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Implication of GW170817 on
gravity theories @ late time

|(cqu—c,)/ c,| <10

Horndeski theoy (scalar-tensor theory with 2"4-order eom):
Among 4 free functions, G,(¢,X) & G:(¢,X) are strongly constrained. Still
G,(0,X) & G5(¢,X) are free. X =-5¢0 ¢

Generalized Proca theory (vector-tensor theory

Among 6 (or morez free functions, G,(X) & GS(X}'are strongly constrained.
Still G,(X,FY,U), G5(X), G¢(X), g<(X) are free. X =-A“A,

Horava-Lifshitz theory (renormalizable quantum gravity):
The coefficient of R®)is strongly constrained
- IR fixed point with Cow = C,? How to speed up the RG flow?

Ghost condensation (simplest Higgs phase of gravity):
No additional constraint

Massive gravity (simplest modification of GR):
Upper bound on graviton mass = 10-2%eV
Much weaker than the requirement from acceleration

c.f. “All” gravity theories (including general relativity):

The cosmological constant is strongly constrained = 10-1%9,
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* Scalingdimot ¢ . Renormalizability
t Dbt ( )

X =2 bx

» Gravity Is highly non-
1+3-2+2s =0 linear and thus non-
renormalizable
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* Anisotropic scaling

t > Dbt ( ) «Forz=3,
X =2 b X

are
z+3-2z2+25 =0 renormalizable!
S = -(3-2)/2

» Gravity becomes
renormalizable!?



HL gravity realizes and thus is power-
counting renormalizable

with any number
of spacetime dimensions [Barvinsky, et al. 2016]

Ostrogradsky ghost is absent and thus HL gravity is

In 2+1 dimensions HL gravity is
Lorentz-invariance is broken @ UV

Lorentz-invariant IR fixed-point is generic [Chadha &
Nielsen 1983] (and may apply to GW as well; cf. |cy,* — ¢ |
< 10% from GW170817) but running is slow (logarithmic)

SUSY or/and strong dynamics can speed-up the RG
running towards Lorentz-invariant IR fixed-point



Horava-Lifshitz Cosmology: A Review, arXiv: 1007.5199

The z=3 scaling solves the horizon problem and
eads to (almost) scale-invariant cosmological
nerturbations without inflation (Mukohyama 2009).

Higher curvature terms lead to
(Calcagni 2009, Brandenberger 2009).

Higher curvature terms (1/a°, 1/a*) might make the
(Kiritsis&Kofinas 2009).

The initial condition with z=3 scaling may
(Bramberger, Coates,
Magueijo, Mukohyama, Namba and Watanabe 2017)

Absence of local Hamiltonian constraint leads to
DM as integration “constant” (Mukohyama 2009).




Horava-Lifshitz Cosmology: A Review, arXiv: 1007.5199

The z=3 scaling solves the horizon problem and
leads to (almost) scale-invariant cosmological
perturbations without inflation (Mukohyama 2009).

Higher curvature terms lead to
(Calcagni 2009, Brandenberger 2009).

Higher curvature terms (1/a°, 1/a*) might make the
flatness problem milder (Kiritsis&Kofinas 2009).

The initial condition with z=3 scaling may

(Bramberger, Coates,
Magueijo, Mukohyama, Namba and Watanabe 2017)

Absence of local Hamiltonian constraint leads to
DM as integration “constant” (Mukohyama 2009).



Horava-Lifshitz Cosmology: A Review, arXiv: 1007.5199

The z=3 scaling solves the horizon problem and
leads to (almost) scale-invariant cosmological
perturbations without inflation (Mukohyama 2009).

Higher curvature terms lead to
(Calcagni 2009, Brandenberger 2009).

Higher curvature terms (1/a°, 1/a*) might make the
(Kiritsis&Kofinas 2009).

The initial condition with z=3 scaling may

(Bramberger, Coates,
Magueijo, Mukohyama, Namba and Watanabe 2017)

Absence of local Hamiltonian constraint leads to
DM as integration “constant” (Mukohyama 2009).










Horizon Problem
& Scale-lnvariance
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« ®?>>H?: oscillate H = (da/dt) / a
®? << H? : freeze a : scale factor

»? =k?/a? leads to d?a/dt? > 0
Generation of super-horizon fluctuations requires
accelerated expansion, i.e. inflation.



« ®?>>H?: oscillate H = (da/dt) / a
®? << H? : freeze a : scale factor

»? =k?/a? leads to d?a/dt? > 0
Generation of super-horizon fluctuations requires
accelerated expansion, i.e. inflation.

« Scaling law
t >2bt ( )

X =2 b x j>

Scale-invariance requires almost const. H, I.e.
Inflation.




New story with z=3

Mukohyama 2009
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OK for a~tP with p > 1/3
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Mukohyama 2009

®? =M-+kb/a® leads to d?(a3)/dt> > 0
OK for a~tP with p > 1/3

« Scaling law
t > b3t ( )

X =2 b X
—)

Scale-invariant fluctuations!
» Tensor perturbation P, ~ M2/Mg?
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New Quantum Gravity

New Mechanism of

Primordial FIuctuatlons :
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v Scale- Invana;nce Guaranteed “g

v Slight'scale- dependenceﬁgiculable

v Predicts relatively farge non-Gaussianity
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“Vainshtein screening” In
projectable (N=N(t)) HL gravity

* Perturbative expansion breaks down in the A
- 140 limit. Lyin = KIK; — AK?2

* Non-perturbative analysis shows continuity
and GR Is recovered in the A - 1+0 [Imit.



L= f( J j+g(§ 1) ;'i —\{Y(g D.) + matter
'\ \subleadlng Independent of A

No time derivative

Local in time, no time derivative
Non-local in space, each term has the same # of
spatial derivatives in denominator and numerator

— | — C:,/CZ + matter

A1

“Canonically normalized” scalar graviton
decouples from the rest of the world.



Lin = KIK; — AK?

v Spherically-sym, static, vacuum (Mukohyama 2010)
v Spherically-sym, dynamical, vacuum (Mukohyama 201?)
v Spherically-sym, static, with matter (Mukohyama 201?)

v’ General super-horizon perturbations with matter (1zumi-
Mukohyama 2011; Gumrukcuoglu-Mukohyama-Wang 2011)



* Perturbative expansion breaks down in the A
- 1+0 limit. Lyin = KIK; — AK2

v Spherically-sym, static, vacuum (Mukohyama 2010)
v Spherically-sym, dynamical, vacuum (Mukohyama 201?)
v Spherically-sym, static, with matter (Mukohyama 201?)

v’ General super-horizon perturbations with matter (1zumi-
Mukohyama 2011; Gumrukcuoglu-Mukohyama-Wang 2011)

* “Vainshtein radius” can be pushed to infinity
In the AL = 1+0 limit.



Horava-Lifshitz Cosmology: A Review, arXiv: 1007.5199

The z=3 scaling solves the horizon problem and
eads to (almost) scale-invariant cosmological
nerturbations without inflation (Mukohyama 2009).

Higher curvature terms lead to
(Calcagni 2009, Brandenberger 2009).

Higher curvature terms (1/a°, 1/a*) might make the
(Kiritsis&Kofinas 2009).

The initial condition with z=3 scaling may

(Bramberger, Coates,
Magueijo, Mukohyama, Namba and Watanabe 2017)

Absence of local Hamiltonian constraint leads to
DM as integration “constant” (Mukohyama 2009).



3K
9 |

A

3H? = 87Gp
a

* A does not decay - “Why is
A as small as 8nGp now?”

« K/a? decays but only slowly =2
“Why is K/a? smaller than 8xGp
now?”



3K
9 |

3H? = 87Gp A

a

* A does not decay - “Why is
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« K/a? decays but only slowly =2
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now?”

We shall consider the flatness problem.
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3H? = 87Gp

a

* |f p does not decay for an extended period
then flathess problem solved -

* If K/a? << 8nGp initially then flatness
problem solved -

We shall consider the second possibility.




* Initial condition set by e.g. guantum tunneling

* O(4) symmetric instanton
9

« Three terms in 3H? = 8xGp — 3K/a?
are of the same order initially.



* Initial condition set by e.g. guantum tunneling

* Instanton with z=3 anisotropic scaling, which
we call an anisotropic instanton
9
2> T~ M43

e T<<LIfL<<1/M



Horava-Lifshitz gravity is renormalizable and likely to
be unitary, and thus is a candidate for UV complete
theory of quantum gravity.

Lorentz-invariance can be restored at IR fixed-point.
SUSY or/and strong dynamics can speed-up the RG
running to match with phenomenology.

tis likely that GR (+DM) is recovered inthe A 2 1
Imit due to nonlinear effects. [c.f. Vainshtein effect]

Horizon problem can be solved and (almost) scale-
iInvariant cosmological perturbations can be
generated without inflation.
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* LV gravity: GR + timelike unit vector u+
9

* Low-E limit of non-projectable HL gravity
9

M P uy = C19 “C g + C25a56 + 035355 — cquu g,
Lo = —M‘w , (Dat") (Dgu”) + A (gapu®u” + 1)
Y = 16 G f” 9 d'a | R(guw) + Lo (900 ")

S = S + [ Vo d'a] m(gw,w)}



Cij = C; +Cj Cijjk = Cj + Cj + C

« Stability & Gravi-Cerenkov & GW170817

(]. — (313) (2 + c13 + 302)

qgs = . qv = Ci4 qr = 1 —ci3
123
2 c123(2 — c14) 2 2c1 — c13(2¢1 — ¢13) 2 — 1
S c14(1 — ¢13)(2 4 ¢13 + 3c2) v 2¢14(1 — ¢13) 1 —ci3

- BBN : ;
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arXiv: 1802.04303 w/ Jacob Oost & Anzhong Wang

Strongest constraint €< GW170817

lc13| < 1071 Cij = Ci + ¢
* (Cy, Crq)-plane Gk et o

0<cia<25xX107° g

C14 f, C1
(C,, Cy4)-plane

Cla < 2.9 X 10_5
Co 5 0.095

Sensitivity O
not known In those range 0 Zx10% 4107 6 X107 5x10% 00000

C14




Light cone structure Is only emergent @ IR

Usual event/apparent horizons are also
emergent @ IR

Causal structure In the sense of past &
future still exists - clock field (Khronon).

There may still be the absolute causal
boundary, called
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Killing
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Light cone structure Is only emergent @ IR

Usual event/apparent horizons are also
emergent @ IR

Causal structure In the sense of past &
future still exists - clock field (Khronon).

There may still be the absolute causal
boundary, called

Does “universal horizon” form from
gravitational collapse? - Numerical study
of massless scalar with spherical symmetry



* For static BHs, a “universal horizon” is

characterized by 0 ,¢ =0, where (* is
the timelike Killing vector and ¢ is the clock

field (Khronon).

ds® = Yapdxdx? + D? (d92 + sin 92d<,02) .
a ab 01
k — gJ_ 8bq) & = \/;

k0.=0 <= od/or=0
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* Numerical study of gravitational collapse of
massless scalar with spherical symmetry

« Geometry outside the outer AH becomes
stationary

* Proper distance between the outer AH and the
outermost dUH along the aether-orthogonal
slicings keep increasing - the outermost dUH
IS evolving into a causal boundary? -
dUH = precursor of the universal horizon?



Formation of multiple pairs of dUHSs

New pair of dUHs keeps forming outside the
outermost dUH (but inside the outer AH)

No sign of disappearance of any of them

Proper distance between the outer AH and the
outermost dUH keeps increasing and there Is
no sign of slowdown

Proper distance between the outermost and
Innermost dUHs also keep increasing

Geometry on and outside dUHs stays regular






BACKUP SLIDES



HL gravity realizes and thus is power-
counting renormalizable

[Barvinsky, et al.
2016]

Ostrogradsky ghost is absent and thus HL gravity is

Lorentz-invariance is broken @ UV

Lorentz-invariant IR fixed-point is generic [Chadha &
Nielsen 1983] (and may apply to GW as well; cf. |cy,* — ¢ |
< 10% from GW170817) but running is slow (logarithmic)

SUSY or/and strong dynamics can speed-up the RG
running towards Lorentz-invariant IR fixed-point



. RG flow 2 LI @ IR [Chadha & Nielsen 1983]. RG
running may be speeded up e.g. by strong
dynamics.

. Supersymmetry protects low-E LI [Groot
Nibbelink & Pospelov 2004].

l. Low Lifshitz scale M << M, may suppresses
LV [Pospelov & Shang 2012] .



RG flow 2 LI @ IR [chadha & Nielsen 1983]. RG
running may be speeded up e.g. by strong
dynamics.

Supersymmetry protects low-E LI [Groot
Nibbelink & Pospelov 2004].

aw Lifshitz scale M << M, may suppresses

LV [Pospelov-&-Shang 2012] ..
[Coates, Melby-

Thaompson & Mukohyama 2018].






Horava (2009)

Basic quantities:
lapse , shift , 3d spatial metric

ADM metric (emergent in the IR)

ds? = -1N2dt? + g (dx' + N'dt)(dx! + N'dt)
Foliation-preserving deffeomorphism
t-=>t(t), x -2 x'(t,x)

Anisotropic scaling with z=3 in UV
t-=>b%*t, X2 bX

Ingredients In the action

\/_d X Ji D. R;

C.,=0iIn 3d
KJ_ZN tg” DN _DN) ( ijkl )



« Kinetic terms (2"d time derivative)

| Ndt/gd*x (K;K" - AK?)

potential terms (6™ spatial derivative)
_[th\/_d x[ DR,D'R* DRDR
RIR‘R, RR/IR}  R* ]

c.f. DR, DIR" is written in terms of other terms



« z=2 potential terms (4" spatial derivative)
|Ndt/gd’x[  R'R R? ]

« z=1 potential term (2"9 spatial derivative)

| Ndt/gd°x( R |

« 7z=0 potential term (no derivative)

det\/Ed:”x[ 1 ]



 Total action
WE y
I, = Tﬂ / Ndt\/gd’T (KY K;j — AK? —2A + R+ L,>1)

THLZM = (a1DiRjxD'R7* + coD;RD'R + ¢3R! RY R},
+csRRIR! + esR*) + (c6 R R: + c7 R?)
« 3d space may consist of several connected

pleces /d3* _ Z/ ey
Q 2o

« Common lapse N(t) and set of lapses & set
of 3d metrics

Ni:Nci(taf)a g’ij:g%(taf)a (feza)
* We are interested in one of X




Foliation-preserving diffeomorphism

= 3D spatial diffeomorphism
+

3 local constraints + 1 global constraint

= 3 momentum @ each time @ each point
+

Constraints are preserved by dynamical
equations.

We can solve dynamical equations, provided
that constraints are satisfied at initial time.



No local Hamiltonian constraint
Dynamical eq

3A—1 atHa 2 CE3K3 ()12K2 Ka
2 3HZ | = & @ ——— +A
2(N+“) af " ai a2’
ay = 4(cg + 3cr) /M, a3 = 24(cs +3ca +9¢5) /Mg,

15t integral - effective Friedmann eq

3(3)\ — 1)H2 _ Ca B OégKg)é B 30&2K§é B 3Ka —|—A
2 * al al at a?
(Mukohyama 2009)

Global Hamiltonian constraint

» Co=0



» Effective Friedmann eq with a, =0 = A
3(3\—1) C a3K® 3K

SRR Ry
* Imaginary-time r = zf N(tHhdt', K=1
33A\—1)(0;a)* C as 3
2 a2 a3  a® a2

* For small a, the last term can be dropped
33\—1) (0ra)*  C  az

i |
2 a? ad  ab

9 . ,1"° B 2
= o~ SvasT =207 ’ T\/3(3)\—1)T




analytic |
numerical , numerical

0.1  In(@/7.) ( ) 0.1 )

Wick rotation @ t = 1,
aTa|T:Tin =0 :

_ . 3

Ain = a(Tin) L Tin oc ain

for large C

as expected!
10 15

large C & small 1, & a,,



Solution is singular @ a=0 -> unable to rely
on semi-classical formula for tunneling rate

Quantum effects such as RG running should
be taken into account near a=0

The classical solution away from a=0 Is
unigue up to a constant shift of ¢

The scaling T o< L3 is robust and thus the
flathess problem may be solved



 Generalized Friedmann eq
|
H = A‘JOQ + M2f(|K|/a®>M?)
: P _ r, 0<z<kl)
p—I—SH(l—I—w.)p—.O f(x):{atz,(a:>>l)
e Curvature as fluid with
pk = = 3Mp°M?f(|K|/azM?)

» z=1 Friedmann eq recovered @ p = p,
3(14+w)

i) T

Pin

Pz—1 ™~ Pin (



For pz—1 < p < pin
Qp — PK x a3(1—|—w)—2z
P+ PK

T, 2 M4 %
o<y = () (21

. 4z
l.€. : 1 Mo M| 2z=30+Fw)
Pin Pl
2 2 > 2
M2 M Zeq Ténin | |
If we set z=3, w=0, M=Mj, then the requirement is
1/4
pin 1 MPI

2
> ~ 10°8
Mp Zeq (TCMB>

In UV complete theory we do not afraid of going
into highly trans-Planckian regime.






Dynamical case (mukohyama 2017)
IR action
AI%Z 3= ij 2
I, = T/th\/gd 7 (KijK"% — AK? — 2A + R)
Dynamical ansatz with N=1 & N'=0
gijda:ida:j — 2B(t) [62‘4@"”) dz? + dﬂg}
3A—1 |

Change of variable 5= B+ =4
EOM N (3)\ B 1)87"8753
t 20,8 — (A — 1)9,A
7B = (3)\1_ 5z [66) - (@B + 4 (0, B

—4(X—1)e%0,40, B — (3X — 1)(A — 1)(8; A)?
+(A =129 (0, 4)* + (3N — 1)*(A — )]
4 2

¢ = -3 A1

(M + B) D = [(A—1)A — 2B]
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« GRmayrecover @ IRIfA 2> 1

 The minimal HL gravity has a scalar
graviton in addition to tensor graviton.

* What happens to the scalar graviton in the
imit A 2> 17?



, power-counting renormalizability

@ RG flow
. seemstorecoverGRIffA =2 1
kineji\c term

1 4 ' A
167G | Ndt,/gd*x(K K" - 2K? +¢2R—2A )

note:
Renormalizablility was recently proved.
RG flow has not yet been investigated.



e (6+3)—-3-3=3
gi - 6 components
N': 3 components
X'=2>x'(t,x) : 3 gauge d.o.f.
0l/6N'=0 : 3 constraints

e 3=2+1
tensor graviton: 2 d.o.f.
scalar graviton: 1 d.o.f.



There are versions w/wo the projectability condition.
Horava’s original proposal was

Naive non-projectable extension is inconsistent
[c.f. Henneaux, et.al. 2009].

Inclusion of &, = (In N); (and thus more terms) in
the action can cure the non-projectable extension
[Blas, Pujolas and Sibiryakov 2009].

This talk Is based on the projectable version
without U(1) extension.




Linear instabllity of scalar graviton

Sign of (time) kinetic term (A-1)/(3A-1) > 0.
The dispersion relation in flat background
®? = C.%k? x [1+ O(k?/M?)] with ¢ .2 =-(A-1)/(31-1)<0
- IR Instabllity in linear level
(Wang&Maartens; Blas,et.al.; Koyama&Arroja 2009)

Slower than Jeans instability if

t~(Gyp) 2 <t ~Ll|cy| .

Tamed by Hubble friction or/and O(k?/M?) terms if
H1 <t or/and L < 1/M.

Thus, the linear instability

(@~-G\pL?)
for L > Max[0.01mm,1/M]
(Shorter scales - similar to spacetime foam)

Phenomenological constraint on properties of RG flow.



Perturbative vs non-perturbative
regimes

N=1, N;=0;B+n;, ¢gij= a’e?er (eh)z.j

¢r=0(q), hij =0(q), B=0(q"), ni=0(")

Momentum constraint

_ O
O(1-1)+0(q)
» Perturbative regime: q << (A-1)
breakdown in the A = 1 limit

* Non-perturbative regime: (A-1) << g<<1
responsible for recovery of GR

O



 Linearized analysis results in vDVZ
discontinuity of the massless limit.

 However, perturbative expansion breaks
down In this limit and cannot be trusted.

« Continuity Is not uniform w.r.t. distance. (e.g.
1/r expansion does not work.) However,
Vainshtein radius can be pushed to infinity in
the massless limit.



» Spherically symmetric, static ansatz
N =1, Ngdx'=B(z)dz, gydr'de’ =dx®+ r(z)*dQs
¥ R =p*D/@  without z>1 terms

7 A—1 (3)\—1)(6’)2}% (A_l)ﬁlR/ (R’)Q -
po AL [@DOFR O npw_ ]
B (A—DR (AN A BOUAL[(A-1)FE—1|(R) 0
5 or \5) TRE 0PI 0D _
 Two branches
B 1++1+4AB
8 2A )
A = ()\—I)R B \ )8()\—1)/)\_|_[(2)\_1)52_1](RI)2

ANR' RR' BA—1)B2+ (A —1)



* Numerical integration
with B(x=0)=1, r(x=0)=1, r'(x=0) given

for
A-1=10°
'(x=0)=2

* Misner-Sharp energ

m = %[1—(1—,82)(#)2}
almost constant

$




B 1++/1+44B

8 2A
4= A=DR o A OR[N - 1) — 1(R)?
- 4\R" ° 7 T RR BA-1)2+(A—1)

« (BA-1)B?% << (A-1)

perturbative regime, 1/r expansion
« (BA-1)B%>> (A-1)

non-perturvative regime, recovery of GR
* (3A-1)p? ~ (A-1) with B2~r /r >

analogue of Vainshtein radius

dynamical

® -~

lzumi & Mukohyama 2009
“Steller center is dynamical”

non-GR

(T-Y)/ 1~



L:_f( 3 j+g(§/1)_ ;'41 Y (¢D)

'\ \ subleading  Independent of A
No time derivative

Local in time, no time derivative
Non-local in space, each term has the same # of
spatial derivatives in denominator and numerator

E— =2
A=21 L é/c
* Looks like a minimally coupled FREE field

with sound speed =0



arXiv: 1105.0246 [hep-th] with K.lzumi
arXiv: 1109.2609 [hep-th] with E.Gumruhcuglu & A.Wang
HL gravity + a scalar matter field
Flat FRW background
Nonlinear cosmological perturbation
Gradient expansion up to any order
Regular and continuous in the A =2 1 limit




