 1’équation différentielle (3.a) se transforme

alors en équation algébrique en 7 :

ar? +br+c=0 dite équation caractéristique (EC), deracines r1 et 7o

De fagon générale, 'équation (3.a) admet alors comme solution :
Yo(z) = C1€% + Coe™® ot CietCp €C

e En anticipant sur le cours d’Algébre Linéaire (second semestre), nous pouvons dire que le systéme

{e"*, e} constitue une base pour ’espace vectoriel des solutions de (3.a) ; dit plus simplement,
toute combinaison linéaire de €™ et e™® est solution.

Cependant nous ne cherchons .que les solutions ol yo(z)
discriminant A = b% — dac , les solutions explicitées dans le tableau suivant :

est 1éel ; cela entraine, suivant le signe du

A >0 <0 =0
71 et 7o réels distincts 1 et ro complexes conjugués | T1="T2 réel

racinesdeL’EC m=atwetrp=a—w| n=atiwv et o = @ — W M=
- : acaetw €R aetw ER aeR
a—_b w—\/z oz—:Zz w—'_A‘ a———b
" 2 " 2 " 2a T 2a " 2

Yo(z) = k1€ + kpe® €2 k; cos(we) + kpsin(wz) | | (k1 + zky)e™®

ol ki et kg sont 2 réels quelconques

Ecritures équivalentes k1e®® ch(wz + k) h ki €2® cos(wz + k2)
k1e°® sh(wz + ko) ky €® sin(wz + k2)

ot ky et ko sont 2 autres réels quelconques

‘e Dans tous les cas, la solution générale réelle d'une équation de type (3.

d’intégration.
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o Les “écritures équivalentes” du tableau sont expliquées dans les compléments III-C1 et C2.

o Dans le cas ot Y'on trouve une racine réelle double 1 alors le systeme {e"?,z."® } constitue une
base des solutions réelles de (3.a).

@Etape 2 : PASM = Recherche d’une solution particuliére y; de I’équation avec second membre

[/ + b0+ eyr = f(=)  (3.0)]

Cette recherche est fortement orientée par la forme de la fonction f:

— On fait Phypothése d’une solution particuliere dont I'allure est similaire & f, mais dépendant de
coefficients & déterminer Co

— On la dérive deux fois

— On injecte dans (3.b)

- On détermine ces coefficients par identification

On se limite ici & deux cas de seconds membres :

eCasl)| f(z)=P(x) e’ P(z) = polyndme en z,de degrén, et AER

Tl est alors conseillé (car on la trouve!) de chercher une solution particuliére de (3.b) sous la forme

de degré n si A non racine de 'EC

yi(z) = Q(z) e’ ou Q(z) =polynéme & déterminer { dedegré n+1 si A racine simple de 'EC
de degré n+2 si A racine double de I'EC

La constante )\ est la méme dans y:1(z) et f(z)

> Si A n’est pas racine de 'EC, on postule que le polynéme Q(z) & déterminer est du type

Qz) =7+ 6z + ez + ...+ (v 4+ 2"
et on détermine, par identification, les (n + 1) coefficients v, ... 7 qui rendent
y(z) = (y+ 6z + ... +nz") e®

solution particuliére de (3.b)

> Si ) est racine simple de 'EC, cela signifie que kie** est solution de (3.a), ol k; est un réel quel-
conque; il est donc inutile de conserver, lors de I’étape 2, le terme constant dans le
polynéme Q(x) de degré n + 1 c’est-3-dire le terme ve*® dans y1(z).
En effet il disparait lors de V'identification ; cette disparition est sans conséquence nuisible car la
GSSM contient déja le terme en question, sous la forme ke,
On détermine donc, par identification, les (n + 1) coefficients d..., £ de la solution postulée :

v (z) = (6z + ... + 1z + Ez"7) Csl

B> Si X est racine double de I'EC, cela signifie que (k; +zka)e™® est solution de (3.a), olt k; et ko sont
des réels quelconques; il est donc inutile de conserver, lors de I’étape 2, les termes de
degré inférieur ou égal & 1 dans le polyndme Q(z) de degré n + 2, c’est-a-dire le terme
(v + 6z)e*® dans yi(z). ,

En effet ils disparaissent lors de I'identification ; cette disparition est sans conséquence nuisible
car la GSSM contient déja les termes en question, sous la forme (ky + Xk — 2)ee.
On détermine donc, par identification, les (n + 1) coefficients €..., x de la solution postulée :

yl(ib') — (6$2 RIS §$n+1 + Xxn+2) e
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> Attention Si le second membre est un simple polynéme, cela revient au cas ot A= 0; il ne faut
alors pas oublier de regarder si 0 est racine de I'EC. :

¢ Cas 2)
» E(z) e cos(Bz + ¢) :
f(z) =4 ou ot E(z) = polyndme en z,de degré n, et MNB,deR
E(z) e’ sin(fz + ¢) : '

Il est alors conseillé (car on la trouve!) de chercher une solution particuliére de (3.b) sous la forme

vi(3) = & [G(x) cos(Bz) + H(z)sin(fz)]

N N R s 14 . de degré n si:A+ 8 non racine de ’EC
ou G(z) et H(z) ==polyndmes & déterminer { de degré n+1 si A-+ifl racine de PEG

Les constantes A et B sont les mémes dans y(z) et f(z)

> Si A+ 0 n’est pas racine de 'EC, on postule que les polyndmes G(z) et H(z) & déterminer sont
du type

G(z) =6 + bz + ... + ngz™ et H(z) = v + 65z + ... + nEz”
et on détermine les 2(n + 1) coefficients g, -1, VH, -~ 7TH qui rendent

vi(z) = (16 + .. + nez”) cos(Bz) + (ym + ...+ nga")sin(fz) ]

solution particuliere de (3.b)

> Si A+ if est racine de 'EC, cela signifie que e[ ki cos(fz) + ko sin(Bz) | est solution de (3.a),
ou k; et ko sont des réels quelconques; il est donc inutile de conserver, lors de P’étape 2,
les termes constants dans les polyndmes G(z) et H(z) de degré n+ 1, Cest-a-dire le terme
&**|(ye cos(fz) + vasin(Be) .. |
En effet ils disparaissent lors de l'identification ; cette disparition est sans conséquence nuisible
car la GSSM contient déja les termes en question sous la forme 2 [ky cos[Bz) + kz sin[fz)
On détermine donc par identification, les 2(n + 1) coefficients 5g..., &€, OH ..., £, de la solution

postulée :

1 (z) = e¥[(6gz + ... + xez"t!) cos(fz) + (Suz F o xzz™h) sin(ﬁ:;:) ]

l]§>Etape 3 : GASM = Obtention de la solution générale de I’équation avec second membre 3):

[ 4@ = vo(@) +11(z) B0}

Sans autre information que (3), la solution générale de I'EDO linéaire du second ordre & coefficients
constants est la famille de fonctions engendrée par toutes les valeurs que peuvent prendre, dans R, les constantes

o Sile coefficient a de l'équation (3b) vaut zéro, on a affaire 3 une équation linéaire du premier ordre a
coefficients constants. La PASSM peut étre trouvée soit par la méthode de variation de la constante (§4,
étape 2), qui est valide quel que soit le second membre; mais elle peut aussi &tre trouvée par la méthode

ci-dessus si le second membre ést du type cas 1) ou cas 2).
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6. Compléments

Complément I11-C1

Montrons les équivalences d’écriture signalées dans le tableau de la section 5 :

l ky cos(wz + kgll | ki ch(wz + /CQM
ki [cos(wz) cos kg — sin(wz)sinks] | ki[ch{wz)ch k2 + sh(wz)sh ko]
[1 cos k) cos(wz) — [k sin ka) sin(wz) | [kich ka]ch(wz) + [k1sh ko]sh(wz)

| C cos(wz) + Co sin(wﬂ] I Cich(wz) + Cash{wz) I |

01 = kl COos k:z et 02 == k?]_ sin ];72 01 = klch kz et 02 == klsh kz
01/02 =tan ks et 012 + 022 = k12 01/02 =th ks et 012 - 022 = klz

ou ki,ks quelconques € R = 1,0, quelconques € R

eiwa: + e—iwm eiw:z: _ e—iw:z: VT 4. g=WE eWT _ o—wE
C1( 3 )+ Caf 5 ) | Cul 5 )+ Ca( 5 )
[Kleiwz + ng‘i“"j IKlewa: + Kpe™v® |

ou Ci,C, quelconques € R = K, K quelconques € R

Complément III-C2

Montrons que quel que soit z

Yo(2) € R et yo(z) = € [C1e™7 + Coe™%] = yo(x) = €* [ky cos(wz) + kg sin(wz)]

o et w étant des constantes réelles fixées, C1, Ca, k1, ko constantes réelles quelconques.

Remarquons d’abord que ¢** étant réel, il suffit d’étudier le reste de 1’ expression.

Posons Cy=a;+iby e Co=ag+iby ol 2= -1
Sachant que, par définition, e*™? = cos(wz) %1 sin(wz) , alors

{ Ci e"‘"‘“c = (a3 +1 b1) [ cos(wz) + % sin(wz) ]
Cy e ™ = (ag+1by)[cos(wz)—1 sin(wz) ]

Soit en séparant les parties réelles et imaginaires :

{ Ch e""""" = [a1 cos(wz) — by sin(wz)] + ¢ [a; sin(wz) — by cos(wz))]
Cy €™ = [agcos(wz)+bosin(wz)] + i [—agsin(wz) — b cos(wz)]

Pour imposer y,(x) réel quel que soit z , il faut que P’addition membre & membre de ces deux derniéres
égalités fournissent une partie imaginaire nulle :

(a1 — ag)sin(wz) — (b1 + bg) cos(wz) =0 Vz

. N ap—ax =0 T az a)
Soit le systeme { bi+by =0 C'est-a~dire { by =— b
On obtient donc C1eM% 4 Cpe™® = 2 [a; cos(wz) — by sin(wz)]

Ce qui revient, en posant 2a; = k; et —2b; = ks , & ’expression cherchée : k; cos(wz) + ko sin(wz)
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Complément III-C3 : EDO du 1° ordre non linéaires se ramenant 4 une EDO linéaire :
EDO de Bernoulli :  +yP(z) = M(z)y® (2bis) (pas explicitement au programme)

Dans (2bis), o € R*—1et P et M sont des fonctions continues de R dans R, connues .
Cette EDO n’est pas linéaire, mais elle peut se ramener & une EDO linéaire du premier ordre, déja vue.

Pour cela, oni effectue un changement de fonction, en posant

z=y'™® ce qui entraine 2’ = (1—a)y y~*

L'EDO (2bis) non linéaire en y et = devient une EDO linéaire en z et z :

2+ (1—a)P(z) ?=(1—a)M(x) a#l

qu’on sait résoudre. Ne pas oublier de revenir & y pour exprimer le résultat final.

Complément I11I-C4 : Application a la Physique
La Physique regorge d’équation différentielles :
o Vous avez surement rencontré une équation du type : Mv/'(t) = (P — Fa) — bu(t) qui décrit un type
de chute d’une masse M dans un fluide visqueux de coefficient de frottement b, sous l’action
de son poids P et de la poussée d’Archiméde B, ; Ce n’est rien d’autre qu’ une EDO du 17 ordre &

variables séparables.
o L'équation (3.2) peut s'écrire ay)(t) = —by,(t) — cyo(t) et peut &tre interprétée, si a, b et ¢ sont posi-

tifs, comme 1’équation fondamentale

amorti; elle donne ’accélération yj, (t) & I'intant ¢, d’une masse a soumise & une force de rappel —cyo(t)

propértionnelle & 1’élongation y,(t) et soumise & une force de frottement —by,(t) proportionnelle & la
vitesse y/(t). Un second membre apparait si ce mouvement est forcé (ou entretenu).

e D’autres exemples sont donnés en feuille de TD n° 5.
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[Chapitre 1V : Suites réelles |

Les SUITES réelles sont e:tph'citement citées au programme du CONCOUTS AGRO, mais pas & celui du concours
VETO ; néamoins pour comprendre le chapitre sur les SERIES, lui au programme des deux concours, il peut
étre bon d’avoir assimilé ce chapitre IV

0. Plan

1. Définition d’une suite 43
9. Définition des suites arithmétiques et géométriques 44
3. Send de varaiation d’une suite 45
4. Convergence d’une suite 4 45
5. Opérations sur les suites 46
6. Théorémes de passage & la limite dans une inégalité 48
7. Suite bornée : 48
8. Critere de convergence d’une suite (dé)croissante 48
9. Suites adjacentes ' 49
10.Suites équivalentes 49
11.Figures 50

1. Définition d’une suite

Def.1 : Une suite numérique réelle est une succession de nombres réels

wehhe R
a1, a2, (13? A4y +ory Ony Gngly o
Lo enlee

écrits dans un ordre déterminé, fixé par l'indice ¢ , entier naturel, variant de 1 & +o0.

e Le terme a, s’appelle le terme général.

=72y

<

A chaque entier naturel s, est associé un nombre. On peut donc considérer qu’une suite est la restriction
3 N* d'une fonction f de R** dans R.4

Cette notation fonctionnelle peut s’avérer fructueuse lorsqu’on cherche la limite de la suite quand n
il tend vers I'infini, car elle est liée au comportement asymptotique de f.

Par contre, il n’est pas question de parler de dérivée d’une suite, puisqu’on ne peut plus définir
1 @’61ément infiniment petit dans N .

e Uné suite peut étre définie de diverses fagons. Voici quelques exemples :
Exemple 1) La suite du nombre de naissances recensées chaque jour dans une maternité
’-
‘ Exemple 2) La suite des décimales du nombre 7 (nombre irrationnel) c’est-a-dire {1,4,1,5,9,2,6,5,3,5,8,9,..}
s . .

Exemple 3) La suite formée par les décimales de 13/7 (nombre rationnel) c’est-a-dire
£8,5,7,1,4,2,8,5,7,1,42,85, ... }

PExemple 4) La suite de Fibonacci (Leonardo Pisano, 1170-1250) définie de fagon récurrente par
a1 =1, ap=1  an=0an_1+0an-2 Cest-a-dire {1,1,2,3,5,8,13,21,...}

Cette suite donne le nombre de couples de lapins présents chaque mois, dans un modele ot :
— A't; on a un couple A de lapereaux naissants.(1 couple)
| < A t, = t; + 1 mois, ce premier couple A de lapins est devenu pubgre. (1 couple)

40n peut aussi commencer la liste d’indices & 0, auquel cas la suite est la restriction & N d’une fonction f de R
dans R.
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(— A t3 = 1 + 2 mois, le couple A donne naissance & un couple B (2 couples)

~ A t3 = t; + 3 mois, deuxi®me naissance pour A (3 couples) '

- A t3 = t; + 4 mois, troisiéme naissance pour A , premiére naissance pour B (5 couples)
- ... etc ’

— les lapins ne meurent jamais

e

Exemple 5) La suite des nombres premiers {2,3,5,7,11,13,17,19,23,29,31, 37,...}

- . !Bxemple 6) Des suites pouvant &tre définies par lexpression de leur n®™¢ terme comme :
. n m .
, 6-a) {an =N}y 6-b) <an = 6-c) {an =4+3(n -1},

@ T 41 S

6-d) {an =3 <_§> } 6—e) {an = (_1)n+1}n=1 6-f) {an =3—- 271—_-5}

N n=1"
‘ 1° bl 100
6-g) {an == 6-h) {an = (-1)""'n}, 2,
N ) p=1 ' '

3 oo B

6-1) {an = ~ﬁ—g—1} pour n impair et  {an =0};%; pour n pair

y -
Les figures F1, F2 et F3 ci-jointes donnent deux représentations différentes respectivement des suites
6-a), 6-b) et 6-d) : & gauche (g) sur une axe réel, chaque point a pour abscisse la valeur des a; successifs ;
4 droite (d) dans un diagramme & deux dimensions, chaque point a potir abscisse I'indice ¢ et pour
ordonnée, la valeur correspondante de a;.

n=1

2. Les suites explicit“ement citées au programme AGRO 2010

1 Suites arithmétiques et suites géométriques, de premier terme constant a, et de raisons respectives
1 r et g, réels constants ; ces suites sont defimies dans le tableau ci-dessous :

* Suite arithmétique géométrique
2 = ‘ . de premier terme a, € R
de raison r € R* de.raison ¢ € R*
-~ '
Définition pourn 20 | ny1=an+7T Gnt1 = g.0n
Relation entre a, et ap | an = ap + 1.1 Gp = Go-q"
a -
Relation entre ap et ap | an — ap = (N — D)7 ;12 =g"P
P
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3. Sens de variation d’une suite

< a<..<ap <. strictement croissante
a1 >8> ... > 0p > . strictement décroissante
: ) ar<Lag<..<ap <. croissante
W2 t _ . , .
Def.2 : Une suite telle que a1 > ag > ... > ap > ... estdite décroissante
a1 =02 = ... = Qp = .. constante ou stationnaire
an.nt1 < 0 - alternée

Enfin une suite strictement croissante ou (exclusif!) strictement décroissante est dite strictement mono-
tone. Une suite croissante ou (exclusif!) décroissante est dite monotone

e 1] peut arriver qu’un de ces caractéres ne se dégage qu'a partir d’un certain rang n, (ou indice).
e On peut vérifier que {a,} croissante = {-an} décroissante

| o On peut vérifier que {an} croissante et c € R** = {c.ap} croissante
e Propriétés des suites de rééls positifs : Soit une suite {a,} de nombres réels positifs :

‘; {an} croissante —s Vn ?Zi >1
g} {an} strictement croissante < V¥n antt1 > 1
;l {an} décroissante = Vn Qz_il <1
ﬁk {a,} strictement décroissante <= Vn %;Z'_l <1

N d e wEY S ,
] / lim o, = A
Tl P n—+00
0 i Cad . : " '
etjon dit que la suite converge ;e’r;;\.EJne suite non convergente est dite divergent '
AAL—\_' \\n‘ — ‘,/

e Autre formulation : lim a, = A si, étant donné un nombre positif arbitraire € , aussi petit qu’on
Nn—00

veut, il est possible de trouver un indice IV tel que pour tout n > N, |a, — Al <e
Cela signifie que les réels ant1, ant2,.€tc se trouvent tous & l'intérieur du segment [A—e, A+

Ce qui s’écrit aussi :
lim (ap,—A)=0

n—+00

—

e Si une suite admet une limite, cette limite est unique; cela signifie que, si vous trouvez 2 limites
4y différentes sans erreur, alors la suite diverge.

F Si une suite {a,} converge, admettant la limite finie A, alors

A

lim ap, = lim app;= lim appa=...=4
—0o0 n—oo n—oo )

’ S
e Si une suite a, converge et si sa limite A est différente de 0, alors

=)

=..01

an

lim = lim
n—o0 On41 n—00 Gn.2

La réciproque n’existe pas; par exemple la suite arithmétique de premier terme a, et de raison ¢ non

. a . .
nulle est telle que lim —— =1 et pourtant lim a, = oo, cette suite ne converge pas.
n—00 Opy1 n—oo

MAIS
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¢ Lemme de d’Alembert : Soit une suite a, de nombres réels positifs, alors

A

gL lim Gntl <1l

n—oo  Qp

e LA

=  {ap} convergeet lim a, =0
. . n—oo

6-c) diverge vers +oco
6-e) diverge en oscillant de -1 4 1

6-h) diverge en oscillant de -co & +o0

6-i) diverge en oscillant de -co & 0

6-f) converge vers 3

6-g) converge vers 0. La suite 6-g) est appelée suite harmonique.

o Les figures F'1, F2 et F3 illustrent réspectivement la divergence de la suite 6-a) vers +o0 , la convergence
de la suite 6-b) vers 1 et la convergence de la suite 6-d) vers 0.
En ce qui concerne les autres suites citées en 6), on se convaincra que

Th.1 : Soit f une fonction de R dans R. telle que limg—.4c0 f(z) = A. Alors la suite {an} de terme général
an = f(n) converge vers A

Par exemple, en regardant certaines fonctions étudiées en feuille de TD 1, exercice 3 :

‘ flz) = (1+1)* =040 0 = lasuite {an = (1+ %)n}f::l h converge vers 0
flz) = x.arcian(%) —zt00 1 = lasuite {an = n,a?”ctan(;l;)}:il converge vers 1
A ol f (z) = :?.arctan(f;) —ﬁ.».,.w 0 = lasuite {a,=narctan()} _,  converge vers 0
/ \{: flz) = ~z.67% Sz 400 0 = lasuite {a,=—-ne "}y | converge vers 0
s
’ flz)= 22.e™® =g 1000 = lasuite {an= n?e’"}f;l converge vers 0
flz)= e 2/ oy ol = lasuite {a,=e"/"} . converge vers 1

\ f@)= —z+V22—1—5 1000 = lasuite {an =-n++vn?— l}il converge vers 0

y :

5. Opérations sur les suites

I’ensemble Sg des suites réelles a une structure qui découle de la structure de Pensemble des réels,
pourvu qu’on le munisse des opérations suivantes :

1) L'égalité (=) de 2 suites : {ap}={bn} <= an=0n Vn € N*
2) L’addition (+) de 2 suites : 4 {an}+{bn} = {an+b} VneN
3) La multiplication (.) d*une suite par unréel ¢:  c.{an} = {can} Vn € N*
4) Le produit (.) de 2 suites : , {ax}{bn} = {onba} Vn € N*
5) Le quotient (/) de 2 suites : {an}/{0n} = {an/bn} Vn € N*

Muni des lois internes 1 et 2) et de la loi externe 3), ’ensemble Sg a une structure d’Espace vectoriel sur

le corps de réels. 4
Avec , en plus, la seconde loi interne 4), distributive par rapport 4 la loi de groupe (+), ’ensemble Sk a

une structure d’Algébre. C’est méme une Algébre commutative et associative puisque la loi 4) est

commutative et associative.
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Th.2 : Passage a la limite pour les lois algébriques sur les suites
Si {an} et {bn} sont des suites convergentes et si ¢ est une constante, alors

lim (an + bp) = lim a, + lim by
n—oo " . n—00 n—00
lim (an — bp) = lim_an — lim by
n—c0 n—00 n—oo
lim (c ap) =c¢ lim a,
- n—00 n—oo

g (anba) = (i, o) (izg, )

a lim an

> n N oy . . . .

lim o = 2% 3 condition qu’a partir d’un certain rang  lim bp # 0
o0 by lim b, n—c0

n—
L/ —
o Application : Si {a.} converge vers A , alors {an — A} converge vers 0, ainsi que la suite {lan — Al}
e Si {as} et {b,} divergent, 'une vers +oo, l'autre vers -o0, il y 2 indétermination pour nlim (an + bn)
s — OO

o Si parmi les suites {an} et {b,} , Pune converge vers 0 et 'autre diverge vers oo, il y a indétermination -
pour hm (an bn)

\ o Le quotlent de deux suites divergentes n’est pas nécessairement une suite divergente; par exemple
13

¥ 1 0
} {an=n?} " et {bn= n® Yoo divergent, pourtant {un} = {:n = ;} converge vers 0.
n n=1
{1\. Le produit de deux suites divergentes n’est pas nécessairement une suite divergente; par exemple

{an = (—1)"}2, diverge alors que {un} = {an.an},2; converge vers 1.

Th.3 : Divergence d’une suite arithmétique

L Les seules suites arithmétiques convergentes sont celles de raison nulle.

Th.4 : Convergence de la suite géométrique {an = a,.q", q€R*ne N}
Elle est convergente <= —1<¢<1

Si g=1 cette suite constante converge vers a,
Si |lgl<1 cette suite converge vers 0
Dans les autres cas  cette suite diverge

-

o La suite arithmico-géométrique est définie par son terme général

an+1 = ¢-(an +7)

Elle décrit une évolution & 2 contributions, un terme en progression géométrique g.an et un terme en
progression arithmétique g.r. Elle se réduit & I’étude d’un suite géométrique en utilisant 5 le point fixe

[ =

”
1q— 7 de f(z) = q.(z +r). En effet en posant un41 = ant1 — 1, on obtient uniy1 = q.un €t donc

azn=‘un+l

Alors, si |q] < 1, la suite {u,} converge vers 0 et la suite {an} vers l.

5Le point fixe de f(z) est la valeur ! de z telle que f(z) =
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6 : Théorémes de passage a la limite dans une inégalité

et
Th.5 : Comparaison des limites

Soient deux suites {an} et {bn}

{an} converge vers A
Si{ {bn} converge vers B
an < by & partir d’un certain rang no

alors A< B

2] : L

1{Th.6 : Divergence par majoration (minoration) par une suite divergente v
Soient deux suites {an} et {dn} telles que, & partir d’un certain rang no, an < by, alors

ers —oco (+4o0)

{a,} diverge vers +o00 = {by} diverge vers + o0
{bn} diverge vers —oo = {an} diverge vers — oo

e

Th.7 : Théoréme d’encadrement dit aussi du sandwich ou des gendarmes
Si trois suites {an},{bn}, {cn} sont telles que : ;

Vn 2 no ona =ap,<by<c, et lim a, =

s

%
im c,=A
n—co

n—roo

alors limb,=A4A
n-—00

o Application : Comme —lan| < an < |an|

Si lim |an|=0 alors lim ap =0
n—00 n—oo

« Attention : Une suite absolument convergente n’est pas nécessairement convergente.
Exemple : {|(~1)"|} converge vers 1, en tant que suite constante et égale & 1 MAIS {(—1)"} diverge

A

"

3 . . 2 . N . .

% car oscille indéfiniment de -1 & +1. L’absolue-convergence d’une suite vers A n’entraine sa convergence

que lorsque A =10

" 7. Suite bornée ‘ -
an <M Vn est dite bornée supérieurement ou majorée

Def.5 : Une suite {a,} telle que m<an Vn  est dite bornée inférieurement ou minorée
: lan] £ L Vn est dite bornée

-

Une suite bornée n’est pas , pour sutant convergente. Voir, par exemple,la suite 6-€)

e ' Une suite convergente est bornée.
Une suite dont la limite est 400 n’est pas bornée supérieurement
Utie suite dont la limite est —oo n’est pas bornée inférieurement

8. Critére de convergence d’une suite (dé)croissante

Th.8 ;: Théoréme fondamental
Une suite croissante {an} converge <= elle est majorée. Alors nan;O an, = sup (an) n € N*

Une suite décroissante {a,} converge <= elle est minorée. Alors lir%<> an =inf (ap) n € N*
. s
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o Autre formulation : toute suite monotone bornée est convergente.

o Il n’est pas nécessaire qu’une suite soit monotone pour converger. Tracer, par exemple, un graphe
représentant la suite de terme général a, = 2 4+ e "cos(n) :

o Le théoréme 8 est encore valable si on suppose la suite {an} monotone seulement & partir d’un certain
rang g . Alors la remarque précédente doit étre aménagée dans le sens suivant :

lim a, = sup (a,) ,n>¢q ou lim a, =inf (a,) ,n > ¢
n—o0 n—0o0

~ 9. Suites adjacentes

Def.6 : Deux suites {a,} et {b,} sont dites adjacentes si

I'une est croissante et ’autre décroissante
{an — by} converge vers 0

Si les deux suites {an} et {bs} sont adjacentes avec {a,} croissante et {b,} décroissante, alors

- _ Yn,meN, a,<by

[ Eh.Q : Deux suites {a,} et {b,} adjacentes convergent vers une méme limite

10. Suites équivalentes

Pl

Def.7 :
/ La suite {an} est dite équivalente & la suite {b,} quand n — o =
T existe une suite {e,} convergeant vers 0 telle qu’a partir d’un certain rang, on ait an = (14 ep)bn

OU BIEN
La suite {a,} est dite équivalente & la suite {b,} quand n — oo =

11 existe une suite {gn} convergeant vers 1 telle qu’a partir d’un certain rang, on ait ap = gn.bn

et on écrit {an} ~ {bn} (quand n — co)

e {an} ~ {bn} = {bn} ~ {an}
o {an} ~ {bn} et {bn}~ {cn} » = {an} ~ {cn}

Th.9:
Si {an} ~ {bn}, alors

an >0 & partir d’un certain rang == b, >0 & partir d’'un certain rang
an <0 & partir d’un certain rang == b, <0 & partir d’un certain rang
an # 0 & partir d’un certain rang = b, # 0 & partir d’un certain rang

Th.10:
Soient deux suites {a,} et {b,} telles qu’a partir d’un certain rang b, # 0
Alors {ap} ~ {b} < lim =1
n—00 bn
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" Propriétés des suites équivalentes :

Soient {an}, {bn}, {cn}, {dn} des suites numériques. On suppose que {an} ~ {bn}. Alors,

o Si {an} converge, {bn} aussi et elles ont méme limite

o Si{ca} ~ {dn}, alors {an.cr} ~{bn.dn}

e Pout tout m € N, {{an)™} ~ {(bn)™}
1

o Si {an} # 0 & partir d'un certain rang, — ~ ;—
' . an bn

11. Figures

.,

.
, L
. . . PR SN . T [ I
0 @, 8, &y 25 \\/.\ T .z"——~—:anf'_..-.nw.-'r-,A~
0 4 £ 3 b5 " omiy A A :
S )
o 4 2 3 n. )'.,y
00 : Aoy '
™ ned §pag '
= —1"
A—————
: e @y 3ay,, |
rl ——o-p —p T l
o 4 2 248 4 L
L 3 % | |

- 49~




[ Chapitre V : Séries réelles |
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1. Définition d’une série numérique

Def.1 : Somme partielle
Soit une suite réelle {a;} de nombres finis a; . On appelle somme partielle d’ordre n l'expression

Sp = Zai

i=1

o Une somme partielle est une somme finie de nombres finis. Elle est donc finie

o Un exemple est la formule du bindme ot z et y sont des nombres réels fixés :

n!
(2 ‘l- 77,—'1 hS i
(z+y)" EOC ot Cp = (_z)'
=

e En cours de Probabilités, on rencontre, comme loi de probabilité dlscrete, la loi binomiale B(n,p)
définie par une probabilité que la variable aléatoire X = ¢ valant a; = Ct pt.(1— p)™%. Son espérance
mathématique et sa variance sont deux séries & nombre fini de termes, respectlvement

=0 =0

S E(X) = ZzC}, p’j.(l -p)"t=np e VX)= Z'z CL pt(1=p)" "t — B(X) =np(l - p)

Def.2 : Série numérique
Soit une suite réelle {a;}. On appelle série de terme général q; la suite {S,} des sommes partielles S, de
la suite {a;}. On écrit cela en abrégé : 3 a;.

. Une série étant une suite de somme partlelles, tout le chapitre IV est utile.

/\
+ ¢ Il est fructueux de remarquer que

Sp—Sp—1=an

2. Convergence d’une série

Def.3 : Convergence d’une série numérique
On dit que la série de terme général a; converge si la suite {S,,} converge; dans ce cas, on écrit

o0

S=lim S, = E a;
n—oo i1
=

et .S s’appelle la somme de la série. Sinon, on dit que la série diverge.
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o Si la série de terme général a; converge, alors, nécessairement, la suite {a;} converge vers 0
e Silasuite {a;} ne converge pas vers 0, alors a; ne peut pas étre le terme général d'une série convergente ;
on dit alors que Y a; est grossierement divergente ou trivialement divergente.

Autrement dit :
Th.1 : Condition nécessaire a la convergence d’une série

Pour que la série de terme général a; converge, il est nécessaire que la suite {a;} converge vers 0.

Th.2 : Condition suffisante a la divergence d’une série
Pour que la série de terme général a; diverge, il suffit que la suite {a;} diverge ou converge vers

j une valeur non nulle. . . : ~
|1 - Tt de Ohvowenee - 1 OF. exo KL Y —
> prTit

o Plus généralement, le test de divergence d’une série peut étre effectué en recherchant I’éventuelle non
convergence vers 0 de la suite de terme général :
[vn = Sftm) = Som)

ol f et g sont des fonctions strictement ‘croissantes de N dans N. Par exemple, on verra en TD, que la
divergence de la série harmonique se voit bien en montrant que la suite de terme général v, = Son—5n

_ ne converge pas vers 0.

Th.3 : Soit k un entier fini. On ne change pas la nature (convergente ou divergente) d’une série si

- on modifie ’ordre des k premiers termes
- si on supprime les k premiers termes

3. Reste d’une série convergente

Def.4 : Reste d’ordre n d’une série convergente

Si 1a série de terme général a; converge, on définit le reste R, d’ordre n de la série par

' Ro= Y @

i=n+1

La suite {R,} converge alors vers 0.

On peut aussi écrire R, = S — Sy , qui montre bien que R, est interprété comme l'erreur que 1’on commet
! i

lorsqu’on approxime S par Sp.

Trouver l’équiva.l'enée R,, ~ f(n) lorsque n tend vers Iinfini p
Ja somme S, est approchée & moins d’un e donné; il suffit de résoudre 1'é

érmet de calculer le rang n’ & partir duquel
quation -f(n') < e.

Def.5 : Définition d’une série entiére
On appelle série entiére centrée en a une série de la forme

lee]
Zc,(x - a)i ot les ¢; sont des coefficients réels constants et ol z peut parcourir R
=0
Th.4 : Rayon de convergence d’une série entiére :
. [ee}
Il n’y a que 3 situations possibles pour J’ensemble des valeurs de z ol une série Z ci(z — a)* peut converger :
’ =0

— La série ne converge qu'en a

- La série converge pour tout

— La série ne converge que pour tout z tel |z — al<p

On dit que le rayon de convergence p est 0 et oo dans les deux premiers cas.

- R~
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e Une série entitre et sa série dérivée ont méme rayon de convergence.

Th.5 : Reste d’ordre n d’une série entiére convergente
Si la fonction f admet au voisinage de a le développement de Taylor

F(z) = Pa(z — a) + Ra(z — a) olt P, est la partie régulitre et Ry le reste

Alors  lim R.(z—a)=0pour|z—a|<p =

f(z) égale la somme de sa série entiére de Taylor Vz tel que lz—a|l <p

4. Séries de références

I On étudiera en T.D. les séries numériques suivantes, en montrant que

La série géométrique a; = ¢ i€N, g=réel fixé converge si et seulement silgl < 1letsa
g

=0 i

somme vaut alors I
-q

les séries, parentes de la série géométrique, qui convergent si et seulement si fg| <1:

a;= Y 1.0 =-——"=5 ¢t a;= )Y °.¢"=
Z ¢ Z | (1 - q)? E * Z; (1—q)3

=1 i=1 i=1 i=

l La série de Riemann : Z a; = Z = b € N*, g = réel fixé converge si et seulement si ¢ > 1
i i

J e La série harmonique 1+% + %— + % + ... diverge
: : 1 i—11
K e La série harmonique alternée 1—-2- + % + ...(—1)"1;,- + ... converge vers —In2

= Comme 5pplica,tions des séries dans le chapitre sur les probabilités, on trouve 'espérance mathématique
E(X) et la variance V(X), (sans parler des moments) de lois discrétes de probabilité. Le terme général a;
est 1a probabilité que X =1 . Citons les lois usuelles : !

e La loi géométrique G(p), de paramétre constant p qui a pour terme général,
VieN*, a;=1i=p(l—p)"! pour laquelle

&, -1 _ 1 Ra g et l1-p
EX)=3 ip(l-p) =2 e V()= > fp(l-p) 7 - B(X) = —~
i=1 =1

e La loi de Poisson ’P(m), de paramétre constant m qui a pour terme général,
. O
VieN, a;=e m—z_r pour laguelle

+0 mi +00 mi
E(X) = Zz‘e“mi—' =m e V(X)= Zize—m_ﬂ_ _E(X)=m
=0 ) =0 ’

= On étudiera en T.D. la série entiere suivante :

: 1o ¥R i
e La série exponentielle Z a; = Z = qui converge, quel que soit le réel z vers e®.
y (3

=1 i=1

- K2~



5. Séries i termes positifs

Th.6 fondamental : Une série de terme général positif converge si et seulement si la suite des

sommes partielles est majorée

En effet la condition “suite croissante” (Th. 8 au §8 du Ch. IV Jest automatiquement satisfaite & cause de
la positivité des termes. "

Critére de comparaison : ~
Soient deux suites {a;} et {b;} de nombres réels p051t1fs telles qu’a partir d’un certain rang M , on ait

i>M = 0Za;<b

i=00 1=00

Alors Zb converge = Zaz converge et Z a; < Z b;

i=M i=M

zai diverge = Zbi’ diverge

. {Critére d’équivalence :

Soient deux suites {a;} et {b;} de nombres réels positifs, telles
a;~b; quand i — o

Alors, les 2 séries de termes généraux respectifs a; et b; sont de méme nature : si 'une converge, 'autre
aussi; si 'une diverge, 'autre aussi.

Critére par comparaison avec une intégrale impropre :

Soit une suite {ai}:::"]\}w de nombres réels positifs telle que a; = f(i) ol f est une fonction continue
positive décroissante de [N, +oo[ dans R
+-o00

+00
Alors l'intégrale impropre / f(z) dz et la série Z a; sont de méme nature.
' : N i=N :

Supplément, pour les séries & termes strictement positifs :

Regle de d’Alembert :

Soit une suite {a;} de nombres réels strictement positifs, telle que L admet une limite L € [0, +o0f
2]

quand % tend vers linfini
Alors ‘
SiL<1 La série de terme général a; converge
Si,>1 La série de terme général a; diverge
Si L =1% La série de terme général a; diverge
Si L =1~ On ne peut pas conclure

Critére par comparalson logarithmique :
Soient deux suites {a;} et {b;} de nombres réels strlctement positifs, telles qu’a partir d’un certain rang

M on aat

a b;
i>M = —dloZH
) a; b;
Alors E b; vconverge = Zai converge

Zai ‘diverge = Zbi diverge

; a; _a
L'inégalité precedente s’écrit, pour tout ¢ > M , T dit1 <2 <L M

. ’ a N
< . Clest-a- dire a; < bi—M . Le critére de
i1~ b T obm b

- R3-




. . Js - a
comparaison s’applique alors au couple des séries de terme général a; et bib—ﬁ— donc au couple a; et b;

6. Opérations sur les séries convergentes

Soient 5 a; et ) b; deux séries et ¢ un nombre réel. Alors, si les deux séries sont convergentes,
Les séries Z(c.ai) et Z(ai +b;) convergent

Si une des séries diverge et 'autre converge Z(ai +b;) diverge

/ Si les deux séries divergent, on ne peut pas conclure sur la nature de Z(ai + b;)

7. Absolue convergence d’une série

Def.6
On dit que la série de terme général a; converge absolument si la série de terme général |a;] converge

Th.7 .
Une série absolument convergente est convergente (!)

Ainsi lorsqu’on cherche & montrer la nature convergente d’une série & terme a; général non positif, on peut
passer par 'étude intermédiaire de son absolue convergence en utilisant les critéres de convergence des séries

3 termes positifs .

Th.8 : Produit de Cauchy
o0

[ve]
Soient deux séries Z a; = A et Zbi = B absolument convergentes.

=0 =0
i

Alors, la série, dite produit de Cauchy, définie par son terme général w; = Z ax.bi_x est aussi absolument
. k=0

)
convergente et }:wi =A.B

i=0

- h4-
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1.Matrices : définitions ou propriétés utiles

La trace d’une matrice est la somme de ses éléments diagonaux.
Le produit ou la somme de matrices diagonales est une matrice diagonale

Le rang d’une matrice c’est tout aussi bien
— le nombre de colonnes linéairement indépendantes
— le nombre de lignes linéairement indépendantes
— la dimension de Pensemble image de 'application linéaire qu’elle représente

Le produit des valeurs propres d’une matrice, élévées chacune & sa multiplicité, est égal au déterminant
de cette matrice. )
La somme des valeurs propres d’une matrice, chacune multipliée par sa multiplicité,st égale & la
trace de cette matrice. ' ' .

La dimension du noyau d’une matrice ou d’une application linéaire donne le nombre de vecteurs
propres (ou la dimension de ’espace propre) associés & la valeur propre 0; donc c’est la multiplicité
(ou lordre ou la dégénérescence) de la valeur propre 0

2. Déterminants 2x2 et 3x3

Les différentes lignes seront appelées 1, ls, I3 de haut en bas et les différentes colonnes seront appelées
c1, c2, cg de gauche & droite.

2.a) Interprétation géométrique du déterminant

Cette interprétation est tres utile pour comprendre, sinon retenir les propriétés des déterminants.

est interprété comme 'aire algébrique du paralléllogramme construit &

[ . a ¢
e Le déterminant b d
partir des vecteurs V4 et Va & du plan orienté dans le sens trigonométrique, de composantes respectives

(3)=(5)

SDans le poly (Dantan) distribué, ce déterminant est noté D(Vi, V3)

RR

La trace, le rang, le déterminant,le polynéme caractéristique, les valeurs propres d’une matrice restent \
invariants quand on exprime cette matrice avec une autre base. \



ajl a2 Qi3

e Le déterminant | agi ase ag3 | est interprété comme le volume algébrique du paralléliépipede
agy as2 asg’

construit & partir des vecteurs Wi, Wy et W3 7 de l'espace & trois dimensions orienté selon le sens

a1 a19 a13
direct, de composantes respectives a21 , Qo9 et a3
asi ase ass

Ce déterminant égale aussi le produit mixte (W1 A Wa). W3

o Conséquences immédiates, en vrac :

M Le déterminant est un nombre algébrique. I1 ne dépend pas de la base dans laquelle une matrice
est exprimée :

Det(A) = Det(P7*AP) si P est la matrice de passage d’une base & une autre

B Det(P) # 0 si P est la matrice de passage d’une base & une autre. Cela se comprend bien
puisque ses colonnes sont les composantes de vecteurs de bases, nécessairement linéairement
indépendants. De méme, on comprend bien que si cette base est orthonormée, cela conduit & un
déterminant égal & 1. (Aire d’un carré de coté 1 ou volume d’un cube d’aréte 1).

B Tout ce qui peut annuler cette aire ou ce volume annule donc le déterminant : une colonne nulle,
2 colonnes proportionnelles, ou, de fagon plus générale, les colonnes formant une famille liée
(une colonne= combinaison linéaire d’autres colonnes)- Méme chose en remplagant “colonne”
par “ligne”

2.b) Le déterminant est une forme multilinéaire alternée

e D1, Va+ V) =D(V1, Va) + D(V1, V3) et D(AVL, V3) = AD(V1, Vo) et D(Vi+ Vo, V3) =
DWVy, V3) +D(Va, Va) (“multilinéaire”) et D(Vy, Vo) = —-D(Va, Vi) (“alternée”)

2.c) Conséquences : transformations laissant le déterminant invariant

Le déterminant d’une matrice ne change pas si
e on remplace une ligne /; par la somme ou la différence I; £1; , j # i

e on remplace une colonne ¢; par la somme ou la différence ¢; +c¢; , § # ¢

2.d) Attention!

Le déterminant du produit de deux matrices = le produit des déterminants
MALIS le déterminant de la somme de deux matrices # la somme des déterminants.

"Dans le poly (Dantan) distribué, ce déterminant est noté D(Wy, Wz, Ws)

R7
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1 Produit cartésien de deux ensembles, de deux espaces vec-

toriels

e Soient deux ensembles Fj et F5. On appelle produit cartésien F; x Fb I’ensemble des couples ou
doublets (z1,z2) tels que z1 € Fy et x5 € Fh

e Soient deux espaces vectoriels Fl‘ et Fy, de dimensions respectives d; et do. Alors dim_(Fl x Fy) =
dim(Fy) + dim(Fz) ‘

o Exemple : R? = R xR . R3 est I’ensemble des triplets de réels ]R6 est l’ensemble des sextuplets de reels
dim(R?) = dim(R) + dim(R) =1+ 1= 2

2. Précision sur les symboles x et +

Dans le paragraphe précédent, vous voyez que le symbole x utilisé pour le produit cartésien de deux
ensembles est le méme que celui utilisé pour la multiplication dans R. C’est dommage, mais c’est ainsi. Il
convient donc d’étre vigilant sur le contexte dans lequel ce symbole est utilisé.

De méme quand on définit 'opération interne dans un espace vectoriel E, on 'appelle addition et on
la note +; on devrait la noter subtilement + g, mais cela sulchalge l’ecutule et tlachtlonnellement on se
contente de -+, c’est-a-dire le symbole de I’addition dans R.

L’écriture de +p simplifiée en + risque d’apporter une confusion ou limpression que les axiomes
définissant ’espace vectoriel sont évidents; montrez, par une phrase, que vous étes conscients de ce dis-
tinguo, méme(surtout) si vous adoptez, comme tout le monde, + pour opération interne dans tout espace

vectoriel quel qu’il soit..

3. Egalité de deux ensembles, de deux sous-espaces vectoriels

Soient deux ensembles F et Fy. Fy=F, <= I CF et F, CF;

Soient deux sous-espaces vectoriels F1 et Fy d’un espace vectoriel E.

Fil=F <= F,CF et dz’m(Fl) = d’im(Fg)

RQ




4. Somme de sous-espaces vectoriels, somme directe

Soient deux sous-espaces vectoriels F1 et F» d’un espace vectoriel E.

o On appelle somme des deux sous-espaces vectoriels Fy et Fy, ’ensemble noté F} + Fy des
z € F tels qu'il existe 21 € F1 et zo € F5 tels que z = z1 + 9

e Propriéte de la somme : Fy + Fj est encore un sous- espace vectoriel de F et dim(Fy + Fy) < dim(F;) +

e Les deux SEV Fj et Fy sont dits en somme directe ou la somme Fj + F5 est dite somme directe et
est notée F @ F5 si et seulement si
- la décomposition z = ;1 + x9 est unique.
-0U: z1+20=05 = z1=0g et 20 =05g
- QOU: FlﬁF2={0E}

Propriété : dim(Fy @ F) = dim(Fy) + dim(Fy)

Propriété : Si Fi et Fh sont en somme directe, 'union d’une base de Fy et d'une base de F5 constitue
une base de | @ Fp

Exemple : RZ = Rx {0} & {0} xR. Ici, F; = R x {0} et F» = {0} x R. dim(R x {0}) =
dim(R) + dim({0}) =1+0=1

5. Espace supplémentaire

Soit F1 un sous-espace vectoriel d’un espace vectoriel E.

On appelle supplémentaire de F; dans E, tout sous-espace vectoriel G de E tel que F1 @ G = E.

Ce suppléméntaire n’est en général pas unique.
PP

Exemple : Dans R® , un plan vectoriel a pour supplémentaire une droite vectorielle quelconque non
contenue dans ce plan. En effet, n’importe quel vecteur de R3 peut s’écrire de fagon unique sous la
forme d’un vecteur de ce plan additionné & un vecteur de cette droite. Il y a donc une infinité de
supplémentaires & ce plan vectoriel.

Ne pas confondre avec espace complémentaire : dans R? , 'espace complémentaire & un plan vectoriel
est ’'ensemble des éléments de R3 qui sont hors de ce plan.
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