Search for 0vββ Decay: New Results from GERDA Phase II

Victoria Wagner for the GERDA collaboration Max-Planck-Institut für Kernphysik

Laboratoire APC, Paris, October, 23 2017

The GERDA Collaboration: searching for $0\nu\beta\beta$ decay of ⁷⁶Ge

Victoria Wagner

Double Beta Decay

Double beta decay ($2\nu\beta\beta$)

- single β decay energetically forbidden
- (A,Z) \rightarrow (A,Z+2) + 2e⁻ + 2 $\bar{\nu}$
- e.g. ⁷⁶Ge, ¹³⁶Xe, ¹³⁰Te, ¹¹⁶Cd
- half-life of 2νββ decay of ⁷⁶Ge measured by GERDA (most recent and precise measurement):

$$T_{1/2}^{2\nu} = (1.926 \pm 0.095) \cdot 10^{21} \text{ yr}$$

arXiv:1501.02345v1

Double Beta Decay

Double beta decay ($2\nu\beta\beta$)

- single $\boldsymbol{\beta}$ decay energetically forbidden
- (A,Z) \rightarrow (A,Z+2) + 2e⁻ + 2 $\bar{\nu}$
- e.g. ⁷⁶Ge, ¹³⁶Xe, ¹³⁰Te, ¹¹⁶Cd
- half-life of 2vββ decay of ⁷⁶Ge measured by GERDA (most recent and precise measurement):

$$T_{1/2}^{2\nu}$$
 = (1.926 ± 0.095) × 10²¹ yr

arXiv:1501.02345v1

Neutrinoless double beta decay ($0\nu\beta\beta$)

- (A,Z) \rightarrow (A,Z+2) + 2e⁻
- lepton number violated by $\Delta L = 2$

→ physics beyond SM

proof of Majorana mass component of

neutrinos

Victoria Wagner

$0\nu\beta\beta$ Observable

• Measure sum energy of electrons

$0\nu\beta\beta$ Observable

Measure sum energy of electrons

Victoria Wagner

GERDA Phase II results

APC Paris, 23.10.2017

 $\overline{E \cdot BI}$

Effective Majorana Neutrino Mass

- ₹p n W • e \overline{v} v ▶ eⁱ W n p
- Assuming light Majorana neutrino exchange $(T_{1/2}^{0\nu})^{-1} \propto |m_{\beta\beta}|^2 \equiv \left|\sum_{i} U_{ei}^2 m_i\right|^2$

$0\nu\beta\beta$ Candidates

- no favored $0\nu\beta\beta$ isotope
- experimental considerations more important
- many different approaches to $0\nu\beta\beta$ search
 - multi-layer
 - scintillators
 - time projection chambers
 - (scintillating) bolometers
 - semi-conductors

figure taken from Mod. Phys. Lett., A28:1350021, 2013

APC Paris, 23.10.2017

GERDA Phase II results

Victoria Wagner

8

Germanium Detectors

High Purity Germanium (HPGe) Detectors

- 3-4 keV FWHM at Q_{BB} = 2039 keV (0.2%)
- HPGe detectors isotopically enriched in ⁷⁶Ge (~87%)
- high detection efficiency of $\beta\beta$: source = detector •
- "no" intrinsic background [Astropart.Phys. 91 (2017) 15-21]
- discrimination of signal- from background like events using pulse shape analysis Victoria Wagner

APC Paris, 23.10.2017

The GERDA HPGe

BEGe Detectors

- enhanced energy resolution and pulse shape discrimination
- low mass (~700 g)

Semi-coaxial Detectors

- former HdM and IGEX experiment
- high mass (2-3 kg)

GERDA @ LNGS

Victoria Wagner

GERDA Phase II results

APC Paris, 23.10.2017

The Germanium Detector Array

concept:

operate bare HPGe detectors in LAr which serves as coolant & (active) shielding

GERDA Phase I (Nov 2011- May 2013)

- 17.8 kg enriched semi-coaxial +
 3.6 kg enriched BEGe
- exposure 21.6 kg·yr
- BI ~ 10⁻² counts/(keV·kg·yr)
- $T_{1/2}^{0v} > 2.1 \cdot 10^{25} \text{ yr (90\% C.L.)}$

PRL 111, 122503 (2013)

GERDA Phase II (Dec 2015 - ongoing)

• 30 enriched BEGe (= 20.0 kg)

+ 7 enriched semi-coaxial (= **15.6 kg**)

- LAr instrumentation
- goal: BI ~ 10^{-3} counts/(keV·kg·yr)

Victoria Wagner

GERDA Phase II Array

wire bonding for contacting

new low mass holders with reduced mass and Cu \rightarrow Si

Victoria Wagner

low radioactivity

electronics

Discriminating Signal from Background Events

Victoria Wagner

LAr Instrumentation – Hybrid Design

Victoria Wagner

⁴²K Background

⁴²20Ca

• solution:

transparent nylon cylinder coated with wave length shifter

- tested in test cryostat LArGe
- nylon from BOREXINO

GERDA Phase II results

APC Paris, 23

Start of GERDA Phase II

Full Integration of Phase II Array finished in December 2015

• all Ge and LAr detector channels working

Start of GERDA Phase II

Full Integration of Phase II Array finished in December 2015

- all Ge and LAr detector channels working
- 35 out of 37 detectors used for analysis
- blinded region: $Q_{\beta\beta} \pm 25$ keV
- quality cuts (phys. acc. > 99.9%)
- events in coincidence with muon veto (phys. Acc.~ 99.9 %)
- first data release in June 2016
- 2nd data release in June 2017

First Phase II Data Release

ARTICLE

Nature 544 (2017) 47

loi:10.1038/nature21717

Background-free search for neutrinoless double- β decay of ⁷⁶Ge with GERDA

The GERDA Collaboration*

Background:

- coax: 3.5 · 10-3 counts/(keV-kg-yr)
- BEGe: 7 10-4 counts/(keV-kg-yr)
 - → expect < 1 bck count in ROI during full exposure of 100 kg·yr

New limit on ⁷⁶Ge $T_{1/2}^{0v} > 5.3 \cdot 10^{25}$ yr with median sensitivity of $4.0 \cdot 10^{25}$ yr (90 % C.L.)

Second Phase II Data Release

- Phase II exposure until April 2017:
 34.4 kg·yr
 - → additional 12.4 kg·yr (11.2 kg·yr) in BEGe (coax) data set with respect to Nature publication

FWHM @ $\mathbf{Q}_{\beta\beta}$:

BEGe's: Coax:
 2.93(6) keV 3.90(7) keV

Performance of the LAr Veto

• $2\nu\beta\beta$:bck = 96:4 (1.0-1.3 MeV)

 $2\nu\beta\beta$ MC with T_{1/2} = 1.9 · 10²¹ yr from Phase I EPJC 75 (2015) 416

Victoria Wagner

Performance of the LAr Veto

- random coincidences: 2.3%
- ⁴²K line suppressed by factor 5-6

Signals of BEGe's

figures taken from JINST 6 P03005, 2011

- final drift paths of holes nearly independent of interaction point
- high gradient of weighting potential
 - → single site events (SSE) have similar pulse shape

current signal = $q \cdot v \cdot \nabla \phi$ q: charge, v: velocity

GERDA Phase II results

Signals of BEGe's

SSE vs MSE

- A/E = maximum amplitude of current signal over deposited energy
- A/E to suppress external γ-rays of ²¹⁴Bi, ²⁰⁸Tl and ⁶⁰Co (detector assembly)

Surface Events: β -Decays

 decays on the detector surface (n⁺) typically produce slow pulses with low A/E

Surface Events: α -Decays

- α 's cannot penetrate n⁺, only p⁺ contact
- decays on the detector p⁺-contact and groove typically produce fast pulses with high A/E

²²⁸Th Calibrations

Regular ²²⁸Th calibrations:

- single Compton events = SSE band
- prominent DEP = signal proxy

²²⁸Th Calibrations

Regular ²²⁸Th calibrations:

• adjust 2-sided cut

Victoria Wagner

- MSE/n⁺ cut at 90% DEP acceptance
- p⁺ cut twice the distance to SSE band

$0\nu\beta\beta$ Signal Efficiency

• signal efficiency given by DEP acceptance:

 $\epsilon_{PSD} = (87.4 \pm 0.2(stat) \pm 2.6 (sys))\%$

A/E in Physics Data

- 2vββ survival fraction¹:
 (85.4 ± 0.4 (stat) + 1.4 (sys))%
- good agreement with signal efficiency
- FEP highly suppressed
- all events at high energies rejected by high A/E cut
- ~80% of bck-events rejected by PSD

Phase II Spectra

- PSD for coaxial detectors to be further optimized to reject α-decays on detector groove
- PSD for BEGe cuts all α -events

Victoria Wagner

Opening the Box

- PSD for coaxial detectors to be further optimized to reject α -decays on detector groove
- PSD for BEGe cuts all $\alpha\text{-events}$

Statistical Analysis

Victoria Wagner

GERDA Phase II results

APC Paris, 23.10.2017

34

Statistical Analysis

Extended unbinned profile likehood:

- flat background in 1930-2190 keV
- signal = Gaussian with mean at $Q_{\beta\beta}$ and standard deviation $\sigma_{\rm F}$
- 7 parameters: 6 BI + common $T_{1/2}$ ۲
- systematics folded in by pull terms
- best fit for $N_{0y} = 0$
- Preliminary • lower limit $T_{1/2} > 8.0 \cdot 10^{25}$ yr
- m_{BB} < (120 270) meV
 - with $T_{1/2}$ sensitivity 5.8 \cdot 10²⁵ yr (90 % C.L.)

Victoria Wagner

The Frequentist Method

- recipe according to Cowan et al., EPJC 71 (2011) 1554
- see also Nature 544 (2017) 47, Extended "Methods" Section
- threshold for 90% CL coverage calculated by toy MC
- actual limit stronger than median sensitivity (30% chance)

Victoria Wagner

GERDA Phase II results

APC Paris, 23.10.2017

toy MC (no signal)

median sensitivity (no signal)

0.8

0.7

0.9

 $1/T_{1/2}^{0v} [10^{-25} \text{ y}^{-1}]$

observed limit @ 90% C.L.

GERDA 17-07

GERDA within $0\nu\beta\beta$ Field

 KamLAND-Zen sets current best limit on 0vββ decay of ¹³⁶Xe:

> $T_{1/2}^{0\nu} > 10.7 \cdot 10^{25} yr @ 90 C.L.$ $m_{\beta\beta} < 165 meV$

- median sensitivity 5.6 \cdot 10²⁵ yr
- exposure: 504 kg · yr

 GERDA sets current best limit on 0vββ decay of ⁷⁶Ge:

> $T_{1/2}^{0\nu} > 8.0 \cdot 10^{25} yr @90 C.L.$ $m_{\beta\beta} < 270 meV$

- median sensitivity $5.8 \cdot 10^{25}$ yr
- exposure: 47 kg · yr

Victoria Wagner

GERDA Phase II results

APC Paris, 23.10.2017

Next Steps

- mid 2018 a sensitivity on $T_{1/2}$ of 10^{26} yr will be reached
- all ingredients for discovery:
 - excellent energy resolution (FWHM) of 2.9 keV (3.9 keV) BEGe (Coax) at Q_{BB}
 - flat background in ROI
 - lowest background at Q_{BB} (within FWHM): 10⁻³ counts/ (keV·kg·yr)
- final sensitivity at design exposure 100 kg yr:
 - will stay background-free
 - 1.3 · 10²⁶ yr (for limit)
 - 0.8 ·10²⁶ yr (50% for 3σ discovery)

Beyond GERDA

- LEGEND (Large Enriched Germanium) Experiment for Neutrinoless Double Beta Decay)
- new collaboration formed in Oct 2016 (=GERDA+Majorana+new groups)
- goals:
 - 1 t enriched Ge
 - first phase: 200 kg in existing infrastructure @ LNGS
 - reduce background with respect to GERDA \rightarrow remain background-free
 - → best discovery potential

Conclusions

- GERDA proved to be a true high resolution and background free experiment
- sets a new limit on the half-life of $0\nu\beta\beta$ decay of ^{76}Ge

 $T_{1/2}^{0\nu} > 8.0 \cdot 10^{25} \text{ yr} @ 90 \text{ C.L.}$ $m_{\beta\beta}$ <270 meV

 next generation Ge experiment LEGEND has best discovery potential

Bonus Slides

GERDA Spectra

- background in ROI assumed to be flat
- + Gaussian signal centered at Q_{BB}
- pdf for single data set:

$$f(E|b,\frac{1}{T_{1/2}^{0\nu}}) = \frac{1}{240 \, keV \cdot b + N_{0\nu}} \left(b + \frac{N^{0\nu}}{\sqrt{2 \, \pi} \cdot \sigma} \exp \frac{-(E - Q_{\beta\beta})^2}{2 \, \sigma^2}\right)$$

 extended unbinned likelihood function

$$L(b, \frac{1}{T_{1/2}^{0\nu}}) = \prod_{k} \frac{\mu^{N_{k}} e^{-\mu_{k}}}{N_{k}!} \prod_{i=0}^{N} f(E_{i}|b_{k}, \frac{1}{T_{1/2}^{0\nu}})$$

 b_k : BI for given data set, σ: energy resolution in given data set, $\mu_k = b \cdot 240 \text{ keV} + N_{0v}$ number of expected events

$$(T_{1/2}^{0\nu})^{-1} \propto N_{0\nu} = \frac{\ln 2 \cdot N_A}{m_{76}} \frac{M \cdot t}{T_{1/2}^{0\nu}} \cdot \epsilon \cdot \epsilon_{PSD} \cdot \epsilon_{LAr}$$

$$\begin{split} &\mathsf{N}_{\mathsf{A}}\!\!: \mathsf{Avogadro's \ constant, \ } m_{76}\!\!: \ \mathsf{molar \ mass \ of \ }^{76}\mathsf{Ge} \\ &\mathsf{M}\cdot \mathsf{t}: \ \mathsf{exposure \ } [\mathsf{kg \ yr}], \ \mathsf{T}_{1/2}\!\!: \ \mathsf{half-life \ of \ } \mathsf{0v}\beta\beta \ \mathsf{decay,} \\ & \varepsilon_{\mathsf{LAr}}\!\!: \ \mathsf{LAr \ efficiency, \ } \varepsilon_{\mathsf{PSD}}\!\!: \ \mathsf{PSD \ efficiency,} \\ & \varepsilon: \ \mathsf{exposure \ averaged \ efficiency \ incl. \ active \ volume,} \\ & \mathsf{enrichement, \ FEP} \end{split}$$

data set	exposure [kg yr]	signal eff	Energy resolution (keV, FWHM)	Background index 0.001 cnts/(keV kg yr)
Phase I gold	17.9	0.57 (3)	4.3 (1)	11 ± 2
Phase I silver	1.3	0.57 (3)	4.3 (1)	30 ± 10
Phase I BEGe	2.4	0.66 (2)	2.7 (2)	5 ⁺⁴ -3
Phase I extra	1.9	0.58 (4)	4.2 (2)	5 ⁺⁴ -2
Phase II coax	5.0	0.53 (4)	4.0 (2)	3 ⁺³ -1
Phase II BEGe	5.8	0.60 (1)	3.0 (2)	0.7 ^{+1.3} _{-0.5}

GERDA Phase II results

APC Paris, 23.10.2017

Comparison of Searches

Victoria Wagner

Duty Cycle

A/E Cut

Detector based A/E cut

- energy dependent cut following A/E broadening
- MSE/ $n^{\scriptscriptstyle +}$ cut set to 90% acceptance in DEP
- p^+ cut twice the distance to A/E = 1

Survival Efficiencies vs Cut Position

$0\nu\beta\beta$ Signal Efficiency

- signal efficiency given by DEP acceptance
- final signal efficiency:

 $(87.4 \pm 0.2(stat) \pm 2.6 (sys))\%$

uncertainty	[%]
statistics	0.21
diff. phy and cal	0.80
energy dep. cut	0.24
energy scale of A/E	0.06
geometrical distribution	1.03
Instability A/E scale topology of 0vββ events	1.0 2.03

PSD with Coaxial HPGe

more detail in Eur.Phys.J C73 (2013) 2583

- To identify signal like events artificial neural network algorithm TMIpANN from TMVA is used
- Input variables: times when charge pulse reach 1%, 3%, ..., 99% of maximum amplitude
- DEP events of at 1503 keV serve as signal sample
- FEP events at 1621 keV as multi site event sample
- second training on $2\nu\beta\beta$ and α events
- combined $0\nu\beta\beta$ signal efficiency is (79±5) %

Coax PSD

Victoria Wagner

APC Paris, 23.10.2017

Background Model

Background Composition at $Q_{\beta\beta}$

Victoria Wagner

GERDA Phase II results

APC Paris, 23.10.2017

52

Results from GERDA Phase I

- 21.6 kg · y exposure
- blind analysis: events in ROI not available for analysis
- background index (BI) after pulse shape discrimination

 $BI = 1.0(1) \cdot 10^{-2} \frac{counts}{keV kg yr}$

• 10 times better BI than previous experiments

number of events in $Q_{\beta\beta} \pm 2\sigma_{E}$ after cuts (gray): • 2.0 ± 0.3 expected from background • 3 observed no signal observed at Q_{BB} profile likelihood: best fit for $N_{0\nu\beta\beta} = 0$ \rightarrow limit on the half-life $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr}$ (90% Č.L.)

→ claim rejected with 99% probability

GERDA: 90% lower limit ($T_{1/2}^{0v}$) [Phys. Rev. Lett. 111 (2013) 122503]

Claim: $T_{1/2}^{0v} = 1.19 \times 10^{25} \text{ yr}$ [Phys. Lett. B 586 198(2004)]

Victoria Wagner