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Wigner's exotic representation of the Poincaré group

Wigner taught us that free elementary particles propagating in �at
spacetime are in one-to-one correspondence with unitary irreducible
representations of the Poincaré group. This motivated his classi�cation of
all such representations in 1939.



Wigner's exotic representation of the Poincaré group

In Wigner's classi�cation, the so-called �continuous spin� representations
are actually the generic massless representations. However elementary
particles described by continuous-spin representations are usually
discarded on the basis of two exotic features.
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Some remarks

The �rst exotic property is the origin of the unfortunate terminology
�continuous spin�. However, their spin is by no means continuous (in
contrast with anyons in three dimensions). Rather, their helicity
eigenvalues are discrete: either all integers, or all half-integers.

The meaning of the second property is that the helicities in their
spectrum are unbounded, which is why Wigner later proposed the
alternative terminology �in�nite spin�. More precisely, they are
described by the (countable) in�nite tower of all (either integer or
half-integer) helicity states mixing under Lorentz boosts.

The in�nite # of degrees of freedom (per spacetime point) was the
main reason of Wigner's rejection of the continuous spin
representation. He argued that this property implied that the heat
capacity of a gas of such particles would be in�nite.
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The litterature and positive results on continuous-spin particles are scarce
because they are usually discarded without serious scrutiny.

However, Schuster and Toro proposed in 2013 a class of soft factors for
these massless particles, from which their phenomenology was argued to
be much better behaved than naively expected. More precisely:

These particles might circumvent Weinberg's no-go theorem on
long-range interactions mediated by massless particles of spin higher
than two in �at spacetime.

At energies higher than the characteristic mass parameter alluded
above, they may experience �helicity correspondence� in that they
e�ectively behave like massless particles with helicities not higher
than two.



Wigner's exotic representation of the Poincaré group

In order to investigate the properties of these exotic particles without any
prejudice and reach conclusions on their phenomenological viability, one
should �rst develop their �eld-theoretic description on a �rst-principle
basis:

kinematics:
present covariant descriptions (linear eqs, quadratic Lagrangians)

dynamics:
classify their consistent interactions (vertices, scattering amplitudes)

(http://wwww.interest.com)



Outline

1 Group theory of the �continuous� spin representations
Generic massless unitary irreducible representations
In�nite-spin/Massless limit of massive representations

2 Bosonic and fermionic equations
Bosonic equations
Fermionic equations

3 Action principles
Bosonic action
Fermionic action

4 Summary of results and open problems
Some results
List of open problems



Group theory of the �continuous� spin representations
Bosonic and fermionic equations

Action principles
Summary of results and open problems

Generic massless unitary irreducible representations
In�nite-spin/Massless limit of massive representations

Group theory of
the �continuous� spin

representations

X. Bekaert Massless elementary particles with continuous spin



Group theory of the �continuous� spin representations
Bosonic and fermionic equations

Action principles
Summary of results and open problems

Generic massless unitary irreducible representations
In�nite-spin/Massless limit of massive representations

Wigner's classi�cation: a reminder

Let us start by reviewing the representation theory of the Poincaré group.
Actually, we will restrict our attention to the Lie algebra for simplicity.

X. Bekaert Massless elementary particles with continuous spin



Group theory of the �continuous� spin representations
Bosonic and fermionic equations

Action principles
Summary of results and open problems

Generic massless unitary irreducible representations
In�nite-spin/Massless limit of massive representations

Wigner's classi�cation: a reminder

Unitary irreducible representations (UIRs) of the Poincaré algebra

The Poincaré algebra iso(D − 1, 1) = RD B so(D − 1, 1) is the
semidirect sum of an Abelian and a semisimple Lie algebra

Method of induced representation
1 Consider the UIRs of the Abelian subalgebra RD:

labelled by real eigenvalues (unitary & irreducible) of generators P̂µ
⇒ momentum pµ

2 Identify the orbit and stabiliser of these eigenvalues
⇒ �mass-shell� and �little group�

3 Induce the UIR of the full algebra from an UIR of the stability subalg
⇒ �spinning� degrees of freedom (or �physical components�)

UIR Orbit Stability # of components

Massive 2-sheeted hyp p2 = −m2 so(D − 1) �nite

Massless light-cone p2 = 0 iso(D − 2) �nite or ∞
Tachyonic 1-sheeted hyp p2 = +m2 so(D − 2, 1) 1 or ∞

Zero-momentum origin pµ = 0 so(D − 1, 1) unfaithful irrep
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Wigner's classi�cation: massives representations

UIR Orbit Stability # of components

Massive 2-sheeted hyp p2 = −m2 so(D − 1) �nite (spin)

Unitary irreducible representations of the stability subalgebra
The rotation algebra so(D − 1) is compact and semisimple.

⇒ only �nite-dimensional UIRs

⇒ always �nite # of components
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Wigner's classi�cation: massless representations

Consider a massless particle in D-dimensional spacetime with light-like
momentum pµ (µ = 0, 1, 2, · · · , D − 1).

A spacelike plane orthogonal to this light-like momentum will be called a
�transverse plane� RD−2 ⊂ RD−1,1.
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Wigner's classi�cation: massless representations

It is extremely convenient to use light-cone coordinates

x± =
1√
2

(
x0 ± xD−1

)
adapted to the momentum, i.e. the latter has zero components except
for p+ = −p− . The Minkowski metric reads

ds2 = − 2 dx+dx− + dxidxi , (i = 1, 2, · · · , D − 2) ,

where xi are Cartesian coordinates on the transverse plane.
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Wigner's classi�cation: massless representations

The massless little group ISO(D − 2) leaving the momentum invariant is
formed of

rotations of the transverse plane, generated by

M̂ij (i, j = 1, 2, · · · , D − 2)

transverse null boosts, generated by

π̂i := M̂+i =
1√
2

(
M̂0i + M̂D−1 i

)
(i = 1, 2, · · · , D − 2) .

(P. Schuster and N. Toro, arXiv:1302.1198 [hep-th])
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Wigner's classi�cation: massless representations

The generators span a Lie algebra isomorphic to the Euclidean algebra
iso(D − 2) of the transverse plane[

M̂ij , M̂kl

]
= i (δjkM̂il − δikM̂jl − δjlM̂ik + δilM̂jk) ,[
π̂i, M̂kl

]
= i (δikπ̂l − δilπ̂k) ,

[π̂i, π̂j ] = 0 .
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Wigner's classi�cation: massless representations

UIR Orbit Stability # of components

Massless light-cone p2 = 0 iso(D − 2) �nite (helicity) vs ∞

Unitary irreducible representations of the stability subalgebras

The Euclidean algebra iso(D − 2) of the transverse plane is noncompact.

⇒ only in�nite-dimensional faithful UIRs

⇒ either �nite # of components but unfaithful of iso(D − 2),
or in�nite # of components and faithful of iso(D − 2).
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Wigner's classi�cation: Euclidean group

Let us now consider more closely the representation of the little group by
applying the method of induced representations to the Euclidean group.
(Actually, we will again restrict our attention to the Lie algebra.)
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Wigner's classi�cation: Euclidean group

Unitary irreducible representations of the Euclidean algebra

The Euclidean algebra iso(d) = Rd B so(d) is the semidirect sum of
an Abelian and a semisimple Lie algebra

Method of induced representation
1 Consider the UIRs of the Abelian subalgebra:

labelled by real eigenvalues (unitary & irreducible) of generators π̂i
⇒ vector ηi

2 Identify the orbit and stabiliser of these eigenvalues
3 Induce the UIR of the Euclidean algebra from an UIR of the stability

subalgebra

UIR Dimension Orbit Stability Example

Faithful in�nite sphere η2 = µ2 so(d− 1) Solutions of Helmholtz eq

Unfaithful �nite origin ηi = 0 so(d) Spherical harmonics
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In�nite-spin/Massless limit of massive representations

Wigner's classi�cation: massless representations

In terms of massless representations, the former classi�cation of the UIR
of their little group provides the distinction between �helicity�
(�nite-components) and �continuous-spin� (in�nite-components)
representations.
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Wigner's classi�cation: massless representations

Unitary irreducible representations of the stability algebra

The Euclidean algebra iso(D − 2) = RD−2 B so(D − 2) is the
semidirect sum of an Abelian and a semisimple Lie algebra

Method of induced representation
1 Consider the UIRs of the Abelian subalgebra:

labelled by real eigenvalues (unitary & irreducible) of generators π̂i
⇒ vector ηi

2 Identify the orbit and stabiliser of these eigenvalues
3 Induce the UIR of the Euclidean algebra from an UIR of the stability

subalgebra

UIR # of components Orbit Stability

Continuous spin in�nite sphere η2 = µ2 so(D − 3)
Helicity �nite origin ηi = 0 so(D − 2)
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Summary of results and open problems

Generic massless unitary irreducible representations
In�nite-spin/Massless limit of massive representations

Wigner's classi�cation: helicity representations

UIR # of components Orbit Stability

Helicity �nite origin ηi = 0 so(D − 2)

Remarks:

The subgroup SO(D− 2) can be called the �e�ective little group� of
helicity representations. It admits nontrivial representations for
spacetime dimensions D > 5 only.

⇒ In four dimensions, �nite-spin representations are labelled by a
single real number: their helicity.
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Wigner's classi�cation: continuous-spin representations

UIR # of components Orbit Stability

Continuous spin in�nite (D-3)-sphere η2 = µ2 so(D − 3)

Remarks:

The stabiliser group SO(D − 3) of the transverse vector ηi is
sometimes called the �short little group� of continuous-spin
representations. This group is degenerate for D 6 3 and admits
nontrivial representations for D > 6 only.

⇒ In four dimensions, ∃ only two in�nite-spin representations:
the single-valued (bosonic) and the double-valued (fermionic) ones
whose physical components span all (integer or half-integer)
helicities.
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Wigner's classi�cation: continuous-spin representations

For D = 4 spacetime dimension, the physical components forming an
UIR of the little group ISO(2) can be realised as square-integrable
functions on the circle in the transverse plane.
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�angle basis�: The states | θ 〉 are eigenstates of the null boosts
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each other | θ 〉 →| θ + α 〉.

X. Bekaert Massless elementary particles with continuous spin



Group theory of the �continuous� spin representations
Bosonic and fermionic equations

Action principles
Summary of results and open problems

Generic massless unitary irreducible representations
In�nite-spin/Massless limit of massive representations

Wigner's classi�cation: continuous-spin representations

For D = 4 spacetime dimension, the physical components forming an
UIR of the little group ISO(2) can be realised as square-integrable
functions on the circle in the transverse plane.
⇒ They are labelled by the radius µ of this circle.

�angle basis�: The states | θ 〉 are eigenstates of the null boosts
(�translations�) but transverse rotations transform these states into
each other | θ 〉 →| θ + α 〉.

X. Bekaert Massless elementary particles with continuous spin



Group theory of the �continuous� spin representations
Bosonic and fermionic equations

Action principles
Summary of results and open problems

Generic massless unitary irreducible representations
In�nite-spin/Massless limit of massive representations

Wigner's classi�cation: continuous-spin representations

For D = 4 spacetime dimension, the physical components forming an
UIR of the little group ISO(2) can be realised as square-integrable
functions on the circle in the transverse plane.
⇒ They are labelled by the radius µ of this circle.

�angle basis�: The states | θ 〉 are eigenstates of the null boosts
(�translations�) but transverse rotations transform these states into
each other | θ 〉 →| θ + α 〉.
�helicity basis�: The Fourier dual basis elements | h 〉 are
eigenstates of the transverse rotation generator, but the null boosts
mix this in�nite tower of helicity eigenstates.
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Wigner's classi�cation: continuous-spin representations

For D = 4 spacetime dimension, the physical components forming an
UIR of the little group ISO(2) can be realised as square-integrable
functions on the circle in the transverse plane.
⇒ They are labelled by the radius µ of this circle.

�angle basis�: The states | θ 〉 are eigenstates of the null boosts
(�translations�) but transverse rotations transform these states into
each other | θ 〉 →| θ + α 〉.
�helicity basis�: The Fourier dual basis elements | h 〉 are
eigenstates of the transverse rotation generator, but the null boosts
mix this in�nite tower of helicity eigenstates.

Remark: The mixing disappears in the limit µ→ 0 for which the
continuous-spin representation becomes the direct sum of all (either
integer or half-integer) helicity representations. In more physical terms:
at energies E � µ, free continuous-spin particles behave as an in�nite
tower of particles with distinct helicities.

X. Bekaert Massless elementary particles with continuous spin



Group theory of the �continuous� spin representations
Bosonic and fermionic equations

Action principles
Summary of results and open problems

Generic massless unitary irreducible representations
In�nite-spin/Massless limit of massive representations

Casimir operators of the Poincaré algebra

Another traditional method for classifying UIRs of the Poincaré group is
to make use of the eigenvalues of the Casimir operators.

+ In this approach, Lorentz covariance is more direct and
the physical interpretation of Casimir operators (square of
momentum and Pauli-Lubanski vectors in D = 4) may be more
enlightening than in the method of induced representations.

- The UIRs of (�nite-dimensional) semisimple Lie algebras are
characterised uniquely by the eigenvalues of their independent
Casimir operators. However, this is not necessarily true for
non-semisimple Lie algebras (such as Poincaré algebra), for which
there can be degeneracies (e.g. all helicity representations have
vanishing quadratic and quartic Casimir operators).
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Casimir operators of the Poincaré algebra

The quadratic Casimir operator of the Lorentz algebra so(D− 1, 1) is the
square of the generators Mµν :

Ĉ2
(
so(D − 1, 1)

)
=

1

2
M̂µνM̂µν .

The quadratic Casimir operator of the Poincaré algebra iso(D − 1, 1) is
the square of the momentum

Ĉ2
(
iso(D − 1, 1)

)
= −P̂µP̂µ ,

while the quartic Casimir operator is

Ĉ4
(
iso(D − 1, 1)

)
= −1

2
P̂ 2M̂µνM̂

µν + M̂µρP̂
ρM̂µσP̂σ ,

which, for D = 4, is the square of the Pauli-Lubanski vector,

Ŵµ :=
1

2
εµνρσM̂νρP̂σ .
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In�nite-spin/Massless limit of massive representations

C4
(
iso(3, 1)

)
= W 2 =

{
m2 s(s+ 1) (m2 6= 0)

µ2 (m2 = 0)

Helicity-h

W 2

m21/2

3/2

5/2

2

1

3

Spin-S

CSPs

(P. Schuster and N. Toro, arXiv:1302.1198 [hep-th])
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In�nite-spin/Massless limit of massive representations

C4
(
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)
= W 2 =

{
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Idea: (Khan & Ramond, 2005) Obtain the continuous-spin
representation from the massive representation in the limit

m→ 0 , s→∞ , µ = ms �xed
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In�nite-spin/Massless limit of massive representations

Idea: (Khan & Ramond, 2005) Obtain the continuous-spin
representation from the massive representation in the limit

m→ 0 , s→∞ , µ = ms �xed

This perspective on the continuous-spin provides a simple and physical
explanation of both exotic properties.

First exotic property:
They are characterised by a continuous parameter with the dimension of

a mass, although they are massless.

Second exotic property:
They have in�nitely many degrees of freedom per spacetime point.
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In�nite-spin/Massless limit of massive representations

Idea: (Khan & Ramond, 2005) Obtain the continuous-spin
representation from the massive representation in the limit

m→ 0 , s→∞ , µ = ms �xed

At the level of the little group, this limit is related to the Inönü-Wigner
contraction

so(D − 1)
m→0−→ iso(D − 2) .
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In�nite-spin/Massless limit of massive representations

Geometrical interpretation: The Inönü-Wigner contraction of isometry
algebras

so(d)
R→∞→ iso(d− 1)

corresponds geometrically to the �at limit of the sphere,

Sd−1 R→∞→ Rd−1 .
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In�nite-spin/Massless limit of massive representations

Simplest example: The simplest UIR of the rotation algebra so(d) are the
spherical harmonics, i.e. the solutions of the equation(

∆Sd−1 +
s(s+ d− 2)

R2

)
Y sm(~θ) = 0

whose limit
R→∞ , s→∞ , µ = s/R �xed

is the Helmholtz equation (
∆Rd−1 + µ2)Φ(~x) = 0 ,

whose space of solutions carries the simplest UIR of the Euclidean algebra

iso(d− 1).
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Bosonic and Fermionic
Equations
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In�nite-spin/Massless limit of massive equations

In the 1930's and 1940's, various equivalent covariant equations
have been proposed, the solution space of which carries a massive
UIR of the Poincaré group.

In 1947, Wigner proposed covariant equations, the solution space of
which carries an in�nite-spin massless UIR of the Poincaré group.

Retrospectively, Wigner equations can be obtained from a suitable
in�nite-spin massless limit of the massive equations (XB & Mourad,
2005).
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which carries an in�nite-spin massless UIR of the Poincaré group.

Retrospectively, Wigner equations can be obtained from a suitable
in�nite-spin massless limit of the massive equations (XB & Mourad,
2005).
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Bosonic equations
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Higher-spin massive equations

Higher-spin massive equations (Dirac, Fierz, Pauli, ...)
For integer spin s ∈ N, covariant equations carrying the massive UIR of
the Poincaré group ISO(D − 1, 1) induced from the symmetric tensor
representation of the little group SO(D − 1) can be formulated in terms
of a symmetric Lorentz tensor:

(p2 +m2)ϕµ1µ2...µs(p) = 0

pνϕνµ1µ2...µs−1
(p) = 0

ϕννµ1µ2...µs−2
(p) = 0

Indeed, in a rest frame the second equation implies the vanishing of all
timelike components while the third equation implies the
so(D − 1)-irreducibility.
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Higher-spin massive equations

Standard trick for higher-spins: Contract all indices with an auxilliary
vector, say uµ, and introduce the generating function

ϕ(p, u) =
1

s!
ϕµ1...µs(p)u

µ1 · · ·uµs

so that the massive equations read

(p2 +m2)ϕµ1...µs(p) = 0 ⇐⇒ (p2 +m2)ϕ(p, u) = 0

pνϕνµ1...µs−1(p) = 0 ⇐⇒
(
p · ∂

∂u

)
ϕ(p, u) = 0

ϕννµ1...µs−2
(p) = 0 ⇐⇒

(
∂

∂u
· ∂
∂u

)
ϕ(p, u) = 0

To which, we should now add the homogeneity equation to keep track of
the spin: (

u · ∂
∂u
− s

)
ϕ(p, u) = 0
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In�nite-spin/Massless limit of massive equations

Unfortunately, this homogeneity equation is singular in the limit s→∞.

Nevertheless, the massless limit with �xed spin is well de�ned.
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Finite-spin/Massless limit of massive equations

Finite-spin massless equations
The massless limit m→ 0 of the massive equations (with spin s �xed) are

p2 ϕ(p, u) = 0(
p · ∂

∂u

)
ϕ(p, u) = 0(

∂

∂u
· ∂
∂u

)
ϕ(p, u) = 0(

u · ∂
∂u
− s

)
ϕ(p, u) = 0

However, these equations propagate too many degrees of freedom.
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∂
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Finite-spin/Massless limit of massive equations

In order for the space of solutions to carry the helicity UIR of the
Poincaré group ISO(D − 1, 1) induced from the symmetric tensor
representation of the e�ective little group SO(D − 2), gauge equivalent
solutions must be identi�ed:

ϕ(p, u) ∼ ϕ(p, u) + (u · p) ε(p, u) .

In other words, longitudinal components are pure gauge:

ϕµ1...µs(p) ∼ ϕµ1...µs(p) + p(µ1
εµ2...µs)(p) .
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Massless equations

Strictly speaking, for consistency the gauge parameter ε(p, u) should
obey to similar equations

p2 ε(p, u) = 0(
p · ∂

∂u

)
ε(p, u) = 0(

∂

∂u
· ∂
∂u

)
ε(p, u) = 0(

u · ∂
∂u
− (s− 1)

)
ε(p, u) = 0
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Massless equations

One way to get rid of the equivalence relation is to leave the space of
polynomials in the auxilliary vector and reformulate the equations in
terms of the gauge-invariant distribution

φ(p, u) = δ(p · u)ϕ(p, u) .

Finite-spin massless equations

p2 φ(p, u) = 0

(p · u)φ(p, u) = 0,(
p · ∂

∂u

)
φ(p, u) = 0(

∂

∂u
· ∂
∂u

)
φ(p, u) = 0(

u · ∂
∂u
− (s− 1)

)
φ(p, u) = 0
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Dimensional reduction of massless equations

Remark: The e�ective little group of massless particles in D + 1
dimensions is

SO
(

(D + 1)− 2
)

= SO(D − 1)

which coincides with the little group of massive particles in D dimensions.

This is the group-theoretical explanation behind the technique of
dimensional reduction for obtaining massive equations from massless
equations in one higher dimension, by considering a single Kaluza-Klein
mode.

If the higher-dimensional massless �elds are gauge �elds, then the
dimensional reduction typically produces a tower of lower-spin
Stuckelberg (i.e. pure gauge) or auxilliary �elds.

Massive equations in such a Stuckelberg approach turn out to be more
convenient for taking the in�nite-spin massless limit of massive equations.
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Dimensional reduction of massless equations

Finite-spin massless equations in D dimensions

p2 φ(p, u) = 0

(p · u)φ(p, u) = 0,(
p · ∂

∂u

)
φ(p, u) = 0(

∂

∂u
· ∂
∂u

)
φ(p, u) = 0(

u · ∂
∂u
− (s− 1)

)
φ(p, u) = 0
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Dimensional reduction of massless equations

Finite-spin massless equations in D+1 dimensions

P 2 Φ(P,U) = 0(
P · U

)
Φ(P,U) = 0,(

P · ∂
∂U

)
Φ(P,U) = 0(

∂

∂U
· ∂
∂U

)
Φ(P,U) = 0(

U · ∂
∂U
− (s− 1)

)
Φ(P,U) = 0

Consider the splittings

PM = (pµ,m) , UM = (uµ, v) .
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∂U

)
Φ(P,U) = 0(

U · ∂
∂U
− (s− 1)

)
Φ(P,U) = 0

Consider the splittings

PM = (pµ,m) , UM = (uµ, v) .

X. Bekaert Massless elementary particles with continuous spin



Group theory of the �continuous� spin representations
Bosonic and fermionic equations

Action principles
Summary of results and open problems

Bosonic equations
Fermionic equations

Dimensional reduction of massless equations

Finite-spin massive equations in D dimensions

(p2 +m2) Φ(p, u, v) = 0

(p · u+mv) Φ(p, u, v) = 0(
p · ∂

∂u
+m

∂

∂v

)
Φ(p, u, v) = 0(

∂

∂u
· ∂
∂u

+
∂2

∂v2

)
Φ(p, u, v) = 0(

u · ∂
∂u

+ v
∂

∂v
− (s− 1)

)
Φ(p, u, v) = 0

These massive equations are somehow a �gauge-�xed� version of the
Stuckelberg formulation.
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In�nite-spin/Massless limit of massive equations

Finite-spin massive equations in D dimensions

(p2 +m2) Φ(p, u, v) = 0

(p · u+mv) Φ(p, u, v) = 0(
p · ∂

∂u
+m

∂

∂v

)
Φ(p, u, v) = 0(

∂

∂u
· ∂
∂u

+
∂2

∂v2

)
Φ(p, u, v) = 0(

u · ∂
∂u

+ v
∂

∂v
− (s− 1)

)
Φ(p, u, v) = 0

Problem: It is clear from the last equation that the in�nite-spin limit is
ill de�ned in terms of the �eld Φ.

X. Bekaert Massless elementary particles with continuous spin



Group theory of the �continuous� spin representations
Bosonic and fermionic equations

Action principles
Summary of results and open problems

Bosonic equations
Fermionic equations

In�nite-spin/Massless limit of massive equations

Finite-spin massive equations in D dimensions

(p2 +m2) Φ(p, u, v) = 0

(p · u+mv) Φ(p, u, v) = 0(
p · ∂

∂u
+m

∂

∂v

)
Φ(p, u, v) = 0(

∂

∂u
· ∂
∂u

+
∂2

∂v2

)
Φ(p, u, v) = 0(

u · ∂
∂u

+ v
∂

∂v
− (s− 1)

)
Φ(p, u, v) = 0

Idea: In order to get a well de�ned limit, one has to extract an in�nite
factor from Φ and also to assume a suitable scaling of the variable v.
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In�nite-spin/Massless limit of massive equations

Finite-spin massive equations in D dimensions

(p2 +m2) Φ(p, u, v) = 0

(p · u+mv) Φ(p, u, v) = 0(
p · ∂

∂u
+m

∂

∂v

)
Φ(p, u, v) = 0(

∂

∂u
· ∂
∂u

+
∂2

∂v2

)
Φ(p, u, v) = 0(

u · ∂
∂u

+ v
∂

∂v
− (s− 1)

)
Φ(p, u, v) = 0

Let us introduce the parameter µ and the variable α by

µ = sm, α = v/s .

The precise limit we are interested in, is when s goes to in�nity, with
�nite µ and α.
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In�nite-spin/Massless limit of massive equations

Consider the limit

m→ 0 , s→∞ , µ = ms �xed

and change of auxilliary variables (uµ, v) to the new variables (ωµ, α){
uµ = ωµ α

v = s α
⇐⇒

ωµ =
s

v
uµ

α =
v

s

that will be kept �nite.

In fact, the problematic homogeneity condition can be solved as(
u · ∂

∂u
+ v

∂

∂v
− (s− 1)

)
Φ = 0 ⇐⇒ Φ = αs−1Ψ

(u
α

)
and the remaining equations can all be expressed in terms of the �eld
Ψ(ω) = Ψ(u/α) which remains �nite in the limit.
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In�nite-spin/Massless limit of massive equations

Consider the limit

m→ 0 , s→∞ , µ = ms �xed

and change of auxilliary variables (uµ, v) to the new variables (ωµ, α){
uµ = ωµ α

v = s α
⇐⇒

ωµ =
s

v
uµ

α =
v

s

that will be kept �nite.

In fact, the problematic homogeneity condition can be solved as(
u · ∂

∂u
+ v

∂

∂v
− (s− 1)

)
Φ = 0 ⇐⇒ Φ = αs−1Ψ

(u
α

)
and the remaining equations can all be expressed in terms of the �eld
Ψ(ω) = Ψ(u/α) which remains �nite in the limit.
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In�nite-spin/Massless limit of massive equations

Consider the limit

m→ 0 , s→∞ , µ = ms �xed

and change of auxilliary variables (uµ, v) to the new variables (ωµ, α)

{
uµ = ωµ α

v = s α
⇐⇒

ωµ =
s

v
uµ

α =
v

s

that will be kept �nite.

For instance, the second equation becomes

(p · u+mv) Φ = 0 ⇐⇒ (p · ω + µ)Ψ = 0 ,

which actually motivated the change of variables.
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In�nite-spin/Massless limit of massive equations

Finite-spin massive equations

[
p2 +

(µ
s

)2]
Ψ(p, ω) = 0

(p · ω + µ) Ψ(p, ω) = 0[
p · ∂

∂ω
+
µ

s2

(
s− 1− ω · ∂

∂ω

)]
Ψ(p, ω) = 0[

∂

∂ω
· ∂
∂ω

+
1

s2

(
(s− 1)(s− 2)− (2s− 3)

(
ω · ∂

∂ω

)
+

(
ω · ∂

∂ω

)2
)]

Ψ = 0
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Bosonic equations
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In�nite-spin/Massless limit of massive equations

In�nite-spin massless equations

p2 Ψ(p, ω) = 0

(p · ω + µ) Ψ(p, ω) = 0(
p · ∂

∂ω

)
Ψ(p, ω) = 0(

∂

∂ω
· ∂
∂ω

+ 1

)
Ψ(p, ω) = 0

Performing a Fourier transform over the auxilliary vector ω leads exactly
to Wigner's equations in terms of the wave function

Ψ̃(p, η) =

∫
dω Ψ(p, ω) exp

(
− i (η · ω)/µ

)
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In�nite-spin/Massless limit of massive equations

In�nite-spin massless equations

p2 Ψ(p, ω) = 0

(p · ω + µ) Ψ(p, ω) = 0(
p · ∂

∂ω

)
Ψ(p, ω) = 0(

∂

∂ω
· ∂
∂ω

+ 1

)
Ψ(p, ω) = 0

Performing a Fourier transform over the auxilliary vector ω leads exactly
to Wigner's equations in terms of the wave function

Ψ̃(p, η) =

∫
dω Ψ(p, ω) exp

(
− i (η · ω)/µ

)

X. Bekaert Massless elementary particles with continuous spin



Group theory of the �continuous� spin representations
Bosonic and fermionic equations

Action principles
Summary of results and open problems

Bosonic equations
Fermionic equations

Wigner equations

In�nite-spin massless equations (Wigner, 1947)

p2 Ψ̃(p, η) = 0(
p · η

)
Ψ̃(p, η) = 0(

p · ∂
∂η
− i
)

Ψ̃(p, η) = 0(
η2 − µ2)Ψ̃(p, η) = 0

Analysis: The physical components carry an UIR of the massless little
group ISO(D − 2) because the auxilliary vector η belongs to the sphere
SD−3 ⊂ RD−2 inside the transverse plane.
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p · ∂
∂η
− i
)

Ψ̃(p, η) = 0(
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Wigner equations

In�nite-spin massless equations (Wigner, 1947)

p2 Ψ̃(p, η) = 0(
p · η

)
Ψ̃(p, η) = 0(

p · ∂
∂η
− i
)

Ψ̃(p, η) = 0(
η2 − µ2)Ψ̃(p, η) = 0

Proof:

The 2nd equation implies that the support of the function is such
that η ⊥ p .
The 3rd equation is solved as

Ψ̃(p , η + φ p) = ei φ Ψ̃(p , η) , ∀θ ∈ R

which shows that the longitudinal part of η is pure gauge.
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Wigner equations

In�nite-spin massless equations (Wigner, 1947)

p2 Ψ̃(p, η) = 0(
p · η

)
Ψ̃(p, η) = 0(

p · ∂
∂η
− i
)

Ψ̃(p, η) = 0(
η2 − µ2)Ψ̃(p, η) = 0

Proof:

The 2nd and 3rd equations imply that one can assume that the
auxilliary vector belongs to the transverse plane: η ∈ RD−2.

The 4th equation leads to the conclusion: η ∈ SD−3.
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p2 Ψ̃(p, η) = 0(
p · η
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Ψ̃(p, η) = 0(

p · ∂
∂η
− i
)

Ψ̃(p, η) = 0(
η2 − µ2)Ψ̃(p, η) = 0

Proof:

The 2nd and 3rd equations imply that one can assume that the
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The 4th equation leads to the conclusion: η ∈ SD−3.
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Higher-spin massive equations

Higher-spin massive equations (Dirac, Fierz, Pauli, ...)
For half-integer spin s ∈ N + 1

2 , covariant equations carrying the
doubled-valued massive UIR of the Poincaré group ISO(D − 1, 1)
induced from the symmetric spinor-tensor representation of the little
group Spin(D − 1) can be formulated in terms of a symmetric Lorentz
spinor-tensor (the spinor indices will be left implicit):

(γµpµ +m)ϕµ1µ2...µs(p) = 0

pνϕνµ1µ2...µs−1
(p) = 0

γνϕνµ1µ2...µs−1
(p) = 0

Indeed, in a rest frame the second equation implies the vanishing of all
timelike components while the third equation implies the
so(D − 1)-irreducibility.
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Bosonic equations
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Higher-spin massive equations

In terms of the generating function

ϕ(p, u) =
1

s!
ϕµ1µ2...µs(p)u

µ1 · · ·uµs

Higher-spin massive equations (Dirac, Fierz, Pauli, ...)

(γ · p+m)ϕ(p, u) = 0(
p · ∂

∂u

)
ϕ(p, u) = 0(

γ · ∂
∂u

)
ϕ(p, u) = 0(

u · ∂
∂u
− s

)
ϕ(p, u) = 0
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Bosonic equations
Fermionic equations

Finite-spin/Massless limit of massive equations

Higher-spin massless equations

The massless limit m→ 0 of the massive equations (with spin s �xed) is

(γ · p)ϕ(p, u) = 0(
p · ∂

∂u

)
ϕ(p, u) = 0(

γ · ∂
∂u

)
ϕ(p, u) = 0(

u · ∂
∂u
− s

)
ϕ(p, u) = 0

which we should supplement with the gauge equivalence relation:

ϕ(p, u) ∼ ϕ(p, u) + (u · p) ε(p, u)

where the gauge parameter obeys similar equations.
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Bosonic equations
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Finite-spin/Massless limit of massive equations

Higher-spin massless equations

The massless limit m→ 0 of the massive equations (with spin s �xed) is

(γ · p)ϕ(p, u) = 0(
p · ∂

∂u

)
ϕ(p, u) = 0(

γ · ∂
∂u

)
ϕ(p, u) = 0(

u · ∂
∂u
− s

)
ϕ(p, u) = 0

which we should supplement with the gauge equivalence relation:

ϕ(p, u) ∼ ϕ(p, u) + (u · p) ε(p, u)

where the gauge parameter obeys similar equations.
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Bosonic equations
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Massless equations

In terms of the gauge-invariant distribution

φ(p, u) = δ(p · u)ϕ(p, u)

Finite-spin massless equations

(γ · p)φ(p, u) = 0

(p · u)φ(p, u) = 0,(
p · ∂

∂u

)
φ(p, u) = 0(

γ · ∂
∂u

)
φ(p, u) = 0(

u · ∂
∂u
− (s− 1)

)
φ(p, u) = 0
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Bosonic equations
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Dimensional reduction of massless equations

Finite-spin massless equations in D dimensions

(γ · p)φ(p, u) = 0

(p · u)φ(p, u) = 0,(
p · ∂

∂u

)
φ(p, u) = 0(

γ · ∂
∂u

)
φ(p, u) = 0(

u · ∂
∂u
− (s− 1)

)
φ(p, u) = 0
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Bosonic equations
Fermionic equations

Dimensional reduction of massless equations

Finite-spin massless equations in D+1 dimensions

(
Γ · P ) Φ(P,U) = 0(
P · U

)
Φ(P,U) = 0,(

P · ∂
∂U

)
Φ(P,U) = 0(

Γ · ∂
∂U

)
Φ(P,U) = 0(

U · ∂
∂U
− (s− 1)

)
Φ(P,U) = 0
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Bosonic equations
Fermionic equations

Dimensional reduction of massless equations

Finite-spin massless equations in 5 dimensions

(
Γ · P ) Φ(P,U) = 0(
P · U

)
Φ(P,U) = 0,(

P · ∂
∂U

)
Φ(P,U) = 0(

Γ · ∂
∂U

)
Φ(P,U) = 0(

U · ∂
∂U
− (s− 1)

)
Φ(P,U) = 0

Consider the splittings

PM = (pµ,m) , UM = (uµ, v) , ΓM = iγ5(γµ, 1) .
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Bosonic equations
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Dimensional reduction of massless equations

Finite-spin massive equations in 4 dimensions

(γ · p+m ) Φ = 0

(p · u+mv) Φ = 0(
p · ∂

∂u
+m

∂

∂v

)
Φ = 0(

γ · ∂
∂u

+
∂

∂v

)
Φ = 0(

u · ∂
∂u

+ v
∂

∂v
− (s− 1)

)
Φ = 0
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Bosonic equations
Fermionic equations

In�nite-spin/Massless limit of massive equations

Consider the

change of auxilliary variables{
uµ = ωµ α

v = s α

change of �eld
Φ(u, v) = αs−1Ψ(ω)

limit
m→ 0 , s→∞ , µ = ms �xed
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Bosonic equations
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In�nite-spin/Massless limit of massive equations

In�nite-spin massless equations

(γ · p) Ψ(p, ω) = 0

(p · ω + µ) Ψ(p, ω) = 0(
p · ∂

∂ω

)
Ψ(p, ω) = 0(

γ · ∂
∂ω

+ 1

)
Ψ(p, ω) = 0

Performing a Fourier transform over the auxilliary vector ω leads exactly
to Wigner's equations in terms of

Ψ̃(p, η) =

∫
dω Ψ(p, ω) exp(−i η · ω)

X. Bekaert Massless elementary particles with continuous spin



Group theory of the �continuous� spin representations
Bosonic and fermionic equations

Action principles
Summary of results and open problems

Bosonic equations
Fermionic equations

In�nite-spin/Massless limit of massive equations

In�nite-spin massless equations

(γ · p) Ψ(p, ω) = 0

(p · ω + µ) Ψ(p, ω) = 0(
p · ∂

∂ω

)
Ψ(p, ω) = 0(

γ · ∂
∂ω

+ 1

)
Ψ(p, ω) = 0

Performing a Fourier transform over the auxilliary vector ω leads exactly
to Wigner's equations in terms of

Ψ̃(p, η) =

∫
dω Ψ(p, ω) exp(−i η · ω)
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Bosonic equations
Fermionic equations

Wigner equations

In�nite-spin massless equations (Wigner, 1947)

(γ · p) Ψ̃(p, η) = 0(
p · η

)
Ψ̃(p, η) = 0(

p · ∂
∂η
− i µ

)
Ψ̃(p, η) = 0(

γ · η + i
)
Ψ̃(p, η) = 0
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Action principles

Wigner's equations, as their �nite-spin massive ancestors, do not arise as
Euler-Lagrange equations from an action principle.

The example of �nite-spin massless �elds suggest to make use of a gauge
formulation.

Indeed, gauge-invariant action principles corresponding to the helicity
representations of the Poincaré group were written for arbitrary integer
(Fronsdal, 1978) and half-integer (Fang & Fronsdal, 1978) spin.

This suggests that a formulation à la (Fang &) Fronsdal should exist for
the continuous-spin representation.
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The example of �nite-spin massless �elds suggest to make use of a gauge
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Fronsdal's �nite-spin massless equation

The Fronsdal equation

Fµ1···µs ≡ p2 ϕµ1···µs − p(µ1
pνϕµ2···µs)ν + p(µ1

pµ2ϕµ3···µs)ν
ν = 0

is the higher-spin generalisation of Klein-Gordon (s=0), Maxwell (s=1)
and linearised Ricci (s=2) equations.
It is invariant under the gauge transformations

δεϕµ1···µs = p(µ1
εµ2···µs) , εννµ1···µs−3

= 0 ,

where the gauge parameter is traceless.
The space of double-traceless

ϕνρνρµ1···µs−4
= 0

and gauge-inequivalent solutions of Fronsdal equations carries the helicity
UIR of the Poincaré group ISO(D − 1, 1) induced from the symmetric
tensor representation of the e�ective little group SO(D − 2).
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Fronsdal's �nite-spin massless equation

Again it turns out to be technically convenient to make use of the
generating function

ϕ(p, u) =
1

s!
ϕµ1µ2...µs(p)u

µ1 · · ·uµs .
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Fronsdal's �nite-spin massless equation

Finite-spin massless equation (Fronsdal, 1978)[
p2 − (p · u)

(
p · ∂

∂u

)
+

1

2
(p · u)2

(
∂

∂u
· ∂
∂u

)]
ϕ(p, u) = 0

with the conditions(
u · ∂

∂u
− s
)
ϕ(p, u) = 0 ,

(
∂

∂u
· ∂
∂u

)2

ϕ(p, u) = 0

and gauge equivalence

δεϕ(p, u) = (p · u) ε(p, u)

with (
u · ∂

∂u
− (s− 1)

)
ε(p, u) = 0 ,

(
∂

∂u
· ∂
∂u

)
ε(p, u) = 0
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Fronsdal-like in�nite-spin massless equation

Performing the same steps as before, one may obtain the in�nite-spin
counterpart of Fronsdal's formulation:

1 remove the homogeneity conditions,

2 perform the following replacement u→ ω, and

3 take into account the rule:

p · u −→ p · ω + µ ,
∂

∂u
· ∂
∂u
−→ ∂

∂ω
· ∂
∂ω

+ 1 .
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Fronsdal-like in�nite-spin massless equation

In�nite-spin massless equation (XB & Mourad, 2005)

[
p2 − (p · ω + µ)

(
p · ∂

∂ω

)
+

1

2
(p · ω)2

(
∂

∂ω
· ∂
∂ω

+ 1

)]
ϕ(p, ω) = 0

with the conditions (
∂

∂ω
· ∂
∂ω

+ 1

)2

ϕ(p, ω) = 0

and gauge equivalence

δεϕ(p, ω) = (p · ω + µ) ε(p, ω)

with (
∂

∂ω
· ∂
∂ω

+ 1

)
ε(p, ω) = 0
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Fronsdal-like in�nite-spin massless equation

Problem:

The Fronsdal equation Fµ1···µs = 0 is not variational for s > 2. For
instance, the Ricci equation is not the Euler-Lagrange equation of the
Einstein-Hilbert action.

But the higher-spin generalisation

Gµ1···µs ≡ Fµ1···µs −
s(s− 1)

2
g(µ1µ2

Fµ3···µs)ν
ν = 0

of linearised Einstein's equation is variational (Fronsdal, 1978).

However, this equation blows up in the limit s→∞, even if one takes
into account the in�nite rescalings (XB & Mourad, 2005).
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Fronsdal-like in�nite-spin massless equation

Problem:

The Fronsdal equation Fµ1···µs = 0 is not variational for s > 2. For
instance, the Ricci equation is not the Euler-Lagrange equation of the
Einstein-Hilbert action.

But the higher-spin generalisation

Gµ1···µs ≡ Fµ1···µs −
s(s− 1)

2
g(µ1µ2

Fµ3···µs)ν
ν = 0

of linearised Einstein's equation is variational (Fronsdal, 1978).

However, this equation blows up in the limit s→∞, even if one takes
into account the in�nite rescalings (XB & Mourad, 2005).
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Bosonic action

One way out:

Perform Fourier transforms over the auxilliary vector

ε̃(p, η) =

∫
dω ε(p, ω) exp(−i η · ω)

ϕ̃(p, η) =

∫
dω ϕ(p, ω) exp(−i η · ω)

and solve the tracelessness constraints by distributions.

In particular, distribution theory states that(
η2 + 1

)
ε̃(η) = 0 ⇐⇒ ε̃(η) = δ(η2 + 1) ε(η)

and (
η2 + 1

)2
ϕ̃(η) = 0 ⇐⇒ ϕ̃(η) = δ′(η2 + 1) Φ(η)
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Bosonic action

In terms of this new �eld Φ, the Fronsdal-like equation reads

K̂Φ = 0

where the kinetic operator

K̂ = − δ(η2 + 1) p2 +
1

2

(
p · ∂

∂η
− i µ

)
δ(η2 + 1)

(
p · ∂

∂η
− i µ

)
is manifestly hermitian, K̂† = K̂, with respect to the conjugation

η† = η ,

(
∂

∂η

)†
= − ∂

∂η
.
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Bosonic action

This explains the origin of the bosonic action proposed in
(Schuster & Toro, 2014):

S[Φ] =
1

2

∫
d4x d4η Φ(x, η) K̂ Φ(x, η)

= − 1

2

∫
d4x d4η Φ

[
− δ′(η2 + 1)�+ 1

2 (∂η · ∂x + µ) δ(η2 + 1) (∂η · ∂x + µ)
]

Φ

Remarks:

A similar action principle was proposed by Segal in 2001 for
higher-spin massless �elds on (anti) de Sitter spacetime.

The above line of reasoning can be also applied in the fermionic case
to construct the action (XB, Setare, Naja�zadeh, 2015).

However, the minimal coupling to external currents lead to current
exchanges that do not seem to propagate the correct degrees of
freedom although the formal Euclidean version (�Wick rotation�) of
the action seemingly does (XB, Mourad, Naja�zadeh, 2017).
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Fang-Fronsdal-like in�nite-spin massless equation

In�nite-spin massless equation (XB & Mourad, 2005)[
γ · p− (ω · p+ µ) (γ · ∂ω + 1)

]
Ψ(p, ω)

with the conditions

(γ · ∂ω + 1) (∂ω · ∂ω − 1) Ψ(p, ω) = 0

and gauge equivalence

δεϕ(p, ω) = (p · ω + µ) ε(p, ω)

with
(γ · ∂ω + 1) ε(p, ω) = 0
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Fermionic action

Perform Fourier transforms over the auxilliary vector

ε̃(p, η) =

∫
dω ε(p, ω) exp(−i η · ω)

ψ̃(p, η) =

∫
dω ψ(p, ω) exp(−i η · ω)

and solve the tracelessness constraints by distributions.

Distribution theory allows to show that

(γ · η − i) ε̃(p, η) = 0 ⇐⇒ ε̃(p, η) = δ(η2 + 1) (γ · η + i ) ε(p, η)

and

(γ · η − i )
(
η2 + 1

)
ψ̃(p, η) = 0 ⇐⇒ ψ̃(p, η) = δ′(η2+1)

(
γ ·η+i

)
Ψ(p, η)
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Fermionic action

In terms of the new �eld Ψ, the Fang-Fronsdal-like equation reads

K̂Ψ = 0

where the kinetic operator

K̂ = i δ′(η2 + 1)
(
γ · η − i

)
(γ · p) + i δ(η2 + 1)

(
p · ∂

∂η
− iµ

)
satis�es K̂† = γ0 K̂ γ0 as does the Dirac kinetic operator.
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Fermionic action

This suggest the action (XB, Setare, Naja�zadeh, 2015):

Sfree =

∫
d4x d4η Ψ K̂ Ψ

=

∫
d4x d4η Ψ

[
δ′(η2+σ)

(
γ ·η−i σ

)
(γ ·∂x)+δ(η2+σ)

(
∂η ·∂x+σµ

)]
Ψ ,

where Ψ = Ψ† γ0.
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Summary of some results over the last decade

1 Wigner's exotic representations & equations from
in�nite-spin/massless limit of massive

representations (Khan & Ramond, 2005)
equations (XB & Mourad, 2005)

2 Fronsdal-like gauge formulation from in�nite-spin/zero-mass limit of
massive equations (XB & Mourad, 2005)

3 Action principles
Segal-like

bosons (Schuster & Toro, 2014)
fermions (XB, Setare, Naja�zadeh, 2015)
Extraction of propagator and current exchange (XB, Mourad,
Naja�zadeh, 2017)

Fronsdal-like
bosons & fermions (Metsaev, 2016) also on anti de Sitter spacetime

4 Cubic interactions with matter �elds
Scalar matter, covariant formulation
(XB, Mourad, Naja�zadeh, 2017)
Exhaustive classi�cation, light-cone formulation (Metsaev, 2017)
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List of some open problems

1 Action principle for mixed-symmetry representations? (relevant for
spacetime dimensions D > 7)

2 Consistency of scattering
clarify the current exchanges (XB, Mourad, Naja�zadeh, 2016)
obtained from known action principles (Schuster-Toro, 2013;
XB, Setare, Naja�zadeh, 2015; Metsaev, 2016)
Weinberg soft theorems: no-go or yes-go? (Schuster-Toro, 2013)

3 Classi�cation of consistent self-interactions in �at spacetime
cubic vertices? (light-cone vs covariant approach)
quartic order: underlying gauge algebra (if any)?
nonlinear unfolded equations?

4 Nonvanishing cosmological constant
do they ∃ as (unitary) irreps of (anti) de Sitter isometry groups
SO(D, 1) or SO(D − 1, 2)?
comparison with the action principles of (Metsaev, 2016)
does there ∃ an exotic nontrivial �at limit of higher-spin algebra? of
higher-spin gravity?
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