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Implication of GW170817 on
gravity theories @ late time

• |(cgw– cg)/ cg| < 10-15

• Horndeski theoy (scalar-tensor theory with 2nd-order eom):
Among 4 free functions, G4(f,X) & G5(f,X) are strongly constrained. Still 
G2(f,X) & G3(f,X) are free.

• Generalized Proca theory (vector-tensor theory):
Among 6 (or more) free functions, G4(X) & G5(X) are strongly constrained. 
Still G2(X,F,Y,U), G3(X), G6(X), g5(X) are free.

• Horava-Lifshitz theory (renormalizable quantum gravity):
The coefficient of R(3) is strongly constrained
 IR fixed point with cgw = cg? How to speed up the RG flow?

• Ghost condensation (simplest Higgs phase of gravity):
No additional constraint

• Massive gravity (simplest modification of GR):
Upper bound on graviton mass ≈ 10-22eV
Much weaker than the requirement from acceleration

c.f. “All” gravity theories (including general relativity):
The cosmological constant is strongly constrained ≈ 10-120.
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• Renormalizability

• Gravity is highly non-

linear and thus non-

renormalizable
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renormalizable!?



Horava-Lifshitz gravity

• HL gravity realizes z=3 scaling @ UV and thus is power-

counting renormalizable

• Renormalizability was recently proved with any number 

of spacetime dimensions [Barvinsky, et al. 2016]

• Ostrogradsky ghost is absent and thus HL gravity is likely 

to be unitary

• In 2+1 dimensions HL gravity is asymptotically free. 

• Lorentz-invariance is broken @ UV

• Lorentz-invariant IR fixed-point is generic [Chadha & 

Nielsen 1983] (and may apply to GW as well; cf. |cgw
2 – cg

2| 

< 10-15 from GW170817) but running is slow (logarithmic)

• SUSY or/and strong dynamics can speed-up the RG 

running towards Lorentz-invariant IR fixed-point



Cosmological implications

• The z=3 scaling solves the horizon problem and 
leads to (almost) scale-invariant cosmological 
perturbations without inflation (Mukohyama 2009).

• Higher curvature terms lead to regular bounce
(Calcagni 2009, Brandenberger 2009).

• Higher curvature terms (1/a6, 1/a4) might make the 
flatness problem milder (Kiritsis&Kofinas 2009).

• The initial condition with z=3 scaling may actually 
solve the flatness problem. (Bramberger, Coates, 
Magueijo, Mukohyama, Namba and Watanabe 2017)

• Absence of local Hamiltonian constraint leads to 
DM as integration “constant” (Mukohyama 2009).
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Primordial Fluctuations



Horizon Problem

& Scale-Invariance
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Horizon @ decoupling

<< Correlation Length of CMB

3.8 x 105 light years

<< 1.4 x 1010 light years
(1 light year ~ 1018 cm)

Scale-invariant spectrum

 ~ constant



Usual story

• w2 >> H2 : oscillate               H = (da/dt) / a

w2 << H2 : freeze                  a : scale factor
oscillation  freeze-out  iff d(H2/ w2)/dt > 0
w2 =k2/a2 leads to d2a/dt2 > 0

Generation of super-horizon fluctuations requires 
accelerated expansion, i.e. inflation.
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Generation of super-horizon fluctuations requires 
accelerated expansion, i.e. inflation.

• Scaling law 
t   b t  (E  b-1E)
x  b x
f b-1 f

Scale-invariance requires almost const. H, i.e. 
inflation.

~E Hf 



New story with z=3

• oscillation  freeze-out  iff d(H2/ w2)/dt > 0

w2 =M-4k6/a6 leads to d2(a3)/dt2 > 0

OK for a~tp with p > 1/3

Mukohyama 2009
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• Scaling law 

t   b3 t  (E  b-3E)

x  b x

f b0 f

Scale-invariant fluctuations!

• Tensor perturbation Ph ~ M2/MPl
2
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Mukohyama 2009



ln L

ln a
H >> M H << M

Horizon exit and re-entry

pa t
1/3 < p < 1



New Mechanism of 
Primordial Fluctuations

New Quantum Gravity

✔ Horizon Problem Solved

✔ Scale-Invariance Guaranteed

✔ Slight scale-dependence calculable

✔ Predicts relatively large non-Gaussianity



Cosmological implications

• The z=3 scaling solves the horizon problem and 
leads to (almost) scale-invariant cosmological 
perturbations without inflation (Mukohyama 2009).

• Higher curvature terms lead to regular bounce
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“Vainshtein screening” in

projectable (N=N(t)) HL gravity
• Perturbative expansion breaks down in the l

 1+0 limit.

• Non-perturbative analysis shows continuity 

and GR is recovered in the l 1+0 limit.

Lkin = KijKij – lK2



Screening scalar graviton

“Canonically normalized” scalar graviton 

decouples from the rest of the world.

Analogue of Vainshtein screening
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Local in time, no time derivative

Non-local in space, each term has the same # of 

spatial derivatives in denominator and numerator

Independent of l

No time derivative

l 1

subleading

+ matter
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“Vainshtein screening” in

projectable (N=N(t)) HL gravity
• Perturbative expansion breaks down in the l

 1+0 limit.

• Non-perturbative analysis shows continuity 

and recovery of GR+DM in the l 1+0 limit.
✓Spherically-sym, static, vacuum (Mukohyama 2010)

✓Spherically-sym, dynamical, vacuum (Mukohyama 201?)

✓Spherically-sym, static, with matter (Mukohyama 201?)

✓General super-horizon perturbations with matter (Izumi-

Mukohyama 2011; Gumrukcuoglu-Mukohyama-Wang 2011)

Lkin = KijKij – lK2
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Mukohyama 2011; Gumrukcuoglu-Mukohyama-Wang 2011)
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in the l 1+0 limit. 
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cc & flatness problems

• L does not decay  cc problem “Why is 

L as small as 8Gr now?”

• K/a2 decays but only slowly  flatness 

problem “Why is K/a2 smaller than 8Gr

now?”
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We shall consider the flatness problem.



Two ways to tackle 

flatness problem

• If r does not decay for an extended period 

then flatness problem solved  Inflation

• If K/a2 << 8Gr initially then flatness 

problem solved  Quantum cosmology



Two ways to tackle 

flatness problem

• If r does not decay for an extended period 

then flatness problem solved  Inflation

• If K/a2 << 8Gr initially then flatness 

problem solved  Quantum cosmology

We shall consider the second possibility.



Usual story

• Initial condition set by e.g. quantum tunneling

• O(4) symmetric instanton

 T ~ L, where T ~ 1/H, L ~ a/|K|1/2

• Three terms in 3H2 = 8Gr – 3K/a2

are of the same order initially.

• Flatness problem exists unless inflation 

occurs.



New story with z=3

• Initial condition set by e.g. quantum tunneling

• Instanton with z=3 anisotropic scaling, which 

we call an anisotropic instanton

 T ∝ L3, where T ~ 1/H, L ~ a/|K|1/2

 T ~ M2L3

• T << L if L << 1/M

• Flatness problem may be solved if the 

anisotropic instanton is small. 



Summary
• Horava-Lifshitz gravity is renormalizable and likely to 

be unitary, and thus is a candidate for UV complete 

theory of quantum gravity.

• Lorentz-invariance can be restored at IR fixed-point. 

SUSY or/and strong dynamics can speed-up the RG 

running to match with phenomenology.

• It is likely that GR (+DM) is recovered in the l 1 

limit due to nonlinear effects. [c.f. Vainshtein effect]

• Horizon problem can be solved and (almost) scale-

invariant cosmological perturbations can be 

generated without inflation.

• Flatness problem can be solved by equipartition in 

highly trans-Planckian regime.





Gravitational collapse in 

Einstein-aether theory

Shinji Mukohyama
(YITP, Kyoto U)

Based on arXiv:1806.00142 w/ M.Bhattacharjee, M.-B. Wan 

and A.Wang



Einstein-aether theory

• LV gravity: GR + timelike unit vector u

 Useful for test of GR

• Low-E limit of non-projectable HL gravity

 predictions of a quantum gravity theory

• 4 parameters (c1, c2, c3, c4)



Some formulae

• Stability & Gravi-Cerenkov & GW170817

• BBN

• PPN

• Pulsars



Constraints on (c1, c2, c3, c4)

• Strongest constraint  GW170817

• (c1, c14)-plane

• (c2, c14)-plane

• Sensitivity

not known in those range

(c2, c14)-plane

arXiv: 1802.04303 w/ Jacob Oost & Anzhong Wang



BH in LV gravity theories

• Light cone structure is only emergent @ IR

• Usual event/apparent horizons are also 

emergent @ IR

• Causal structure in the sense of past & 

future still exists  clock field (Khronon).

• There may still be the absolute causal 

boundary, called “universal horizon”. 



Universal horizon for static BH

f : clock field

(Khronon)

0
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timelike

Killing 

vector

= rEH = rAH



BH in LV gravity theories

• Light cone structure is only emergent @ IR

• Usual event/apparent horizons are also 

emergent @ IR

• Causal structure in the sense of past & 

future still exists  clock field (Khronon).

• There may still be the absolute causal 

boundary, called “universal horizon”. 

• Does “universal horizon” form from 

gravitational collapse?  Numerical study 

of massless scalar with spherical symmetry



Dynamical universal horizon?

• For static BHs, a “universal horizon” is 

characterized by                   , where  is 

the timelike Killing vector and f is the clock 

field (Khronon). 

• A natural extension of  to spherically 

symmetric dynamical spacetime

is Kodama vector 

• Dynamical universal horizon:

0

 f 

0a

ak f  / 0r  

a ab

bk   
01 1


g

 



A pair of AHs forms

and the outer AH

becomes stationary

c13=0

c2=2x10-7

c13=10-7



New pair of dUH

keeps forming

outside

the outermost dUH

c13=0

c2=2x10-7

c13=10-7



Region with small |,r| grows

Geometry remains regular

Proper distance

c13=0

c2=2x10-7

c13=10-7



Proper distance between

the outermost dUH and

the outer AH also grows
c13=0

c2=2x10-7

c13=10-7



Summary
• Numerical study of gravitational collapse of 

massless scalar with spherical symmetry

• Apparent horizon (AH) and dynamical 

universal horizon (dUH) form

• Geometry outside the outer AH becomes 

stationary

• Proper distance between the outer AH and the 

outermost dUH along the aether-orthogonal 

slicings keep increasing  the outermost dUH

is evolving into a causal boundary? 

dUH = precursor of the universal horizon? 



Evidences of UH formation

• Formation of multiple pairs of dUHs

• New pair of dUHs keeps forming outside the 

outermost dUH (but inside the outer AH)

• No sign of disappearance of any of them

• Proper distance between the outer AH and the 

outermost dUH keeps increasing and there is 

no sign of slowdown

• Proper distance between the outermost and 

innermost dUHs also keep increasing

• Geometry on and outside dUHs stays regular





BACKUP SLIDES



Horava-Lifshitz gravity

• HL gravity realizes z=3 scaling @ UV and thus is power-

counting renormalizable

• Renormalizability was recently proved [Barvinsky, et al. 

2016]

• Ostrogradsky ghost is absent and thus HL gravity is likely 

to be unitary

• Lorentz-invariance is broken @ UV

• Lorentz-invariant IR fixed-point is generic [Chadha & 

Nielsen 1983] (and may apply to GW as well; cf. |cgw
2 – cg

2| 

< 10-15 from GW170817) but running is slow (logarithmic)

• SUSY or/and strong dynamics can speed-up the RG 

running towards Lorentz-invariant IR fixed-point



3 ways to recover LI @ IR

i. RG flow  LI @ IR [Chadha & Nielsen 1983]. RG 

running may be speeded up e.g. by strong 

dynamics.

ii. Supersymmetry protects low-E LI [Groot 

Nibbelink & Pospelov 2004].

iii. Low Lifshitz scale M << Mpl may suppresses 

LV [Pospelov & Shang 2012] . 



2 ways to recover LI @ IR

i. RG flow  LI @ IR [Chadha & Nielsen 1983]. RG 

running may be speeded up e.g. by strong 

dynamics.

ii. Supersymmetry protects low-E LI [Groot 

Nibbelink & Pospelov 2004].

iii. Low Lifshitz scale M << Mpl may suppresses 

LV [Pospelov & Shang 2012] . Unfortunately, shift-

loops spoil this mechanism [Coates, Melby-

Thompson & Mukohyama 2018].





Minimal Horava-Lifshitz gravity

• Basic quantities:
lapse N(t), shift Ni(t,x), 3d spatial metric gij(t,x)

• ADM metric (emergent in the IR)
ds2 = -N2dt2 + gij (dxi + Nidt)(dxj + Njdt)

• Foliation-preserving deffeomorphism
t  t’(t),   xi

 x’i(t,xj)

• Anisotropic scaling with z=3 in UV
t  bz t,   xi

 b xi

• Ingredients in the action

Horava (2009)

 
1

2
ij t ij i j j iK g D N D N

N
   

Ndt 3gd x ijg
ijR

iD
( Cijkl = 0 in 3d )



UV action with z=3

• Kinetic terms (2nd time derivative)

c.f.  l = 1 for GR

• z=3 potential terms (6th spatial derivative)

c.f. DiRjkD
jRki is written in terms of other terms

 3 2ij

ijNdt gd x K K Kl

3Ndt gd x
i jk

i jkD R D R
i

iD RD R

3Rj k i

i j kR R R j i

i jRR R 



Relevant deformations (with parity)

• z=2 potential terms (4th spatial derivative)

• z=1 potential term (2nd spatial derivative)

• z=0 potential term (no derivative)

3Ndt gd x
2R

j i

i jR R

3Ndt gd x



R

3Ndt gd x 1



• Total action

• 3d space may consist of several connected 

pieces Sa

• Common lapse N(t) and set of lapses & set 

of 3d metrics 

• We are interested in one of Sa



Structure of HL gravity

• Foliation-preserving diffeomorphism

= 3D spatial diffeomorphism

+ space-independent time reparametrization

• 3 local constraints + 1 global constraint

= 3 momentum  @ each time @ each point

+ 1 Hamiltonian @ each time      integrated

• Constraints are preserved by dynamical 

equations.

• We can solve dynamical equations, provided 

that constraints are satisfied at initial time.



FLRW universe in vacuum
• No local Hamiltonian constraint

• Dynamical eq

• 1st integral  effective Friedmann eq

Ca/aa
3 : “dark matter as an integration constant”

(Mukohyama 2009)

• Global Hamiltonian constraint



Anisotropic instanton

• Effective Friedmann eq with a2 = 0 = L

• Imaginary-time                          , K = 1

• For small a, the last term can be dropped



Numerical result
l = 2, a3 = 1, a2 = 0

Wick rotation @ t = tin

large C⇔ small tin & ain

C=3

analytic

numerical

analytic

numerical

C=20

tin∝ ain
3

for large C

as expected!



Some remarks

• Solution is singular @ a=0  unable to rely 

on semi-classical formula for tunneling rate

• Quantum effects such as RG running should 

be taken into account near a=0

• The classical solution away from a=0 is 

unique up to a constant shift of t

• The scaling T ∝ L3 is robust and thus the 

flatness problem may be solved



General argument

• Generalized Friedmann eq

• Curvature as fluid with

rK = ±3MPl
2M2f(|K|/a2M2)

• Equipartition 

r ≈ rK ~ rin @ quantum-classical transition

• z=1 Friedmann eq recovered @ r = rz1



• For                          ,

• To solve the flatness problem, we impose

i.e. 

• If we set z=3, w=0, M=MPl then the requirement is

• In UV complete theory we do not afraid of going 

into highly trans-Planckian regime.





Dynamical case (Mukohyama 201?)

• IR action

• Dynamical ansatz with N=1 & Ni = 0

• Change of variable

• EOM

• The l 1+0 limit is continuous and recovers GR+DM.



Caustic avoidance
(preliminary)

2 2 2 2 2( , ) ( , )( )ds B t x dx r t x dy dz  

0iN 1N 

B0

r

B0

r

l = 1
O(1) HC terms

l = 1
no HC terms

B

r

l = 1.2
O(1) HC terms

B

r

l = 1.2
O(10) HC terms

t

x

t

x

t

x

t

x



Scalar graviton and l 1

• GR may recover @ IR if l 1

• The minimal HL gravity has a scalar 

graviton in addition to tensor graviton. 

• What happens to the scalar graviton in the 

limit l 1?



• UV: z=3 , power-counting renormalizability

RG flow

• IR: z=1 , seems to recover GR iff l 1

note: 

Renormalizability was recently proved.

RG flow has not yet been investigated.

IR potential

 3 2 21
2

16

ij

ij g

N

Ndt gd x K K K c R
G

l


   L

IR action

kinetic term



Physical d.o.f.

• ( 6 + 3 ) – 3 – 3 = 3

gij : 6 components

Ni : 3 components

xi
x’i(t,x) : 3 gauge d.o.f.

I/Ni=0 : 3 constraints

• 3 = 2 + 1

tensor graviton: 2 d.o.f.

scalar graviton: 1 d.o.f.



Different versions of HL gravity

• There are versions w/wo the projectability condition.

• Horava’s original proposal was with the 

projectability condition, N=N(t). 

• Naïve non-projectable extension is inconsistent 

[c.f. Henneaux, et.al. 2009].

• Inclusion of ai = (ln N),i (and thus more terms) in 

the action can cure the non-projectable extension 

[Blas, Pujolas and Sibiryakov 2009]. 

• U(1) extension [Horava & Melby-Thompson 2010]

This talk is based on the projectable version 

without U(1) extension.



Linear instability of scalar graviton
• Sign of (time) kinetic term (l-1)/(3l-1) > 0.

• The dispersion relation in flat background

w2 = cs
2k2 x [1+ O(k2/M2)] with cs

2 =-(l-1)/(3l-1)<0

 IR instability in linear level

(Wang&Maartens; Blas,et.al.; Koyama&Arroja 2009)

• Slower than Jeans instability if

tJ~(GNr)-1/2 < tL~L/|cs| .

• Tamed by Hubble friction or/and O(k2/M2) terms if 

H-1 < tL or/and L < 1/M.

• Thus, the linear instability does not show up if

|cs| = |(l-1)/(3l-1)|1/2 < Max [||1/2,HL]. (~-GNrL2)

for L > Max[0.01mm,1/M] 

(Shorter scales  similar to spacetime foam)

• Phenomenological constraint on properties of RG flow.



Perturbative vs non-perturbative

regimes

• Perturbative regime: q << (l-1)

breakdown in the l  1 limit

• Non-perturbative regime: (l-1) << q << 1

responsible for recovery of GR

(1)

( 1) ( )
t T

O
B

O O q


l
 

 

Momentum constraint



Vainshtein effect in

massive gravity
• Linearized analysis results in vDVZ

discontinuity of the massless limit. 

• However, perturbative expansion breaks 

down in this limit and cannot be trusted.

• Non-perturbative analysis shows continuity 

and GR is recovered in the massless limit.

• Continuity is not uniform w.r.t. distance. (e.g. 

1/r expansion does not work.) However, 

Vainshtein radius can be pushed to infinity in 

the massless limit. 



Analogue of Vainshtein effect (mukohyama 2010)

• Spherically symmetric, static ansatz

• Two branches

• “-” branch recovers GR in the l 1 limit

without z>1 terms



• Numerical integration in the “-” branch

with b(x=0)=1, r(x=0)=1, r’(x=0) given

• Misner-Sharp energy

Analogue of Vainshtein effect

x x

R bfor

l-1=10-6 

r’(x=0)=2

  
221 1 '

2

r
m rb   

 

almost constant
r

m

10000

GR is recovered!



• (3l-1)b2 << (l-1)

perturbative regime, 1/r expansion

• (3l-1)b2 >> (l-1)

non-perturvative regime, recovery of GR

• (3l-1)b2 ~ (l-1) with b2~rg/r  r~rg/(l-1)

analogue of Vainshtein radius

r~
r
g /(l

-1
)

GR non-GR

dynamical

Izumi & Mukohyama 2009

“Steller center is dynamical”

choose the “-” branch

Analogue of Vainshtein effect (mukohyama 2010)



Fate of scalar graviton

   
2 2

, ,
1 1

Pl
i

M
L f g V D


 l 

l l

  
       

2~ cL 

Local in time, no time derivative

Non-local in space, each term has the same # of 

spatial derivatives in denominator and numerator

Independent of l

No time derivative

l 1

subleading

• Looks like a minimally coupled FREE field

with sound speed = 0

• Scalar Graviton  “Dark Matter”



Nonlinear cosmological 

perturbation and l 1
arXiv: 1105.0246 [hep-th] with K.Izumi

arXiv: 1109.2609 [hep-th] with E.Gumruhcuglu & A.Wang

• HL gravity  + a scalar matter field

• Flat FRW background

• Nonlinear cosmological perturbation 

• Gradient expansion up to any order

• Regular and continuous in the l 1 limit

• Recovers GR+DM+scalar field in the l

1 limit


