Séminaire

Results and open questions on two coasting cosmological models

The ΛCDM Model accurately reproduces most cosmological observations, including primordial nucleosynthesis, the cosmic microwave background radiation, and baryonic acoustic oscillations. However, standard baryonic matter constitutes only 5% of the total content of the ΛCDM universe, while the dominant components – cold dark matter (≈25%) and dark energy (≈70%) – are yet unobserved.

Spinning black holes fall in Love

The open question of whether a black hole can become tidally deformed by an external gravitational field has profound implications for fundamental physics, astrophysics and gravitational-wave astronomy. Love tensors characterize the tidal deformability of compact objects such as astrophysical (Kerr) black holes under an external static tidal field. We prove that all Love tensors vanish identically for a Kerr black hole in the nonspinning limit or for an axisymmetric tidal perturbation. In contrast to this result, we show that Love tensors are generically nonzero for a spinning black hole.

Gravitational Bremsstrahlung in the Post-Minkowskian expansion

I will discuss the scattering of two compact objects interacting via gravity, using the so-called world-line Effective Field Theory approach in the post-Minkowskian expansion (i.e. expanding in the Newton's constant G but not in the velocities). In particular, I will focus on the computation of classical observables such as the total emitted momentum. This is obtained by phase-space integration of the graviton momentum weighted by the modulo squared of the radiation amplitude.

Effective field theory approach to thermal bubble nucleation

The possibility of observing a stochastic gravitational wave background originating from a cosmological first-order phase transition elicits interest in studying the transitions. Currently, a limiting factor in accurately determining the gravitational wave spectrum from an underlying microphysical model is the calculation of the nucleation rate. I will discuss recent work in which we have proposed a new effective field theory (EFT) framework for determining the thermal nucleation rate in high-temperature QFTs.

On the perturbative expansion at high temperature and implications for cosmological phase transitions

A first-order phase transition in the early universe would have given rise to a stochastic gravitational wave background which may be observable today. In this talk, I will focus on the crucial problem of making reliable predictions of the thermodynamics of such phase transitions in the face of infrared Bose enhancements at high temperature. Such enhancements lead to large theoretical uncertainties in perturbation theory at low orders. I will unravel the structure of the perturbative expansion in this context, and of the misalignment between loop and coupling expansions.

Pages

S'abonner à RSS - Séminaire