Gravitational-wave detection with pulsar timing

Rutger van Haasteren¹

¹Albert Einstein Institute, Hannover

LISA Symposium Paris, May 2012

Outline

- Pulsar Timing
 - Pulsars for GW detection?
 - Pulsar observing
 - Timing-residuals
- Data analysis of PTAs
 - Bayesian data analysis
 - Modelling the data
 - GW Signals
- Results so far
 - EPTA limit
 - Conclusions

Outline

- Pulsar Timing
 - Pulsars for GW detection?
 - Pulsar observing
 - Timing-residuals
- Data analysis of PTAs
 - Bayesian data analysis
 - Modelling the data
 - GW Signals
- Results so far
 - EPTA limit
 - Conclusions



Detecting Gravitational Waves

What we are looking for are:

Changes in the metric

- Resonant mass
 Explorer, Nautilus, miniGRAIL, . . .
- Laser interferometry
 Geo, Ligo, Virgo, LISA, ...

Need precise frequency standard

- Gravitational waves are very weak
- Need very precise frequency standard/clock: e.g. LASER
- Use interferometry to detect phase change

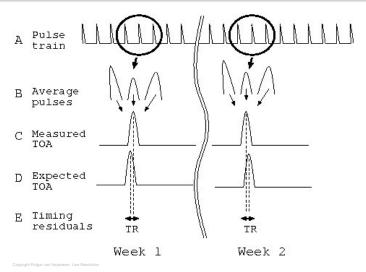
Need precise frequency standard

- Gravitational waves are very weak
- Need very precise frequency standard/clock: e.g. LASER
- Use interferometry to detect phase change
- Pulsar PSR B1937+21 has a rotational period of

T = 0.00155780644887275 sec.

Use millisecond pulsars!!! (MSPs)

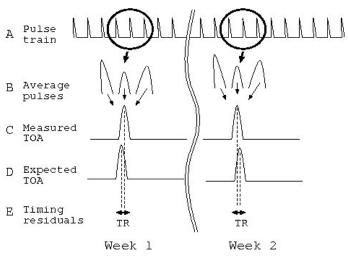
Timing residuals: difference with interferometers


- Pulsar pulse times of arrival (TOA's) can be very precisely modeled.
- Timing residuals (TRs) are primary data:
- $\delta t = t_{\text{observed}} t_{\text{expected}}$

Timing residuals: difference with interferometers

- Pulsar pulse times of arrival (TOA's) can be very precisely modeled.
- Timing residuals (TRs) are primary data:
- $\delta t = t_{\text{observed}} t_{\text{expected}}$
- We cannot control the setup, not possible to eliminate external systematics
- Limited to telescope time, have to share with others
- Have to do a lot of pre-processing before we have a time of arrival (TOA)

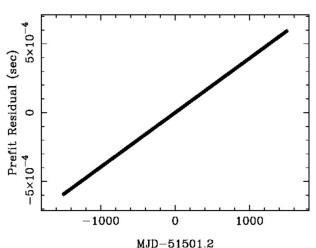
Making timing-residuals (simplified)



Some typical numbers

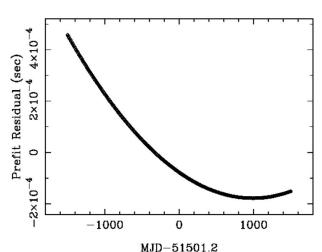
- Pulse period 5ms
- Pulse width 0.5ms
- Timing accuracy 100ns
- Distance to pulsar several kpc
- Sensitivity to distance variations to pulsar 30m (<1 part in 10¹⁸)
- Can account for every rotation, even when not looking at pulsar for months!

Compare C & D: Need timing model parameters

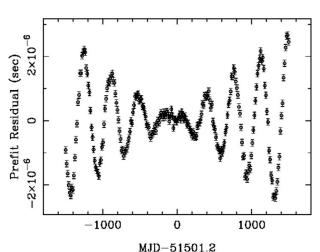


Processing TOAs: Wrong timing model...Re-fit!

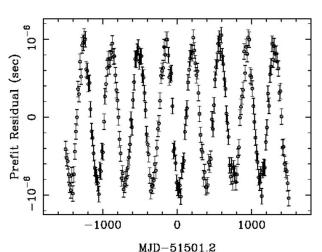
$$1713+0747 \text{ (rms} = 343.749 \ \mu\text{s) pre-fit}$$



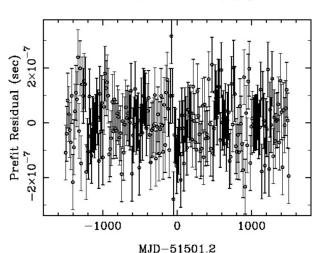
Copyright Rutger van Haasteren, Low Resolution


Processing TOAs - period derivative

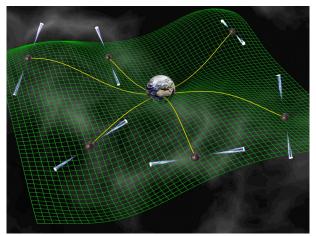
$$1713+0747 \text{ (rms} = 189.707 \ \mu\text{s) pre-fit}$$


Processing TOAs - proper motion

 $1713+0747 \text{ (rms} = 1.077 \mu \text{s) pre-fit}$


Processing TOAs - sky position

 $1713+0747 \text{ (rms} = 0.645 \mu\text{s) pre-fit}$



Final step: E - timing-residuals

$$1713+0747 \text{ (rms = 0.101 } \mu\text{s) pre-fit}$$

The pulsar timing array: many arms

Sources of timing-residuals

- Noise, among others:
 - Receiver noise
 - Irregularities of pulsar beam rotation (timing-noise)
 - Imprecision of local atomic clocks
 - Variation in refractive index of interstellar medium (scintillation)
 - Polarisation calibration of the telescope
- Gravitational-waves, typically 10s of nHz, only depending on duration of experiment and observation cadence:
 - Ensemble of BH binaries at centres of galaxies (stochastic background)
 - Relic gravitational-waves (stochastic background)
 - Cusps in cosmic-string loops (stochastic background)
 - BH-BH mergers: gravitational-wave memory (burst, deterministic)
 - BH-BH orbits: single-sources (deterministic)

Outline

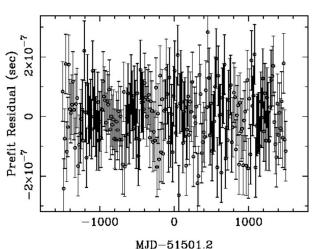
- Pulsar Timing
 - Pulsars for GW detection?
 - Pulsar observing
 - Timing-residuals
- Data analysis of PTAs
 - Bayesian data analysis
 - Modelling the data
 - GW Signals
- Results so far
 - EPTA limit
 - Conclusions

Analysis: differences with controlled experiments

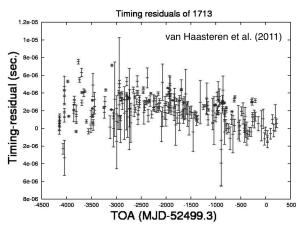
- No continuous data stream. Observations are taken with irregular intervals in between (typically weeks)
- Duration of the signal is comparable to the duration of the experiment.
- Very significant systematic corrections must be taken into account (e.g. quadratics): acts as a linear time-variant filter that alters low-frequency behaviour.
- As part of the EPTA, a public toolkit/library is being implemented that can be used when developing new algorithms for PTA data analysis. Stochastic GWB, single-source, F-statistic, correlations...

PTA Bayesian analysis in a nutshell

- Model the stochastic signals (timing-noise and GWB) as a random Gaussian process with a certain power spectral density: construct likelihood.
- Analytically marginalise over all the deterministic timing model parameters.
- Use MCMC / Affine invariant sampler to marginalise over all the other model parameters

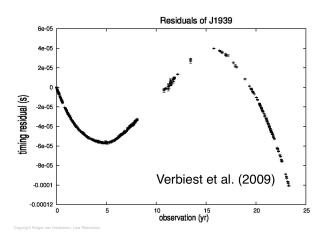

PTA Bayesian analysis in a nutshell

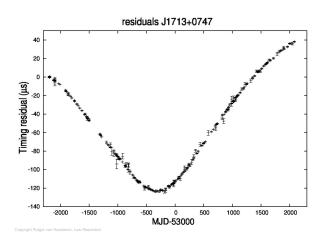
- Model the stochastic signals (timing-noise and GWB) as a random Gaussian process with a certain power spectral density: construct likelihood.
- Analytically marginalise over all the deterministic timing model parameters.
- Use MCMC / Affine invariant sampler to marginalise over all the other model parameters
- Computational cost goes as n³, with n number of observations. Need a lot of computational time.
- For recent EPTA limit we used 1000 cpu hours, but real datasets are already over 5 times larger.

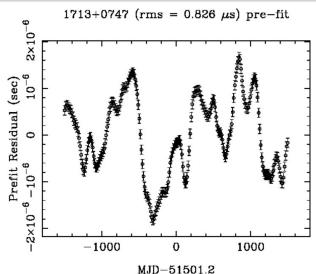


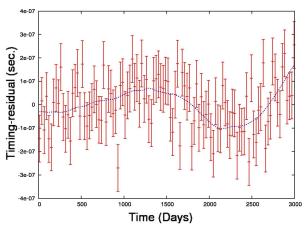
Simulated residuals without a signal

 $1713+0747 \text{ (rms = 0.098 } \mu\text{s) pre-fit}$

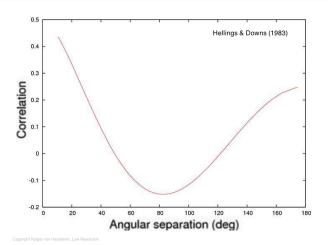

Example of J1713 (Effelsberg)

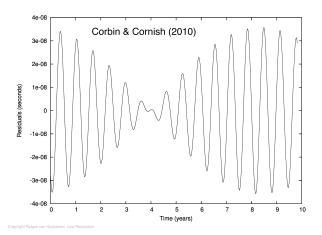

Copyright Rutger van Haasteren, Low Resolution


Example of J1939 (Parkes)

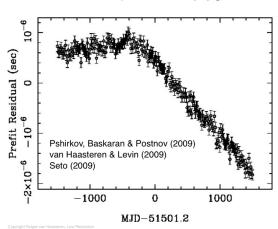

Simulated data: red noise - power-law PSD

Simulated data: red noise - exponential PSD

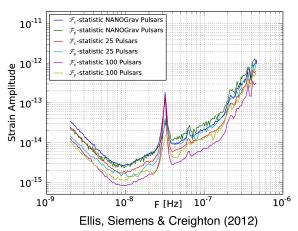

Stochastic background


Overlap reduction function (H&D Curve)

Quadrupolar correlations: the GW fingerprint


Single sources: massive BHB

Single sources: GW Memory


$$1713+0747 \text{ (rms} = 0.837 \mu\text{s) pre-fit}$$

Correlated between pulsars

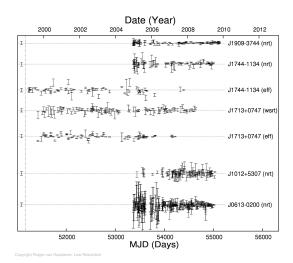
Sensitivity

Copyright Rutger van Haasteren, Low Resolution

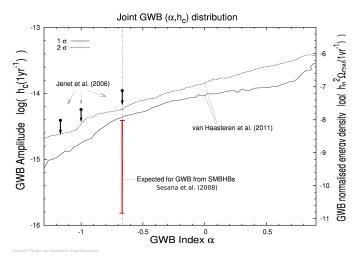
Outline

- Pulsar Timing
 - Pulsars for GW detection?
 - Pulsar observing
 - Timing-residuals
- Data analysis of PTAs
 - Bayesian data analysis
 - Modelling the data
 - GW Signals
- Results so far
 - EPTA limit
 - Conclusions

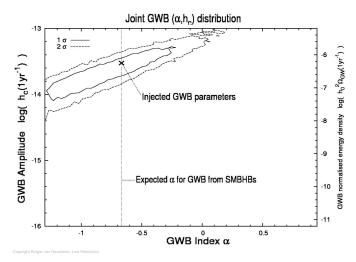
The International Pulsar Timing Array



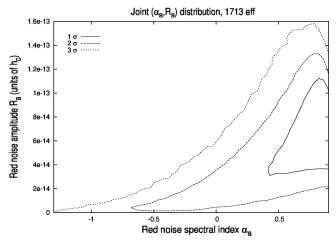
The European Pulsar Timing Array


Copyright Rutger van Haasteren, Low Resolution

All the timing residuals



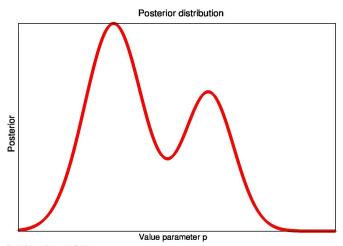
GWB limit



GWB detection of injected signal

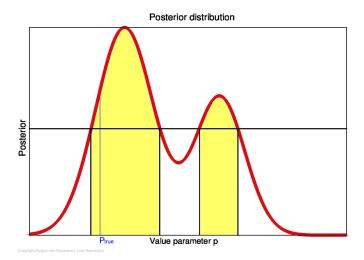
Red noise

Copyright Rutger van Haasteren, Low Resolution

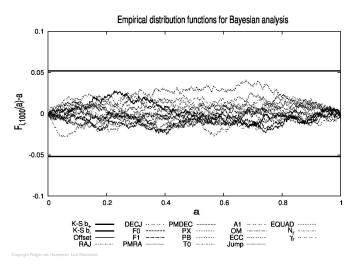


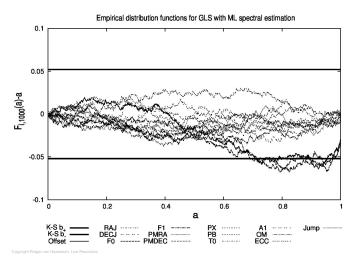
Conclusions and remarks

- Pulsar timing very similar to interferometers with respect to GW detection: different frequency band
- GWs are unambiguously detect by their uniquely correlated signal across
- Most stringent GWB upper limit to date from European PTA data.
- Currently working on International PTA (IPTA) data analysis: worldwide collaboration
- Public and universal data analysis library/tookit in production as part of the EPTA. Includes an implementation of the Bayesian PTA analysis pipeline. Language: Python (and C)
- IPTA mock data challenge has just been released.
 Everyone invited to participate



Posterior distribution




Posterior distribution

Emperical distribution function (Bayesian)

Posterior distribution (ML)

