ecpi.process.imag.core.mini_pipeline module
Section author: ECLAIRs GP team
Mini-pipeline used in IMAGING
Summary
Classes:
mini-pipeline block used in IMAGING. |
|
Build and save computed sky images |
Class diagram:
Reference
- class ImagingMiniPipeline(catalog_simu=<ecpi.common.sky.catalog.CatalogFovBasic object>, simulator=None, deconvolver=None, src_finder=None)[source]
Bases:
objectmini-pipeline block used in IMAGING.
includes simu shadowgrams, deconv sky, src finder and fit
- deconv(decon_step='just_decon')[source]
Build the sky image of the source seen by ECLAIRs Need self.shadowgrams to be set before.
Set self.sky_count, self.sky_variance and self.sky_snr decon_step = with_init or with_prep (or just_decon)
- Parameters
decon_step (string) – what deconvolution step to begin with. Choices={‘with_init’, ‘with_prep’}. Default=’just_decon’.
- fit_source(snr_min, peak_position=None)[source]
Find then fit the source in the sky image Need self.sky_count and self.sky_snr to be set before.
- Parameters
snr_min (float) – snr limit for the source localization. Default=5.
peak_position – position of the peak to be fitted,
if already known. [pix_y, pix_z]. Default=None :type peak_position: [float, float]
- reset(catalog_simu=<ecpi.common.sky.catalog.CatalogFovBasic object>)[source]
Reset all attributes to 0
- Parameters
catalog_simu (CatalogFovBasic) – sources catalog to be use by the simulator
- simu_shadowgram(time_exp_s, normalized=False)[source]
Build the shadowgrams model of the source using the simulation module. No background is considered in this simulation.
Set self.shadowgrams
- Parameters
time_exp_s (float) – observation time in s
normalized (bool) – to get shadowgram’s values between 0 and 1 (default=False)
- class SkyImages(sky_count, sky_var, src_subimage_size, exposure, time_exp_mn, attitude)[source]
Bases:
objectBuild and save computed sky images
- arf_correction(dpix, energy_range)[source]
Apply the arf correction on the sky count image
Warning
unused
- Parameters
dpix (ECLAIRsDetectorEffectDefault) – instrument effects
energy_range ([int, int]) – energy range (in PI) [low_energy, high_energy]
- build_wcs(attitude)[source]
build the wcs object from the attitude
- Parameters
attitude ([float, float, float]) – [ra, dec, ori] in degrees
- Returns
wcs object from attitude
- Return type
astropy.wcs.WCS
- compute_snr(sky_count, sky_var)[source]
compute snr image from sky_count and sky_var
sky_snr cleaned of <1E-9 values in sky_var
- Parameters
sky_count (2D array) – sky image
sky_var (2D array) – sky variance image
- Returns
sky_snr
- Return type
2D array
- cos_theta_correction(instru_eclairs= InstruECLAIRs object ===================== Mask aperture: 0.4 Half-cross size (cm): 0.79468085 Detector pixel size (cm): 0.4 Detector pixel pitch size (cm): 0.45 Mask-detector distance (cm): 45.77 Mask pixel size (cm): 1.1393617 Number of mask pixels: 46 Mask total size (cm): 54 Left-bottom submask ------------------- y range: [-26.43031915, -1.364361749999997] | z range: [-26.43031915, -1.364361749999997] Right-bottom submask ------------------- y range: [1.3643616838165284, 26.43031908381653] | z range: [-26.43031915, -1.364361749999997] Left-up submask ------------------- y range: [-26.43031915, -1.364361749999997] | z range: [1.3643616838165284, 26.43031908381653] Right-up submask ------------------- y range: [1.3643616838165284, 26.43031908381653] | z range: [1.3643616838165284, 26.43031908381653] )[source]
Apply off axis corrections on the sky images
- Parameters
instru_eclairs (InstruECLAIRs) – ECLAIRs instrument
- irf_correction(dpix)[source]
Apply the irf correction matrix on the sky count image
- Parameters
dpix (ECLAIRsDetectorEffectDefault) – instrument effects
- remove_src_model(model_shadowgram, model_count, model_var, model_pos, model_name)[source]
substract the src model from the sky
build new cleaned sky images and new remains sky images add the source model image and name at self.models
model_count, model_var = src image model_pos = [pix_x, pix_y] src position
- Parameters
model_shadowgram (2D array) – shadowgrams of the source model
model_count (2D array) – sky image of the source
model_var (2D array) – sky variance image of the source
model_pos (['', int, int]) – position of the source in the sky image [‘’, pix_x, pix_y]
model_name (string) – name of the source
- sin_theta(image, instru_eclairs)[source]
Return the sin theta image
- Parameters
image (2d-array) – sky image to be corrected
instru_eclairs (InstruECLAIRs) – ECLAIRs instrument
- Returns
sin theta image (same shape as image)
- Return type
2d array