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Abstract. All existing experimental results are currently intergektusing clas-
sical geometry. However, there are theoretical reasonsidpest that at a deeper
level, geometry emerges as an approximate macroscopivibelud a quantum sys-
tem at the Planck scale. If directions in emergent quantupmgéry do not commute,
new gquantum-geometrical degrees of freedom can produeetdbte macroscopic de-
viations from classicality: spatially coherent, transeeposition indeterminacy be-
tween any pair of world lines, with a displacement amplitudech larger than the
Planck length. Positions of separate bodies are entangtbdeach other, and un-
dergo quantum-geometrical fluctuations that are not deslolé as metric fluctuations
or gravitational waves. These fluctuations can either bentyeidentified or ruled out
using interferometers. A Planck-precision test of thesitad coherence of space-time
on a laboratory scale is now underway at Fermilab.

1. Introduction

Large-scale laser interferometers have been developeddy the dynamics of space-
time with unprecedented precision— fractional distorsioh classical geometry of less
than a part in 18, caused by gravitational waves from sources in the distanetse.
Here, | discuss the possibility that large interferometeight measure an entirely dif-
ferent dfect, caused by the quantum character of geometry itselipagitiating within
the space-time of the apparatus.

At first glance this idea seems counterintuitive. New phg/éitroduced at small
scales and high energies is usually probed by giant actalsithat collide particles at
TeV energies and create interactions in attometer volu@esntum &ects on space-
time are usually thought to originate at the Planck scalémgossibly high energy for
accelerators. Interferometers on the other hand appeagsletaty classical; they mea-
sure the positions of macroscopic masses on macroscopés saad should seemingly
be insensitive to such small scaleets.

Yet interferometers are superb quantum measurement devi¢eey prepare and
measure positions in states whose quantum coherence sxtegida macroscopic vol-
ume of space and time (Schnabel et al. 2010; LIGO ScientifitaBaration 2011).
Their sensitivity currently approaches the Heisenberghtyua limit for their size and
mass. They are also close to a physically fundamental thlest precision: a power
spectral density for position noise given by the Planck tiwteere deviations from clas-
sicality might be expected. In these respects, interfeteraeare uniquely well suited
to measure or quantitatively constrain tiny quantum dewiat from classical features
of geometry, such as separation of large and small scakegydependence of positions
in different directions, and the principle of locality.
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2. Quantum Geometry

It is hard not to take the classicality of macroscopic geoynietr granted. The idea of
a position in space is the first physics we all learn as smdlliirem, before we even
think of space as part of physics. But from the perspectivquaintum physics, the
large scale classical coherence of space is a deep mystery.

The standard operational theory of the physical world is@éded from two dis-
tinct pieces. The first is geometry: a classical, dynamipake-time, that is the stage
for everything else. The second includes all the forms ohtiwa matter and energy
that move and transform in time and space as patrticles anls fighe two pieces are
spliced together in a way that is itself classical, and seilisistent on large scales:
the quantum character of the §tin the energy-momentum tensor is ignored for grav-
itational purposes, and quantum particles and fields mowetalithin a classically
determinate space-time.

This way of joining of the quantum world with geometry workgliMo explain
every experimental result in physics. On the other hantlpisause a theory is consis-
tent and successful in a certain range of applications doesiean that it is complete,
or correct in all circumstances. Indeed, there are goodréfieal reasons to suspect
that at a deeper level, geometry has a quantum character:

e The expansion of the universe is observed to be acceleralihgg behavior is
controlled by the gravitation of the vacuum, which is simatyarbitrarily chosen
constant in standard theory. Its explanation lies outdidestandard paradigm of
fields propagating in classical space-time (Weinberg 198%hen et al. 1999;
Frieman et al. 2008).

e Thought experiments that include curved space-times, asitiack holes, show
that the dynamics of gravity and space-time can be intexgras a statistical
behavior, like thermodynamics (Jacobson 1995; Padmanab®0; Verlinde
2011). That s, the equations of Newton and Einstein can beedkon the basis
of statistical principles from the behavior of new, as yeknown quantum de-
grees of freedom. The number of fundamental degrees ofdneegbpears to be
holographic (Bousso 2002): information about the state adwsally connected
space-time volume can be encoded with Planck informatiasitdeon its two-
dimensional boundary. This nonlocality and limited infation content cannot
be reconciled in a fundamental theory with only classicaingetry and quantum
fields. Similarly, thought experiments that include blackds and fields show
effects like Hawking evaporation— essentially, a conversibgenmetry into
particles. For quantum principles to hold, the geometrytrhase holographic
quantum degrees of freedom.

e The fundamental mathematical structures of quantum méhamd classical
geometry are entirely fferent, and their splicing is not controlled by any well de-
fined mathematical limiting procedure (Wigner 1957; Sadedk Wigner 1958).

In guantum mechanics, a position is a property of an intemacand is described
by an operator; in classical geometry, a position is a ptgpafran event, and
is described by a real vector. There is no physical way to @mpositions of
classically-defined events. The standard way of spliciegetiwo diferent math-
ematical concepts together is self-consistent at low és®rgut since it assumes
classical behavior, it excludes quantum-geometri@@ctsa priori.
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e Similarly, the geometrical concept of spatial localizatiat the heart of classical
geometry, is not a property of reality. Quantum physics isaomsistent with
“local realism”, as now demonstrated by many real-worldegipents (Ma et al.
2012; Zurek 2003). Although no experiment has yet direcernled a quantum
property of geometry itself, we also do not know how to redenexperiments
with the idea that classical geometry can be “real”, sincaiit only be measured
with quantum processes that fundamentally do not happerdifiaite time or
place. Quantum mechanical nonlocality is sometimes desttras paradoxical,
but from the point of view of quantum mechanics, the appactadsical coher-
ence of space at large separation may be the deeper mystery.

e Beyond the Planck scale, a dynamical classical geometry imger consis-
tent with quantum mechanical matter. A quantum particlefined to a sub-
Planckian volume in three dimensions has a mass exceedihgfth black hole
in that volume, impossible according to relativity; corsay, a black hole with
mass below the Planck scale has a quantum position indeigeyniarger than
its Schwarzschild radius, so the geometry must be indetexti

Many promising ideas for unifying classical and quantumcdpsions have been
pursued over the last century. Decades of mathematicedtlilee document consistent
progress in quantum theories that include gravity, suchramygheory, matrix theory,
loop quantum gravity, and noncommutative geometry. Thieyed consistent descrip-
tion of physics at the Planck scale and beyond (HossenféllE?). They also display
explicit holographic dualities in curved space-times; égample, a conformal quan-
tum field theory on the boundary of an Anti-De Sitter space disscribes a quantum
theory of matter and gravity in the higher-dimensional b@k the other hand, no mi-
croscopic quantum theory yet gives a clear account of thegamee of a macroscopic,
nearly-classical, nearly-flat spacetime— that is, a rgéaliaboratory setting— so the
connection of these ideas with classical geometry has rest tested experimentally.

The approach taken here does not derive from gravity or qaehfields, or from
any particular fundamental microscopic theory. Insteaduse general principles of
special relativity and quantum mechanics to directly estspossible new macroscopic
effects of Planckian quantum geometry, if positions ifiestent directions do not com-
mute. These arguments suggest that interferometers magtdffects of quantum
geometry on the positions of massive bodies.

3. Emergent Space-Time

One promising, general approach to quantum geometry ispgpose that classical
space-time is “emergent”. The general idea is that clasemttons of spatial direc-
tion, position, and locality may arise only as approximasioin a macroscopic limit.
On small length scales, the system becomes less classitainame quantum”. At the
Planck scale, geometrical states become fully indetetimigaantum systems.

To make this idea work in practice, the classical limit sklodconcile standard
physics with hints of quantum geometry just identified, sastthe holographic behav-
ior of gravitational states. Macroscopic symmetries otspand time, such as Lorentz
invariance, should be derived rather than assumed. Idealiye new predictions for
realistic experiments might also emerge, that could cortfiahthese ideas have some-
thing to do with the real world.
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According to one idea (Banks 2011), the Hilbert space of aespiane, together
with all the matter in it, is defined in relation to a partiautamelike world line. In the
emerged space-time, an interval on the world line definesisataiamond— a region
in the intersection of the future light cone of the initialipp and the past light cone
of the final point. The state associated with an interval ldsts forN Planck times is
represented by aN x N matrix that represents everything happening within a dausa
diamond.

This construction is holographic: the number of degreesesfdom is the area of
the covariantly-defined 2D bounding surface in Planck uildisconstruction, it is con-
sistent with causality and general covariance. Since iils &ound a particular world
line, it is not manifestly consistent with full Poincare @amance; whether or not this
is a problem, is a quantitative issue to be settled by exmarimt has been suggested
that physics based on an emergent space-time could prowidtiaal setting to explain
both inflation and cosmic acceleration (Padmanabhan 2042k8& Fischler 2011).

Emergent space-time is a useful framework to discuss rfésecte of quantum
geometry on the positions of bodies in nearly flat space.ldtal us to contemplate
new violations of classicality, such as position operatordifferent directions that do
not commute with each other. Although quantum geometryirmatgs in Planck scale
physics, in an emergent space-time fifieets need not be confined to Planck scale fre-
guencies or scales; it can be spatially nonlocal, sharedreally by many particles;
and it can produce distinctive, observable, entangledu&iitins of macroscopic posi-
tions.

4. Noncommuting Macroscopic Quantum Geometrical Position Operators

A position is described by an operator, that operates onta d&scribing a system.
Position operators are not unique, but can represent \&fi@ys of preparing and
measuring a quantum state. Some operators correspondvientiamal position opera-
tors; for example, the position operator for a particle apes on a subset of the system,
corresponding to that particle, and correlates it with hepsubsystem representing a
measurement apparatus. Indeed it is common practice t@xpyate systems of in-
terest as idealized isolated subsystems, and ignore odgeees of freedom. Such a
subsystem is conventionally idealized as an isolated stgpeepared system, but it is
really part of a larger state that includes that of the geoyitinhabits.

A similar procedure can be followed for new quantum-geoimetrodes. We can
ignoreall the standard quantum degrees of freedom, and write downrdauqaaheory
of operators that represent only new collective geométpiasition degrees of freedom
in an emergent system, that are shared by many particles. pfbgram is less ambi-
tious than most approaches to Planckian physics, since# dot attempt to formulate
a fundamental, microscopic theory. The main constrainhas the overall behavior
agrees sfiiciently well with classical space-time position to agreéwexperiments.

Consider the mean position of some massive collection dfgies in a compact
region of space, which we call a “body”. Suppose that thetjposdf a body in each
direction i is a quantum observable, represented by a self-adjointatper,. The
commutators of these operators represent the quantumtidegiaf a massive body
from a classical trajectory. The body itself is assumed tonbssive enough that we
ignore the conventional position operators— the usual guamtects associated with
its motion.
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To describe the quantum degrees of freedom of the geomessit, the following
commutators relating positions infféirent directions (Hogan 2012a):

[X;u Xv] = )_(QJAE/NK/IMF% (1)

where indices, v, «, A run from 0 to 3 with the usual summation conventighdenotes
the expectation value of the positiob;! = 9x'/cor the dimensionless expected 4-
velocity of the body,r the proper timeg,, . the Levi-Civita antisymmetric 4-tensor,
and{p a parameter with the dimensions of length.

In the limit {p — 0, the commutator vanishes, so that positions ifiedent
spatial directions behave independently and classicdilys interesting to ask what
happens if the scalér is not zero, in particular if it is of order the Planck length,

tp ~ ctp = \AG/c3 = 1.616x 1073° meters. With this choice the number of the ge-
ometrical degrees of freedom approximately agrees witbhdraphic entropy bounds
for gravitating systems.

One virtue of equation (1) is that it is manifestly covariahe two sides transform
in the same way under the homogeneous Lorentz group, asca piiceluct of vectors.
The algebra of the quantum position operators respectsahsformation properties of
corresponding coordinates in an emergent classical Miskbgpace-time, in a limit
where the operators are interpreted as the usual spacestiordinates. The theory
itself thus defines no preferred direction in space. Theseabvgrs are thus plausible
candidates for classical positions in the macroscopid.limi

Indeed the form of departures of positions from classicabl®r, the commuta-
tor, depends on classical position and 4-velocity in a wayithdetermined by the need
for covariance. The quantum commutator of two vectors reguiwo antisymmetric
indices that must be matched by indices on the right sides Tdairequire a nonvan-
ishing antisymmetric tensor, which in four dimensions hag findices e, 1. Two of
its antisymmetric indices match those of the noncommutiogjtipns. The other two
must contract with two dierent vectors to avoid vanishing. The unique geometrically
defined options are the 4-velocity and position of the bodgdeeasured.

On the other hand, Eq. (1) is nimivariant The commutator does depend on the
position and 4-velocity of the body being measured, or egeivly, on the origin and
rest frame of the coordinate system. We interpret this tomtbat the commutator
describes a quantum relationship between world lines thpemds on their relative
positions and velocities, but not on any other propertiethetodies being compared.
In Eq. (1), the quantum-geometrical position state of a bediefined in relation to a
particular world line, the origin of the coordinates.

These attributes are expected if quantum geometry descabelationship be-
tween timelike trajectories. Unlike a classical metric defi independently of any
observer, the state of a quantum geometry is shaped by aecbbigorld-line, so as
noted above, it cannot obey Poincare invariance. The mefere/orld line is defined in
this instance by the coordinate system. _

In the rest frame of the body being measured, the 4-velosity'i = (1,0,0,0)
so the non-vanishing terms of Eq. (1) are those multiplied by, with 2 = 0. The
remaining terms describe a noncommutative geometry ir thireensions:

[xi, Xj] = )_(keijkifp, (2)

where indices, j, k now run from 1 to 3, and the operatofscorrespond to positions at
a single time, in the rest frame of the body. Eqg. (2) descrébggantum-geometrical re-
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lationship between positions of two trajectories (or masbiodies) that have expected
proper 3-separatior’; and whose world-lines have the same expected 4-velocity.

5. Quantum Geometrical Position Uncertainty

As usual in quantum mechanics, the operators representvabses, and they operate
on states that represent physical systems. In this casgudum system describes
the geometry that relates the trajectories, which is ugaalbumed to be classical. Also
as usual, if we think of the position state as representedviigva function, rather than
a matrix, we can estimate the quantum indeterminacy inipasitThe wave function
in this case is not invariant, but depends on the positiodsvalocities of the trajecto-
ries whose relationship it describes. In particular, thegiementarity of position in
different directions depends on the separation vector. It dispamly on the mean po-
sition and velocity, consistent with describing a colleetdegree of freedom of many
particles, that is, a massive body or bodies.

The quantum commutator leads to an uncertainty relatiomenusual way, al-
though the conjugate variables are now positions ffedént directions, instead of fa-
miliar examples such as position and momentum. In the rastdr the uncertainty
relations for a body at positiox are

AXAXj > [Xek|lp/2, ®3)

whereAx; = (|x — %i|°)/2 represents the spread of the wave function in each direction
and() denotes an average over the wave function.

Remarkably, the wave functions of position in the direcidransverse to sep-
aration XX between trajectories show a quantum-geometrical unoéytiat actually
increases witlk]. For trajectories with macroscopic separation, this neeetminty is
much larger than a Planck length.

One consequence is that the notion of spatial locality eesesglf-consistently,
over durations much longer than a Planck time. The quanteomegtrical uncertainty
within a small region of space-time scales like the durationf a causal sub-diamond,
AXAX;j = cr’p. Everything in that region coherently shares a larger qirargeomet-
rical deviation from classical position, relative to a digtworld line withr >> 77,

Classical space-time emerges as an excellent approximtatidescribe positions
and trajectories with separations much larger than thecRléength. Consider the
angular uncertainty, from Eq. (3), in direction to a body loa B-axis, with an expected
position (Q0, x3):

AO1AG> > €p/2|Xal, (4)

whereAd; = Axi/|x3] and A, = Axo/|X3|. For separations on any experimentally
accessible scale, this deviation from classicality istfoaally negligible. However,
as separations approach the Planck scale, directions leaostly indeterminate. The
classical approximation breaks down, consistent withdkea of a space-time emerging
from a Planckian quantum system.

The transverse position uncertainty can be related to haydty by counting de-
grees of freedom. The number of independent positions imatiel direction is the
diamond durationgr/¢p ~ |X|/¢p ~ N. The number of independent transverse states in
both transverse directions is ab¢1?|f—/Axiij ~ |X|/tp ~ N, so the product in all three
directions is~ N2, as required for position states that give rise to hologagtavity.



Quantum Geometry and Interferometry 23

6. Measurements, Fluctuations, and Classicality

Uncertainty (as in Eq. 3) refers to the width of a wave fungtiout of course this func-
tion is not measured. It has a width at a particular time inrds frame, but in a time
series measurement, the uncertainty manifests as flumgatdir noise. The material
in each patch normal to a separation vector from the refergrarld line appears to
undergo a coherent transverse random walk of about a Plengthl per Planck time
relative to the immediately interior patch. Because tffecat is transverse, it cannot
be detected by measurements between just two world lineeequires at least three
world lines, and a spatially extended measurement in twectlons. As discussed
below, these requirements can be met in a suitably configotederometer.

These quantum-geometrical fluctuations have no diredioaléo vacuum fluctu-
ations of Planck-scale modes of quantum fields, or of theimeTthey are due to a
guantum indeterminacy in the spatial relationships of likeerajectories of large ag-
gregations of particles, rather than a zero point osailtatf a field mode. The new
degrees of freedom that originate in the noncommutativengéxy have normal modes
that are not plane waves. They combine wildlyfelient longitudinal and transverse
scales.

In a typical laboratory experiment, on the scale of a few msefd is the of the
order of 18%. The equivalent speed of the spatially-coherent tranevgemmetrical
fluctuation is abouN~Y2c, or about one centimeter per year— a tiny speed generally
associated with long, slow processes, such as motions e#ttie's crust. Here however
the coherence time for the fluctuations is the light travel time across a labamat
typically tens of nanoseconds, and the total (transvers®)rsion on that timescale is
of the order of ten attometers. Averaged over longer durafithe fluctuations around
classical positions are even smaller. This tiny departtom fclassicality would have
escaped detection up to now.

Recall that the entire state of a causal diamond of duratierNtp is represented
by anNxN matrix. Typically, states corresponding to particles drbe order ofN/2x
N2 in size, withN total degrees of freedom. That is far less thanzh®® degrees
of freedom in a field theory in the same volume with a Planckiatof. Physically,
the reason for the reduction is that quantum geometry elemfigld modes in dierent
directions: they are no longer independent.

On the other hand , even the space-time within a single eliameparticle col-
lision in a collider such as the Tevatron or the LHC, on the TB#dle, comprises
N ~ (mpc?/TeV) ~ 10. This number is still so large that quantum-geometricgdats
on the phase space of particle interactions would have edaagtice at the attainable
levels of experimental precision in colliders. For this gmse, even an attometer is
macroscopic compared with the Planck scale.

If the masam of a body is less than the Planck masss mp = //c%tp = 2.176
10°° g, the standard Heisenberg uncertainty (Caves 1980) fordtiance in a body’s
position diference measured at two times separated by a durgtion

AX? = ((X(t) = X(t + 7))?) > 2hr/m, (5)

is greater than the quantum-geometrical position unceytat separationr. Quantum-
geometrical uncertainty is therefore negligible on thesisasile of elementary particles
(= TeV ~ 101%mpc?), which helps to explain why classical space-time is suchatlg
approximation for systems involving small numbers of e, and why standard the-
ory agrees so well with precision tests in microscopic expents.
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Quantum-geometrical position entanglement thus only tmesosignificant, com-
pared to standard qguantum mechanics, in large aggregatiqasticles. Of course, the
effect is not generally noticed since correlations, and mugjetadisplacements, arise
from all the usual interactions between particles in a gbinassive body. However,
in a special, carefully prepared system such as an intenteter, these tiny, purely ge-
ometrical position displacements of free massive bodiesbeadecoupled from other
environmental factors, and measured.

7. Responseof Interferometersto Quantum-Geometrical Uncertainty

The positional quantum states of bodies in quantum geomesygess a kind of nonlo-
cal coherence not describable by states of standard quahtaory in classical space-
time. In the standard view, the position of a massive bodyiaverage over many par-
ticles; the macroscopic, very low frequency componentsapfigle motion are highly
correlated, and reduce to only the three classical positidegrees of freedom for the
body as a whole. Here, an additional coherent entanglenfegeganetrical position
states creates a new correlation in the mean positions efwite separate bodies— an
in-common, coherent quantum-geometrical deviation froeirtclassical trajectories.

In a Michelson interferometer, the normal modes of photdddiare shaped by the
boundary conditions, particularly the beam splitter, iotonbinations of plane waves
in two directions (Caves 1981). The signal at the dark pothefinterferometer corre-
sponds to a position-fierence operator that coherently entangles the posititessté
three massive bodies in two directions, separated by thdeargth. In a quantum ge-
ometry, positions in the two directions are not independantl quantum-geometrical
position entanglement on this scaléeats the signal.

For a simple Michelson interferometer, the response of @asigp quantum geo-
metrical uncertainty resembles a Planckian random walkefoeamsplitter position
up to durations given by twice the arm length= 2L/c. A more precise estimate of
the predicted displacement power spectrum is (Hogan 2012b)

4C2tp
x(27f)2

This quantity gives the mean square displacement in medsune length dierence,
per frequency interval.

The spectrum at frequencies abofeeoscillates with a decreasing envelope that
scales likes(f) o« f72. At frequencies much higher thdp the mean square fluctuation
in a frequency band f goes like=(f)Af o (Af/f)(c?tp/f). This result is independent
of L, as it must be since it results from a universal noise thatép only on the Planck
time, and shows increasing total variance in position at f@guency, as reflected
in the uncertainty relation (Eq. 3). The apparatus size asts cutf: quantum-
geometrical fluctuations from long duration modes ¢ 2L) do not add noise to the
signal, so that the noise spectrum at frequencies bdloapproaches a constant. In
addition, the mean square displacement averaged over a timeh longer than2/c
is ~ (4ctpL/m)(2L/cr), showing that the féect in a given spatial volume decreases
in a time averaged experiment; again, over long duratiovsryéhing acts more like
a classical system. Since the frequency spectrum of théadespent flattensfd at
frequencies below the inverse system size, detection ofitlctuations is optimized
with a time resolution comparable to the system size.

2(f) = [1 - cos(f/f.)], fo = c/4nL. (6)
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If two interferometers are near each other— that is, if thejpp mostly the same
space-time volume— their geometrical position states ar@ngled, even if they have
no physical connection apart from proximity. By correlgttheir signals, one can mea-
sure the entanglement of geometrical position states. dfépg on the configuration
of two interferometers, the cross-correlated signal is asaee of both the amplitude
of the geometrical fluctuations, and of their entanglement.

The predicted noise spectrum includes no parameters apantknown scales:
the size of the apparatus, and the Planck time. It includgindtive features such as
zeros that signify its origin in the relative positions oé thptical elements. The spectral
shape, its amplitude, and its spatial correlation are aéisugable quantities. The theory
thus dfers a clean target for experimental test.

8. Real Interferometers

If guantum-geometrical noise exists, it contributes tosean gravitational wave de-
tectors. However, itsféects are dferent from gravitational waves, so the response
depends on details of the interferometer optical layout.

At LISA frequencies, in the millihertz band, quantum-gedmcal noise will be
hidden beneath a confusion-limited background from manyc&s of gravitational
waves. Future detectors (like the Big Bang Observer) thatlve the confusion back-
ground from binaries in the 0.1 to 1 Hz band will biéegted by quantum-geometrical
noise, if it exists.

The most sensitive operating detector in the band from 0Ilkiohertz, LIGO,
is not much &ected by quantum-geometrical noise, because its opticigmlés rela-
tively insensitive to transverse displacements: mosteféisponse of its signal to grav-
itational waves is generated in arm cavities. At frequeniniets detection band, which
are far below the inverse light-travel time, its sensiyivid dominated by longitudinal
displacements that are free of quantum-geometrical nd&e0O600 is the currently
operating detector most sensitive to the ndtea, and indeed already operates close
to the predicted Planckian noise level (the low frequeneytlof Eq. 6). However, it
is not configured to isolate the particular signatures ohta-geometrical noise that
distinguish it from other noise sources, so it is not optadizo make a definitive test.

The Fermilab Holometer is an experiment designed spedifittatietect the Planck-
ian quantum-geometrical noise, if it exists, and to ruleuit, af it does not. The basic
layout is a pair of 40-meter Michelson interferometers sel proximity. Correspond-
ing optical elements of the two machines are within a meteaworof each other, so
their signals probe almost the same instantaneous spaee/ilume; their causal dia-
monds mostly overlap. Position fluctuations are measurbjhtfrequency, up to tens
of MHz, to resolve the predicted transfer function (Eq. 6)ghHfrequency operation
also allows a simpler design than gravitational wave detegin particular, mechanical
isolation from the environment is much simpler.

Theory predicts that the correlated signal should revealsasource of continuum
noise with a spectrum close to Eq. (6), with a critical fragmyef, = 6 x 10° Hz and a
first zero atf = ¢/80m = 3.75 MHz. The cross-correlationfiers several advantages:
integration over time reduces the relative importance loéiohoise sources, such as the
dominant photon shot noise; alternative configuratiom®aalesponse to the quantum
geometry fluctuations to be “turnedtty and specific diagnostics can be investigated in
the time domain, such as vanishing correlation beyond a lag@L /c.



26 Hogan

If guantum-geometrical noise can be measured, its pregetill convey detailed
information about the relationship between classical amthtym geometry, and the
statistical interpretation of gravity. If the predictedaRtk-amplitude noise does not
exist, then it might be said that we have merely ruled out &iquéar interpretation of
emergent space-time. However, the result will stand asid sohstraint on the nearly-
classical coherence of space-time with Planckian seitgitiiat must be obeyed by any
future theory that seeks to explain the origin of classiealrgetry from first principles.
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