New Experimental Searches
for Dark Matter

Surjeet Rajendran,
UC Berkeley



Dark Matter

A New Particle

Non gravitational interactions?



Dark Matter

A New Particle

Non gravitational interactions?

How do we detect them?

Weak effects. Need high precision
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Precision Instruments

Impressive developments in the past two decades

Current
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Magnetic Field é 10_16L Accelerometers é 10_13

VHz

(SQUIDs, atomic magnetometers) (atom and optical

interferometers)

Rapid technological advancements

Use to detect new physics!?
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The Dark Matter Landscape

bosonic WIMPs
|0-43 GeV |0-22 eV 100 eV  102GeV |018Gey 033 GeV [[4028(:(;2/
(yr-") (SM) ( )
Fit in galaxy

Standard Model scale ~ 100 GeV

One Possibility: Same scale for Dark Matter?
Weakly Interacting Massive Particles (WIMPs)
Soon to hit solar neutrino floor

Axions, Massive Vector Bosons, Dark Blobs!?

WIMP Experiments: Sensitive up to 108 GeV
Terrestrial: up to 1033 GeV

How do we make progress?



Outline

1. Ultra-light Dark Matter (1022 ¢V - 105 €V)
2. Directional Detection of Dark Matter
3. Magnetic Bubble Chambers

4. Ultra-heavy Dark Matter (1016 GeV - 1033 GeV)

5. Conclusions
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Early Universe:
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Bosonic Dark Matter

Photons Dark Bosons
Early Universe: Today:
Misalighment Mechanism Random Field
V
.
a
E = Eycos (wt — wz)
Detgct Photon bx a(t) ~ ap cos (mqt) Correlation length
measuring time varying ~ 1/(ma v)
field Spatially uniform, oscillating field

Coherence Time
~ | s (MHz/m,)

Detect effects of oscillating dark matter field

Resonance possible. Q ~ 10¢ (set by v ~ 10-3)
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What kind of Bosons?

Naturalness. Structure set by symmetries.

"4 N

Spin 0 Spin |
Axions or ultra weak coupling Anomaly free
Many UV theories Standard Model couplings
Spin Higgs Spin E&M Current
(f%FF) (#30@) (5 (goH?)  (FNen) (#)(o4,05 )
General QCD General Higgs Portal/ Dipole Kinetic B.L
Axions Axion Axions Relaxion moment Mixing

Dark Matter = a = ag cos (mgt)

a/c signal between 10-7 Hz - 10 GHz
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Observable Effects

What can the dark matter wind do!?

What can a classical field do?

Drive circuit I I

SQUID
pickup

C

@

loop

Dark Matter

Spin Precession
Oscillating Dark

Matter Field
(just like oscillating | |
EM field from CMB) Exert Force Optical /atomic
interferometry

L
@<

_y_

Change Fundamental Constants

a/c effect, narrow bandwidth around dark matter mass
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CASPEr: Axion Effects on Spin

General Axions

Neutron in
Axion Wind

(8faa NV“%N)

Hy D %?}z.gj\]

Spin rotates about
dark matter velocity

Effective time varying
magnetic field

Bers S 1071 cos (mgt) T

Other light dark matter (e.g. dark photons) also
induce similar spin precession

Measure Spin
Rotation,

. detect Axion
U

QCD Axion

Neutron in
QCD Axion Dark Matter

QCD axion induces electric dipole moment
for neutron and proton

Dipole moment
along nuclear spin

Oscillating dipole: d ~ 3 x 1073* cos (mqt) ecm

Apply electric field, spin rotates
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CASPE«+

Axion affects physics of nucleus, NMR is sensitive probe

il
SQUID 2and
pickup A2

loop
/ / / / axion “wind”’ 77&

OR E*

l

s

ext

Larmor frequency = axion mass = resonant enhancement

SQUID measures resulting transverse magnetization
NMR well established technology, noise understood, similar setup to previous experiments

Example materials: LXe, ferroelectric PbT1O3, many others
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CASPEr-ZULF Results
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10-4 nuclear polarization, 24 hr integration time
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Dark Photon Dark Matter

Many theories/vacua have additional, decoupled sectors, new U(1)’s

Natural coupling (dim. 4 operator): £ D cFF’

mass basis:

1 1
L= 7 (FuF™ + Fp F™) + om3 AL A™ — edpy (A +e A))

photon with small mass and suppressed couplings to all charged particles

oscillating L’ field can drive current
(dark matter) behind EM shield



Dark Matter Radio Station

oscillating L’ field
(dark matter) shield

A A

-

v } C

Tunable resonant LC circuit
(a radio)




EXPECTED REACH
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Surjeet Rajendran, UC Berkeley



DM Radio first data!

A f0=498.77 kHz, Q=2805

—Data
 Fit

Noise PSD (u® /Hz ")

SQUID noise
floor

111111111111111

490 435 500 505 510
Frequency (kHz)

9 hr integration time
Q limited by aluminum wire bonds - replace with niobium. Use new SQUID



Dark Matter Detection with
Accelerometers

with

Peter Graham
David Kaplan
Jeremy Mardon
William Terrano



B-L Dark Matter

Other than electromagnetism, only other anomaly free standard model current

1 1
L=—7 (FuF")+omy ALAY — gy LA,

Protons, Neutrons, Electrons and Neutrinos are all charged
Electrically neutral atoms are charged under B-L

Force experiments constrain g < 10-21



B-L Dark Matter

Other than electromagnetism, only other anomaly free standard model current

1 1
L=—7 (FuF")+omy ALAY — gy LA,

Protons, Neutrons, Electrons and Neutrinos are all charged
Electrically neutral atoms are charged under B-L

Force experiments constrain g < 10-21

oscillating L’ field can accelerate
(dark matter) atoms

Force depends on net neutron number - violates equivalence
principle. Dark matter exerts time dependent equivalence
principle violating force!



The Relaxion

LD (—]\42 —|—ggb)\h|2 + gM?p + g*d* —|—---—|—A4cos?

Hierarchy problem solved through cosmic evolution - does not require any
new physics at the LHC

¢ 18 a light scalar coupled to higgs with small coupling g
ge

— —Myqq
v
Dark matter ¢ = ¢ = ¢gcos (my (t — V.7))

Time variation of masses of fundamental particles

gV gmeV
mq ~J mq
TV v

— force on atoms

Force violates equivalence principle. Time dependent equivalence principle
violation!



Detection Options

Measure relative acceleration between different elements/isotopes.

Leverage existing EP violation searches and work done for
gravitational wave detection

Torsion Balance

T T

Force from dark matter causes
torsion balance to rotate

Measure angle, optical
lever arm enhancement

) )
] f\
- \‘ J‘G ) I‘.- “ *G )

l‘_," 4o l‘_," 4.
\

Atom Interferometer

Dark Matter

S@< @<

B4
st

Differential
free fall SN\
acceleration Ner T

d N
- o\ Y

Stanford Facility
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Pulsar Timing Arrays

Pulsars are known to
have stable rotation - can
be used as clocks

Presently used to search
for low frequency (100
nHz) gravitational waves.

Pulsar signal modulates
due to gravitational wave
passing between earth
and the pulsar

Force by dark matter causes relative acceleration between Earth and
Pulsar, leading to modulation of signal

Relaxion changes electron mass at location of Earth - changes clock
comparison



Projected Sensitivities
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B-L vector
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Torsion Balance limited by fiber thermal noise
Atom interferometers by shot noise
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The Dark Matter Landscape

bosonic WIMPs
10-43 GeV 10-22 eV 10-4 eV 100 eV 102 GeV 1019 GeV
(yr-) (100 GHz) (SM)
Fit in galaxy l

Axions, Hidden photons etc. Close tie to Weak Scale Physics,

Classical Field Dark Matter Thermal Freeze-out
X X
Coherent over T~ Us - 10° years.

Enough time to build phase ~ (OE) T.
ADMX, CASPEr, DM-Radio N N

Hard scattering, |0 - 100 keV energy
deposition, probing higgs exchange

\ This Tall — Beyond solar neutrinos?
IS 1aIK

What about 10-4eV - GeV?




Directional Detection of Dark
Matter with Crystal Defects

with
Misha Lukin, Alex Sushkov, Ron Walsworth and Nicholas Zobrist
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Coherent Neutrino Scattering X,V

Neutrinos and WIMPs XV

have similar scattering

topologies - rare, single

particle collision with
detector

/

Sun produces neutrinos.
Irreducible background.

Go beyond next generation!?

Isotropic Dark Matter. Know
location of Sun.Veto nuclear
recoils coming from Sun’s
direction

- s
WIMP-nucleon cross section [em~)
WIMP-nucleon cross section [pb]

| 10 100 1004) |()l(
WIMP Mass [GeV/c?|

Challenge: Big Target Mass. Need directional detection at solid state density.
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Collision Aftermath

Tell-tale damage cluster well correlated with direction of initial ion,
localized within ~ 50 nm

Typical Damage Cascade

0.6 -
. . . . Damage location probability
Results of TRIM simulation, 30

keV initial ion 0.4 -

Typical damage cascade

0.2

O(200 - 300) vacancies and
interstitials, lattice potential ~ 30

Normalized Damage Scatter
o

eV 3. '
0.2 -
Damage cascade well correlated

with direction of input ion 04 ]
Need nano-scale measurement of 0p
damage cascade ‘

llfl]l'!!]ll'!ll'l']'l'l'.

0 0.2 0.4 0.6 0.8 1

Normalized Damage Length
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Nitrogen Vacancy Center in Diamond

Vacancy electron’s

.............‘ transitions can be optically
CECTCCOTCTLOTED studied

CoeBREL o RNRL e LD
COLLLDOCLOOED

‘= Nitrogen .= Carbon @ = Electron
Collect light

Probe Laser

Electronic levels sensitive to crystal environment ~ 50 nm scale

~ | per (30 nm)3 of NV centers in bulk diamond demonstrated
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Nitrogen Vacancy Center in Diamond

Vacancy electron’s

.............‘ transitions can be optically
CECTCCOTCTLOTED studied

CoeBREL o RNRL e LD
COLLLDOCLOOED

‘= Nitrogen .= Carbon @ = Electron
Collect light

Probe Laser

Electronic levels sensitive to crystal environment ~ 50 nm scale

~ | per (30 nm)3 of NV centers in bulk diamond demonstrated

Nano-scale measurements experimentally demonstrated. Active
development of sensors by many groups around the world.

Can this be used for directional detection? What is the effect of the
damage cascade on a NV center?

Note: similar phenomenology applies to F-centers of Metal Halides
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Damage Cascade and NV Centers

Damage leads to strain in crystal.
Strain shifts transition line

1
Strain: Vu oc — xO (100 — 300)
r
— M ’
’— Nitrogen . = Carbon @ = Electron (Hooke’s Law)
) NV Center Frequency Shift
. ® Duia TRIM simulation of damage
i — TR — . .
012 | cascade - calculate strain using
0.1 ] | Hooke’s law
- 174 Interstitials; damage
. containad Ir a 50x30 nm
0.08 — tox

NV center shift ~ 100 kHz @ 30 nm
Natural line width ~ kHz

Average Frequeney Shilt ME

Single NV center has sensitivity to
cascade!

Distance from Damage Center nm
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Detector Concept

WIMP
Large detector, segments of thickness ~ mm

sectioned
detector
crystal

NV center density ~ | per (30 nm)3

i
\al

)\

) Conventional WIMP scattering ideas (scintillation,

pull out ionization etc.) to localize interesting events
section

scattering event

i

Expect few events/year that could be WIMP or
neutrinos

Pull out segments of interest. Conventional

scanning . . .
MiCroscope ’ schemes localize events to within mm
objective

Micron-scale localization by simply shining
light - damaged area will have measurable
frequency shifts

detector \

section | damage track
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WIMP

sectioned
detector
crystal

\

i

scatterin

7

g event

\&

I

scan

)\

ning
microscope
objective

detector
section

Detector Concept

Large detector, segments of thickness ~ mm
NV center density ~ | per (30 nm)3

) Conventional WIMP scattering ideas (scintillation,

pull out ionization etc.) to localize interesting events
section

Expect few events/year that could be WIMP or
neutrinos

Pull out segments of interest. Conventional
schemes localize events to within mm

Micron-scale localization by simply shining
light - damaged area will have measurable
frequency shifts

=1 mm

For nano-scale resolution, apply external
magnetic field gradient - hence need
segmentation
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Take crystal. Grid of NV centers with density | per (30 nm)3

Run ~ 1000 TRIM simulations, get cascade for each. Can grid distinguish
direction (including head vs tail)?

. Likelihood of Asymmentric Damage — Expected Fraction of False Positives After Direction Cut
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Results

Take crystal. Grid of NV centers with density | per (30 nm)3

Run ~ 1000 TRIM simulations, get cascade for each. Can grid distinguish

direction (including head vs tail)?

Likelihood of Asymmentric Damage
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keV, efficiency > 80%, false positive < 4%



Fraction of evants with asymmatry > x

Results

Take crystal. Grid of NV centers with density | per (30 nm)3

Run ~ 1000 TRIM simulations, get cascade for each. Can grid distinguish

direction (including head vs tail)?

Likelihood of Asymmentric Damage

m— J() <2V
1.8+ 20 1eV
) 10 @V
Lol 5 keV

— ] keV

r. 1 1 ) 1 l ) 1 ) I ) 1 | 1 ) 1 I 1 ) 1 l ) 1 ) I )
0 C.5 1 1.5 2 2.5 J 3.5 R) 4.t
Asvmmelry [number of events n i2il/ number of evenisin head|

Expected Fraction of False Positives After Direction Cut

— 30 kel

o 200 keV

2.06 4
1 (¢ eV
5 keV
005 | w1 keV

fraction of data passing autthat ara false poasitives

5 2.3 cdz2 03 0.32 2.38 c4 042 042 D.4€ 2.48 C5
fraclion of damage directiors passing cut

More damage in tail vs head used for discrimination. Above |0
keV, efficiency > 80%, false positive < 4%

5 O detection with few events!



Magnetic Bubble Chambers

with
Phil Bunting, Hao Chen, Giorgio Gratta, Michael Nippe, Jeffrey Long, Rupak
Mahapatra and Tom Melia
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The Dark Matter Landscape

ADMX, CASPEr, DM Radio WIMPs

|0-43 GeV |0-22 eV |04 eV 100 eV 102 GeV 1019 GeV

(yr-) (100 GHz) / (SM)

What about this range!?

Coherence time of signal too short for phase measurement to
work. Energy deposition too small to be been using conventional
WIMP calorimeters

Need amplification of deposited energy (meV - keV)

Challenge: Need large target mass. Rare dark matter event. Requires amplifier
stability > years
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Concept

Consider magnet with all

TTTTTTTTTTT

excited state with energy
~gHB

Dark Matter collides,
deposits heat. Causes
meta-stable spin to flip

Spin flip releases stored Zeeman energy (exothermic). Released
energy causes other spins to flip, leading to magnetic deflagration
(burning) of material.

Amplifies deposited energy. Like a bubble
chamber. Is this possible? Stability?
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Single Molecular Magnets

Will not happen in a ferromagnet -
spins are strongly coupled.

Need weak spin-spin coupling. But
need large density - necessary for
heat conduction. Can’t use gas.

Organo-Metallic complexes.
Central metal complex surrounded
by organic material.

Weak coupling between adjacent
metal complexes - but still large
density

Each molecule acts as an independent magnet

Recently discovered systems. Few 100 known examples. Can make large samples.
Magnetic deflagration experimentally observed and well studied in Manganese
Acetate complexes
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Magnetic Deflagration

Ueyy
) [+ ) =)

System well described by 2 level Hamiltonian.
Two states separated by energy barrier.

Turn on magnetic field, metastable state decays to ground state through tunneling
T X 1o exp (Uest/T)

Ultra-long lived state at low temperature - localized heating
rapidly decreases life-time, decay results in more energy release
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Condition for Deflagration

Initially heat region of size Ato T

~

Spin flips, releases energy,

Thermal Diffusion, lowers T .
increases |

™ X \ T X 7o exp (Uegr/T)
Deflagration occurs as long as we heat a sufficiently large region

Uer and To sets the detector threshold. Short Toand small Ue means
tiny energy deposit will sufficiently heat up material to trigger
deflagration. Low threshold

Known examples with To ~ 10-13 s, Uer ~ 70 K, enabling 0.01 eV
thresholds
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Detector Stability

High energy (> MeV) background from radio-active decays.

Detect MeV events using conventional means. Actual background at
low energy very low - forward scattering of compton events

Problem: MeV events will constantly set off detector. Reset time vs
operation time! Big problem for bubble chambers like COUPP

Expected background ~ |/(m? s). Initial detector size ~ (10 cm)3 (kg
mass), | background event ~ 100 s

With precision magnetometers,
don’t need entire crystal to flip

Within ~ 10 s, flame ~ 10 - 100
Im. Visible with SQUID.

B Shut off B, turn off fuel.
Deflagration stops. Lose ~ (10 -
100 pm)3 of volume every 100 s.



Potential Reach
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Trial using Mn-Ac

B  Hall Sensor
Reversible B -



Trial using Mn-Ac

B  Hall Sensor
Reversible B -

Metastability! Deflagration?



Trial using Mn-Ac

B  Hall Sensor
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Data

Magnetization survive reversed field at 1.6 K

from Trial Run
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Searching for Ultra-Heavy
Dark Matter

Surjeet Rajendran,
UC Berkeley

(with Dorota Grabowska and Tom Melia)



The Dark Matter Landscape

bosonic WIMPs

|0-43 GeV 1022 eV 100 eV 102GeV 108 GeV 1033 GeV 0% GeV
(yr-) (SM)
Fit in galaxy

Standard Model scale ~ 100 GeV

Same scale for Dark Matter?
Weakly Interacting Massive Particles (VWIMPs)

WIMP Experiments: Sensitive up to 108 GeV

What if dark matter is super heavy?

Low number density - need large detectors.

Terrestrial: up to 1033 GeV



Outline

1. Theory and Phenomenology
2. Constraints

3. Detection
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Ultra-heavy Dark Matter?

Large composite blob

Weak constraints on self-
Interactions of dark matter

Strong self-interactions in
dark sector

Efficient nucleosynthesis? Primordial production? Galactic
evolution?

Observational Effects?
Key Point: Lots of dark matter partons packed into single blob

Rare but potentially spectacular transit
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What does the blob look like!?

Self-Interaction Scale A, Parton Mass ~ A

PN

Fermionic Bosonic

1
R~ =
. A

LD gydXX LD g Apx™x
Standard Model Interactions

1
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Observational Effects

/.\

Short Range Long Range
T < Ap 1> Ap
Dark Matter scatters, Blob sources classical field
deposits energy.
Calorimetry

Use detectors of ultra-light

. dark matter
Compositeness could

enable multiple scattering
Leverage: C > Vdm > Vhuman

Constraints?
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Short Range

Scattering at the partonic level

Parton transfers momentum to blob

Form factor for g >> 1/ry ~ A

M >> mn, kinematics set by mn

q d = Min[mnv, A]

Key Point: A <300 keV => soft energy transfer, no ionization

This Work: 10 keV <A <10 MeV

Goal: Robust parameter space, targeted experimental signals
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Short Range: Bosonic Blob

R~1/A

10 keV<A<10 MeV =>q~1/R

Cross-section Coherently Enhanced

X ——> N Easily geometric o = 1/A?

dE A? 1 Nm
— =7, | — | —= = — ~ keV
dr (mN> A2 mpy eV/em

Form depends on A - ionize for A > 300 keV, heat below that
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Short Range: Fermionic Blob

R ~ N13/A

Coherent enhancement only for soft
scattering => low energy deposition

Lots of partons => multiple
scattering possible

X —_— N

q

B () (Bt () (A
dr ™ A u ma,v2 my

Form depends on A - ionize for A > 300 keV, heat below that
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Take Range 1/ >> Blob size R

Blob sources classical field gy N/r

Exerts Force

Energy Loss in Medium due to dynamical friction
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Long Range

Exerts Force

1 3
_ m I3 2 v
gNONN (jl—E ~ 27?/ drrn,my ( (r) i) X (—)
L 0

(when adiabatic)

Causes Spin Precession

1 _
— 9, 6N~ N
farv

Induces Strain

—&MFMVFMV h N gXN
rM
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Constraints

Bullet Cluster Bounds.

. . For short range, no constraints on bosons.

Not relevant if blob < 10 percent of dark matter

Blob - baryon friction bounded by BAO. Not a
significant constraint.

No instability from ¢

1 <~ 1

< _—
gxsm gX%N%

(bosonic) (fermionic)
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Mediator coupling to Standard Model constrained by new force
searches, astrophysical bounds on light particles, collider limits
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(A > 300 keV)
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MACRO=> dE/dx < 6 MeV/cm

Huge Volume?

& i

Hydrophones: dE/dx ~ keV/A

Detection

Short Range

Acoustic
(A <300 keV)

Low threshold calorimeter like
CDMS

Line of hot cells

Energy depositions ~ keV/cm
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Detection
Long Range
Rare Transit of Heavy

Dark Matter Classical field created by dark matter -
correlated excitation of multiple detectors

Same class of effects as light dark matter -
excitation of currents, spin precession, acceleration,
variation of fundamental constants




Detection
Long Range
Rare Transit of Heavy

Dark Matter Classical field created by dark matter -
correlated excitation of multiple detectors

Same class of effects as light dark matter -
excitation of currents, spin precession, acceleration,
variation of fundamental constants

Instead of continuous, coherent a/c effect, look for
correlated transients in network

Up to dark matter mass ~ 108 gm
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Conclusions



The Dark Matter Landscape

bosonic WIMPs
|0-43 GeV |0-22 eV 100 eV 102 GeV |08 GeV 1033 GeV 1048 GeV
(yr-) (SM)

Poor observational constraints on dark matter

Significant opportunity to probe dark matter from 10-22 eV - 1033 GeV

Possible to probe above 1033 GeV using astrophysical systems -
particularly white dwarfs



