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Introduction:  
The swampland program



The swampland program

swampland

landscape

theory space 

How do we define this boundary?

Landscape: Set of EFTs consistent with UV completion in quantum gravity


Swampland: Set of EFTs inconsistent with UV completion in quantum gravity


String theory provides a large number of consistent vacua, with different sets of

low-energy laws of physics. But it does not completely populate the space of 

all possible EFTs.   



How to find the boundary of the landscape?

1. Observe examples in string theory and make conjectures


• Example: Weak Gravity Conjecture


2. Prove bounds from infrared physics principles

• Unitarity

• Causality

• Analyticity 

• Examples:


• Einstein-Maxwell theory

• Higher-curvature gravity (    ,      terms)

• Massive gravity

•          and       couplings


This paper:  
Prove the Weak Gravity Conjecture using a new IR argument 

related to black hole entropy.  


Cheung, GNR [1601.04068]
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Introduction: The Weak Gravity Conjecture

• An ultraviolet consistency condition for quantum gravity.


• Statement: For any          gauge theory coupled consistently with quantum

 gravity, there must exist in the spectrum a state with charge     and mass

 such that 


• Thus, “gravity is the weakest force”.
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Original justification:


A black hole of charge     and mass

can only decay into states satisfying


Extremal BH decay        WGC


Why BH decay? BH remnant pathologies
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Thermodynamics  
thought experiment



Comparing systems

Consider two systems:

same 

macrostate  

T̃ T



Comparing systems

Consider two systems:
System without 


extra microstates 
System with


extra microstates  

Entropy:


System with extra modes has greater entropy:

SS̃

�S = S � S̃ > 0



Black hole entropy comparison

We can compute the black hole’s entropy in two situations:
Theory     without 


higher-derivative terms
Theory                      with

higher-derivative terms 

Q, MQ, M
same

Present in theory in UV: 

Massive states that generated higher-curvature terms   


Integrated out to generate EFT


Compare entropy in the two theories:


L̃ L = L̃+�L

�S = S � S̃ > 0



Black hole entropy comparison

We can compute the black hole’s entropy in two situations:

Pure Einstein-Maxwell theory IR EFT

Q, MQ, M
same

�r

Area     dictated by Einstein equation


Entropy

Area                       dictated by higher-
derivative-corrected Einstein equation


Entropy given by Wald’s formula:


Ã

S̃ = Ã/4G

A = Ã+�A

S = �2⇡

Z

H

�L
�Rµ⌫⇢�

✏µ⌫✏⇢�



                Pure Einstein-Maxwell theory


Other types of terms that we can drop:

• All terms involving           , since the Bianchi identities allow


us to write these in terms of                    and terms already

included  


• Dimension-independent total derivatives

Einstein-Maxwell effective action

IR EFT

eL =
1

22
R� 1

4
Fµ⌫F

µ⌫ L = L̃+�L

r⇢Fµ⌫

rµF
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                Pure Einstein-Maxwell theory


We will prove a positivity bound on a combination of the    .


We’ll then demonstrate, surprisingly, that this bound precisely implies the 
Weak Gravity Conjecture.

Einstein-Maxwell effective action

IR EFT

eL =
1

22
R� 1

4
Fµ⌫F

µ⌫ L = L̃+�L

�L = c1R
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+ c7Fµ⌫F
µ⌫F⇢�F

⇢� + c8Fµ⌫F
⌫⇢F⇢�F
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Proof of         �S > 0



For the purposes of this proof, we assume:


1. There exist quantum fields     at a mass scale       satisfying

                                                              ,


where      is the scale at which QFT breaks down.

In general,     can be much smaller than the Planck scale.
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Assumptions



For the purposes of this proof, we assume:


1. There exist quantum fields     at a mass scale       satisfying

                                                              ,


where      is the scale at which QFT breaks down.

In general,     can be much smaller than the Planck scale.


2. The fields     couple to photons and gravitons so that the higher-
dimension operators are generated at tree level, e.g.,

so:


                  QFT effect        Quantum gravity “slop”

Couplings like this are common in string theory: dilaton and moduli are 
massless in supersymmetric limit, and acquire masses if SUSY is 
broken.


3. We will consider black holes with charge large enough that the specific 
heat is positive. As we’ll see, this will be necessary for our Euclidean 
path integral argument.    


Assumptions

� m�

m� ⌧ ⇤

⇠ �R, �F 2
�

ci / 1/m2
� � 1/⇤2

⇤
⇤



Positively charged black hole, charge     and mass    , spacetime dimension


Perturbed metric                              computed from 

perturbed Lagrangian 


Inverse temperature of perturbed BH,

                                                            ,


defines periodicity in Euclidean time for the Euclidean path integral,


 

where


             is the Euclidean action

     (spacetime integral of Wick-rotated Lagrangian)


             is the free energy 

             are integration variables for the metric and gauge field


   


Euclidean path integral

Q M D

gµ⌫ = egµ⌫ +�gµ⌫
L = eL+�L

� = @MS = e� +��

e��F (�) = Z(�) =

Z
d[ĝ]d[Â] e�I[ĝ,Â]

I = eI +�I

F (�)
ĝ, Â



Positively charged black hole, charge     and mass    , spacetime dimension


Perturbed metric                              computed from 

perturbed Lagrangian 


Ultraviolet completion: introduce integration variable     for the heavy fields

that are integrated out when we go from UV to IR: 


We define the vev of     to be zero in flat space.


For the on-shell black hole in the     theory,          , since equations of 
motion dictate 

   


Z
d[ĝ]d[Â]d[�̂] e�IUV[ĝ,Â,�̂] =

Z
d[ĝ]d[Â] e�I[ĝ,Â]

Euclidean path integral

Q M D

gµ⌫ = egµ⌫ +�gµ⌫
L = eL+�L

�̂

�̂

L � 6= 0
� ⇠ R,F 2



We can evaluate the Euclidean action at any field configuration we wish, 
including one that does not satisfy the classical equations of motion.


In particular, let’s evaluate        at          , which turns off all the higher-
dimension operators in       , so we have the simple mathematical fact:


where     is the Euclidean action for pure Einstein-Maxwell theory.


This observation will allow us to compare the two black hole entropies in  

    and     via an argument that only involves working in a single theory.


Going off shell

IUV �̂ = 0
�L

IUV[ĝ, Â, 0] = eI[ĝ, Â]

eI

L eL



Putting our thermodynamic argument together, we have the string of 
(in)equalities relating the free energies of an Einstein-Maxwell and perturbed 
Reissner-Nordström black hole at the same temperature:


                                                          by saddle-point approximation

                                                          where                  are the solutions

                                                          to classical EoM in UV theory, with

                                                          periodicity 


                                      

Free energy inequality

� logZ(�) = IUV[g� , A� ,�� ]

< IUV[eg� , eA� , 0]

=

eI[eg� , eA� ]

= � log

eZ(�)

g� , A� ,��

�



Putting our thermodynamic argument together, we have the string of 
(in)equalities relating the free energies of an Einstein-Maxwell and perturbed 
Reissner-Nordström black hole at the same temperature:


                                                          by saddle-point approximation

                                                        


                                      

Free energy inequality

� logZ(�) = IUV[g� , A� ,�� ]

< IUV[eg� , eA� , 0]

=

eI[eg� , eA� ]

= � log

eZ(�)

if the extremum is a local minimum

(will discuss shortly)



Putting our thermodynamic argument together, we have the string of 
(in)equalities relating the free energies of an Einstein-Maxwell and perturbed 
Reissner-Nordström black hole at the same temperature:


                                                          by saddle-point approximation

                                                        


                                      

Free energy inequality

� logZ(�) = IUV[g� , A� ,�� ]

< IUV[eg� , eA� , 0]

=

eI[eg� , eA� ]

= � log

eZ(�)

if the extremum is a local minimum

by the off-shell relation we found

previously, relating        andIUV

eI



Putting our thermodynamic argument together, we have the string of 
(in)equalities relating the free energies of an Einstein-Maxwell and perturbed 
Reissner-Nordström black hole at the same temperature:


                                                                     by saddle-point approximation


Now,               does not correspond to the free energy of a pure Reissner-
Nordström black hole of mass    , since    is the perturbed inverse 
temperature (      ). To account for this, we have


                                                        

                                      

Free energy inequality

� logZ(�) = IUV[g� , A� ,�� ]

< IUV[eg� , eA� , 0]

=

eI[eg� , eA� ]

= � log

eZ(�)

if the extremum is a local minimum

by the off-shell relation

       by saddle-point approximation, again

       

M �
6= e�

log

eZ(�) = log

eZ(

e�) +��@e� log
eZ(

e�)

= log

eZ(

e�)�M@M�S using

and 

M = �@e� log
eZ(

e�)
�� = @M�S

log

eZ(�)



By the definition of free energy in the canonical ensemble,


Using the above expressions and reshuffling terms, our inequality


i.e.,                      , becomes                    

                                      

Free energy inequality

log

eZ(�) = log

eZ(

e�)�M@M�S

logZ(�) = S � �M = (1�M@M )S

log

eZ(

e�) = eS � e�M = (1�M@M )

eS

� logZ(�) < � log

eZ(�)

F (�) < eF (�)

�S > 0



• We needed the saddle point, corresponding to the classical solution, to 
be a local minimum. Equivalently, we needed the Euclidean action to be 
stable under small off-shell perturbations.


• What about conformal saddle-point instabilities? These have been shown 
to be gauge artifacts.


• The Euclidean Schwarzschild black hole is known to have a bona fide 
instability.                             


• However, this instability is always connected with negative specific heat.


• For large enough charge, the specific heat of the black hole is positive.

 In           , this requires                      in natural units. Hereafter, we’ll focus    

 on black holes where this is satisfied.


Minimization of the Euclidean action

Gross, Perry, Yaffe (1982)

Prestidge [hep-th/9907163]; Reall [hep-th/0104071]; Monteiro, Santos [0812.1767]

Gibbons, Hawking, Perry (1978); Gibbons, Perry (1978)

D = 4 q/m >
p
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Let’s see how this works in a particular example:

Higher-dimension operators completed by a massive scalar field


Euclidean action for the UV completion:


Equation of motion for   :


Low-energy effective theory:


                                                        

                                      

Example UV completion
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Euclidean action for the UV completion:


Low-energy effective theory:


Off-shell UV action:


Thus, we have                                   

Example UV completion
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• In the explicit example, signs of the couplings depended on the absence 
of ghosts or tachyons in the UV completion, so              is connected with 
unitarity. Connections with other IR consistency bounds on couplings 
derived from unitarity and analyticity?


• Connection with monotonicity theorems for RG flows: If spectrum is 
hierarchical, we can apply our logic for               to each mass threshold, 
one at a time. Then:      


 where              for each state.


• Conjecture: Differential entropy shift may continue to be positive at the 
quantum (i.e., loop) level, giving us a monotonic function along RG flow.            

Unitarity and monotonicity

�S > 0

�S > 0

�S =

Z IR

UV
dS

dS > 0



Classical vs. quantum



Leading contributions

Let’s define some rescaled couplings for convenience:


Example tree-level completion: 

Scalar    couples to curvature and gauge field as              ,


Contributions to higher dimension operators:


• Tree level:                       from the propagator


• Loop level:


• Renormalization of Newton’s constant:


• Loop-level completions of the gravitational higher-dimension 
operators:


d1,2,3 = 2c1,2,3, d4,5,6 = c4,5,6, d7,8 = �2c7,8

⇠ �R/ ⇠ �F 2�

�(di) ⇠
1

m2
�

�(�2) ⇠ mD�2
�

�(di) ⇠ 2mD�4
�



Leading contributions

Let’s define some rescaled couplings for convenience:


Example tree-level completion: 

Scalar    couples to curvature and gauge field as              ,


Contributions to higher dimension operators:


• Tree level:                       from the propagator


• Loop level:


• Gauge interactions contribute similarly, but enhanced by the charge-
to-mass ratio of the fundamental charged particles. 


• If these particles satisfy the WGC, we’re already done, so let’s 
conservatively assume the particles fail or marginally satisfy the 
WGC.


d1,2,3 = 2c1,2,3, d4,5,6 = c4,5,6, d7,8 = �2c7,8

⇠ �R/ ⇠ �F 2�

�(di) ⇠
1

m2
�



Region of interest

Estimating the sizes of the entropy corrections for a black hole:

q ⇠ m

⇢

S ⇠ ⇢D�2

2
+ ⇢D�2mD�2

� + ⇢D�4mD�4
� +

⇢D�4

2m2
�

+ · · ·

Bekenstein-Hawking entropy


Loop correction to


Loop contribution to


Tree contribution to   

G

�L

�L



Region of interest

Estimating the sizes of the entropy corrections for a black hole:


Tree contribution to        (4th term) dominates over all quantum (i.e., loop) 
corrections (2nd and 3rd terms), provided:


This is consistent with the regime of validity of the EFT,                 , since 
we take                  . We will therefore consider black holes in this size 
range.

q ⇠ m

⇢

S ⇠ ⇢D�2

2
+ ⇢D�2mD�2

� + ⇢D�4mD�4
� +

⇢D�4

2m2
�

+ · · ·

�L

⇢ ⌧ 1

mD/2
�

⇢ � 1/m�

m� ⌧ mPl



Black hole spacetime



The black hole system

Macrostate: Charged black hole in            spacetime dimensions with 

charge      and mass       measured at spatial infinity


Komar formalism:


Convenient units:


Charge-to-mass parameter:                                           

                                                                                                   extremal 

                                                                                                   uncharged


D = 4
Q M

m =
2M

8⇡

q =
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4
p
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Unperturbed solution

The Reissner-Nordström black hole:

Static, spherically-symmetric metric:


Unperturbed components (          ):


Field strength:

D = 4

Outer (event) horizon:


Extremality condition:

outer horizon 

inner 

horizon 

ds2 = egµ⌫dxµdx⌫ = � e
f(r)dt2 +

1

eg(r)dr
2 + r

2d⌦2
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r
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r2
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Q

4⇡r2
dt ^ dr

q

m
 1

r = e⇢

e⇢ = m+
p

m2 � q2

= m(1 + ⇠)



Perturbed charged black hole metric

Need to calculate the change in area of the black hole of fixed    , 

due to the higher-dimension operators


From definition of Ricci tensor and spherically-symmetric metric: 


Inputting Einstein equation,


can rewrite as 

Q M
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Kats, Motl, Padi [hep-th/0606100]



The corrected energy-momentum tensor

For now, focus on computing the radial metric component 


Need to find the corrected energy


Background:


Treat higher-dimension operators as perturbation to background 

energy-momentum tensor

g

T t
t

�Tµ⌫ = �T (g)
µ⌫ +�T (F )

µ⌫

Contribution from 
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The corrected energy-momentum tensor

Metric part of corrected energy-momentum:


To linear order in    , input background Reissner-Nordström solution  

�T (g)
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The corrected energy-momentum tensor

Corrected Maxwell’s equations:


Gauge field part of corrected energy-momentum:


To linear order in    , input background Reissner-Nordström solution  

�T (F )
µ⌫ = Fµ⇢�F ⇢

⌫ + F ⇢
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2
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Perturbed solution

• General form of the metric:


• Putting everything together, we can compute the correction to the      component:


•     and    are required to have the same zeros, since otherwise there would be

a non-Lorentzian spacetime region. Can confirm this via direct calculation.


rr

ds2 = gµ⌫dx
µdx⌫ = �f(r)dt2 +

1

g(r)
dr2 + r

2d⌦2

f g
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8

5
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>>>>=
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Wald entropy for black hole in IR EFT, for a spherically symmetric spacetime:


Binormal to the horizon:


Expand in perturbations:


• Horizon radius:


• Area:


• Lagrangian:


 
 

Wald entropy formula

✏µ⌫ =

s
f(r)

g(r)
(�tµ�

r
⌫ � �rµ�

t
⌫)

S = �2⇡A
�L

�Rµ⌫⇢�
✏µ⌫✏⇢�

����
gµ⌫ ,rH

⇢ = ⇢̃+�⇢

A = 4⇡⇢2 = eA+�A

L = eL+�L



Wald entropy for black hole in IR EFT, for a spherically symmetric spacetime:


Expand the entropy: 
 

Wald entropy formula

S = �2⇡A
�L

�Rµ⌫⇢�
✏µ⌫✏⇢�

����
gµ⌫ ,rH

S = �2⇡

 
eA � eL
�Rµ⌫⇢�

+ eA ��L
�Rµ⌫⇢�

+�A
� eL

�Rµ⌫⇢�
+ · · ·

!
✏µ⌫✏⇢�

����
gµ⌫ , ⇢



Wald entropy for black hole in IR EFT, for a spherically symmetric spacetime:


Expand the entropy:


                                                            (symmetrization implied)


                      Since                     , yields background   
 

Wald entropy formula

S = �2⇡A
�L

�Rµ⌫⇢�
✏µ⌫✏⇢�

����
gµ⌫ ,rH

S = �2⇡

 
eA � eL
�Rµ⌫⇢�

+ eA ��L
�Rµ⌫⇢�

+�A
� eL

�Rµ⌫⇢�
+ · · ·

!
✏µ⌫✏⇢�

����
gµ⌫ , ⇢

� eL
�Rµ⌫⇢�

=
1

22
gµ⇢g⌫�

✏µ⌫✏
µ⌫ = �2 eS =

2⇡

2
eA =

eA
4G



Wald entropy for black hole in IR EFT, for a spherically symmetric spacetime:


Expand the entropy:


“Interaction” contribution:

                                                            
 

Wald entropy formula

S = �2⇡A
�L

�Rµ⌫⇢�
✏µ⌫✏⇢�

����
gµ⌫ ,rH

S = �2⇡

 
eA � eL
�Rµ⌫⇢�

+ eA ��L
�Rµ⌫⇢�

+�A
� eL

�Rµ⌫⇢�
+ · · ·

!
✏µ⌫✏⇢�

����
gµ⌫ , ⇢

�SI = �2⇡ eA ��L
�Rµ⌫⇢�

✏µ⌫✏⇢�

����
egµ⌫ , e⇢

�S = S � eS = �SI +�SH



Wald entropy for black hole in IR EFT, for a spherically symmetric spacetime:


Expand the entropy:


“Horizon” contribution:

                                                          


Wald entropy formula

S = �2⇡A
�L

�Rµ⌫⇢�
✏µ⌫✏⇢�

����
gµ⌫ ,rH

S = �2⇡

 
eA � eL
�Rµ⌫⇢�

+ eA ��L
�Rµ⌫⇢�

+�A
� eL

�Rµ⌫⇢�
+ · · ·

!
✏µ⌫✏⇢�

����
gµ⌫ , ⇢

�S = S � eS = �SI +�SH

�SH = �2⇡�A
� eL

�Rµ⌫⇢�
✏µ⌫✏⇢�

����
egµ⌫ , e⇢

=
2⇡

2
�A



Variation of the action with respect to the Riemann tensor:

                                           


                                                    (anti)symmetrization implied


Inputting our unperturbed background to compute         to         , we have: 


written in terms of the rescaled coefficients    

                                                          


Interaction contribution

�SI

��L
�Rµ⌫⇢�

= 2c1Rgµ⇢g⌫� + 2c2R
µ⇢g⌫� + 2c3R

µ⌫⇢�

+ c4F↵�F
↵�gµ⇢g⌫� + c5F

µ
↵F

⇢↵g⌫� + c6F
µ⌫F ⇢�

�SI = eS ⇥ 2

m2(1 + ⇠)3
[8d3 � 2(1� ⇠)(d2 + 6d3 + 2d4 + d5 + 2d6)]

O(ci)



Expand metric as                                  and horizon radius                   


Enforce horizon condition to compute horizon shift:


                                         


Shift in the horizon area: 


Inputting our unperturbed background to compute          to          , we have:   

                                                          


Horizon contribution

g(r) = eg(r) +�g(r)

0 = g(⇢) = eg(e⇢) +�g(e⇢) +�⇢ @⇢̃eg(e⇢)

⇢ = ⇢̃+�⇢

�⇢ = ��g(e⇢)
@⇢̃eg(e⇢)

=)

�A = A� eA = 8⇡e⇢�⇢ = �8⇡e⇢�g(e⇢)
@⇢̃eg(e⇢)

�SH

�SH = eS ⇥ 4(1� ⇠)

5m2⇠(1 + ⇠)3
[(1 + 4⇠)(d2 + 4d3 + d5 + d6) + 10⇠d4 + 2(1� ⇠)(2d7 + d8)]

O(ci)



Note that          diverges in the strict            limit


Physical origin: inner and outer horizons degenerate, so


How small can we consistently take    ?


• Demanding


• Can make this bound arbitrarily small by making BH arbitrarily large


• But recall that for wave function renormalization to be subdominant, we

      required:


 

• Since              , the bound on    becomes


which can be made parametrically small for weakly coupled theories (                 ) 

                                                          


Near-extremal limit

�SH ⇠ ! 0

@eg(e⇢)/@e⇢ = 0

⇠

�S ⌧ eS =)

⇠di ⇠
1

m2
�

⇢ ⌧ 1

m2
�

⇠ � 2m2
�

m� ⌧ mPl

⇠ � |di|
m2



Note that          diverges in the strict            limit


Physical origin: inner and outer horizons degenerate, so


Further test: What about the temperature?


• We’ve checked that                 for the perturbed black hole agrees with the

      surface gravity computed from the metric.


• For near-extremal black holes,                and  


• Demanding


• Again imposing                  implies


which we can still take parametrically small, since  


                                                          


Near-extremal limit

�SH ⇠ ! 0

@eg(e⇢)/@e⇢ = 0

� = @MS

=) ⇠ � |di|1/2

m

⇠ � m�

e� ⇠ m/⇠ �� ⇠ di/m⇠3

�� ⌧ e�

⇢ ⌧ 1

m2
�

m� ⌧ mPl



New positivity 
bounds



Total black hole entropy shift:


Entropy bound               implies


where


Coefficients are required to satisfy this bound for all values of 


Each value of     gives a linearly independent bound      


General bounds

⇠

�S > 0

�S =eS ⇥ 4

5m2⇠(1 + ⇠)3
⇥

⇥
⇥
(1� ⇠)2(d2 + d5) + 2(2 + ⇠ + 7⇠2)d3 + (1� ⇠)(1� 6⇠)d6 + 2(1� ⇠)2(2d7 + d8)

⇤

(1� ⇠)2d0 + 20⇠d3 � 5⇠(1� ⇠)(2d3 + d6) > 0

d0 = d2 + 4d3 + d5 + d6 + 4d7 + 2d8

⇠ 2 (0, 1/2)



General bounds

Allowed region in               space:d0-d3-d6



General bounds

Another visualization of the excluded regions:
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In            (near-extremal) limit, the bound becomes         


How is this connected to the Weak Gravity Conjecture?


• In Einstein-Maxwell theory + higher-curvature terms, the extra operators modify

the allowed black hole charges


• Original, unperturbed extremality condition is 


• New extremality value is 


• Compute by imposing horizon condition:


The Weak Gravity Conjecture

⇠ ⌧ 1

ez =
q

m
= 1

z = 1 +�z

0 = g(⇢, z) = eg(e⇢, ez) +�g(e⇢, ez) +�⇢ @⇢̃eg(e⇢, ez) +�z @z̃eg(e⇢, ez)

�z = ��g(e⇢, ez)
@z̃eg(e⇢, ez)

d0 > 0



In            (near-extremal) limit, the bound becomes         


How is this connected to the Weak Gravity Conjecture?


• Direct computation:


Same combination of coefficients


 Consistency of black hole entropy proves the Weak Gravity Conjecture.


• Since       grows as the BH gets smaller, extremal BHs can keep on decaying to

 yet lighter extremal black holes until they reach the scale of the UV completion. 


The Weak Gravity Conjecture

⇠ ⌧ 1

�z

d0 > 0

�z =
2d0
5m2

> 0



small  
black holes

Planck scale

m

classical GR

large  
black holes

q

m

• Since       grows as the BH gets smaller, extremal BHs can keep on decaying to

 yet lighter extremal black holes until they reach the scale of the UV completion.


The Weak Gravity Conjecture

�z



 Consistency of black hole entropy proves the Weak Gravity Conjecture. 


Why did the same combination of coefficients      appear?


• For near-extremal BH with   ,     fixed,            , so


• For exactly extremal BH with free charge and mass,


• Since radial component of metric is spacelike,


• Metric dictates gravitational potential, which decreases with    , so 

 so        and       have the same sign


• Near-extremal entropy shift is dominated by horizon shift, so 


Entropy, area, and extremity

q m �z = 0 �⇢ = ��g/@e⇢eg

0 = g(⇢, z) = eg(e⇢, ez) +�g(e⇢, ez) +�⇢ @⇢̃eg(e⇢, ez) +�z @z̃eg(e⇢, ez)

�z = ��g/@ezeg

@e⇢eg > 0

m @ezeg > 0
�⇢ �z

�S ⇠ �⇢ ⇠ �z > 0

d0



This logic generalizes to theories with multiple Abelian gauge fields:


Define vector    in charge-to-mass ratio space

All possible large BH states = unit ball


Generalized WGC: unit ball     convex hull of lighter states


Generalized Weak Gravity Conjecture

z

~z2

�~z2

�~z1

~z1

~z2

�~z2

�~z1

~z1

consistent with WGC inconsistent with WGC

Cheung, GNR [1402.2287]⇢



This logic generalizes to theories with multiple Abelian gauge fields:


Define vector    in charge-to-mass ratio space

All possible large BH states = unit ball


Generalized WGC: unit ball     convex hull of lighter states


Metric only depends on            , so earlier argument applies,

using                          , and implying


Thus, for finite-mass, charged BH, the unit ball expands in all directions.


Generalized Weak Gravity Conjecture

z

ez = |ez|

⇢

�z = �z · ez/|ez|

�⇢ > 0 () �z · ez > 0



This logic generalizes to theories with multiple Abelian gauge fields:


Define vector    in charge-to-mass ratio space

All possible large BH states = unit ball


Generalized WGC: unit ball     convex hull of lighter states


Metric only depends on            , so earlier argument applies,

using                          , and implying


Thus, for finite-mass, charged BH, the unit ball expands in all directions.


 Consistency of black hole entropy proves the 

 generalized Weak Gravity Conjecture.

Generalized Weak Gravity Conjecture

z

ez = |ez|

⇢

�z = �z · ez/|ez|

�⇢ > 0 () �z · ez > 0



Generalization to 
arbitrary dimension



Unperturbed solution

The Reissner-Nordström black hole:

Static, spherically-symmetric metric:


Unperturbed components:


Field strength:

outer horizon 

inner 

horizon 

ds2 = egµ⌫dxµdx⌫ = � e
f(r)dt2 +

1

eg(r)dr
2 + r

2d⌦2
D�2

ef(r) = eg(r) = 1� 22M

(D � 2)⌦D�2rD�3
+

Q22

(D � 2)(D � 3)⌦2
D�2r

2(D�3)

eF =
Q

⌦D�2rD�2
dt ^ dr



Unperturbed solution

The Reissner-Nordström black hole:

Redefined radial coordinate:


Unperturbed components:


Field strength:

outer horizon 

inner 

horizon 

Convenient units:

m =
2M

(D � 2)⌦D�2

q =
Qp

(D � 2)(D � 3)⌦D�2

x = r

D�3

Outer (event) horizon:


Extremality condition:
q

m
 1

e
f(r) = eg(r) = 1� 2m

x

+
q

2

x

2

x = e�

e� = m+
p

m

2 � q

2

= m(1 + ⇠)

eF =
Q

⌦D�2rD�2
dt ^ dr



Unperturbed solution

The Reissner-Nordström black hole:

Redefined radial coordinate:


Unperturbed components:


Field strength:

outer horizon 

inner 

horizon 

Convenient units:

m =
2M

(D � 2)⌦D�2

q =
Qp

(D � 2)(D � 3)⌦D�2

x = r

D�3

Thermodynamic stability

(positive specific heat)

requires: 

e
f(r) = eg(r) = 1� 2m

x

+
q

2

x

2

eF =
Q

⌦D�2rD�2
dt ^ dr

q

m
>

p
2D � 5

D � 2

⇠ <
D � 3

D � 2

=)



Perturbed charged black hole metric

Inversion of the Ricci tensor works the same as before:


Again, compute corrections to metric by treating higher-order terms as

perturbations  


We find:


g(r) = 1� 22M

(D � 2)⌦D�2rD�3
� 22

(D � 2)rD�3

Z +1

r
dr rD�2T t

t

f(r) = g(r) exp


22

D � 2

Z +1

r
dr

r

g(r)
(T t

t � T r
r)

�

�Tµ⌫

g(r) = 1� 2m

x

+
q

2

x

2
� q

2

x

2(2D�5)
D�3

8X

i=1

↵i(x)ci



Perturbed charged black hole metric

where 

↵1 =

(D � 3)(D � 4)

D � 2


2
13D2 � 47D + 40

3D � 7
q

2 � 8(3D � 5)mx+ 16(D � 2)x2

�

↵2 = 2
D � 3

D � 2

"
8D3 � 55D2 + 117D � 76

3D � 7
q

2 � 4(2D2 � 10D + 11)mx

+ 2(3D � 10)(D � 2)x2

#

↵3 = 4
D � 3

D � 2

"
8D3 � 48D2 + 87D � 44

3D � 7
q

2 � 2(4D2 � 17D + 16)mx

+ 8(D � 2)(D � 3)x2 � 2(D � 2)(D � 4)
m

2
x

2

q

2

#

↵4 = 4(D � 3)


(7D � 13)(D � 2)

3D � 7
q

2 � 2(3D � 5)mx+ 4(D � 2)x2

�

↵5 = 2(D � 3)


(5D � 9)(D � 2)

3D � 7
q

2 � 2(2D � 3)mx+ 3(D � 2)x2

�

↵6 = 4(D � 3)


4
(D � 2)2

3D � 7
q

2 � (3D � 5)mx+ 2(D � 2)x2

�

↵7 = 8
(D � 2)(D � 3)2

3D � 7
q

2

↵8 = 4
(D � 2)(D � 3)2

3D � 7
q

2

g(r) = 1� 2m

x

+
q

2

x

2
� q

2

x

2(2D�5)
D�3

8X

i=1

↵i(x)ci



Perturbed charged black hole metric

where 


↵1 =
(D � 3)(D � 4)

D � 2


2
13D2 � 47D + 40

3D � 7
q

2 � 8(3D � 5)mx+ 16(D � 2)x2

�

↵2 = 2
D � 3

D � 2

"
8D3 � 55D2 + 117D � 76

3D � 7
q

2 � 4(2D2 � 10D + 11)mx

+ 2(3D � 10)(D � 2)x2

#

↵3 = 4
D � 3

D � 2

"
8D3 � 48D2 + 87D � 44

3D � 7
q

2 � 2(4D2 � 17D + 16)mx

+ 8(D � 2)(D � 3)x2 � 2(D � 2)(D � 4)
m

2
x

2

q

2

#

↵4 = 4(D � 3)


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3D � 7
q

2 � 2(3D � 5)mx+ 4(D � 2)x2

�

↵5 = 2(D � 3)


(5D � 9)(D � 2)

3D � 7
q

2 � 2(2D � 3)mx+ 3(D � 2)x2

�

↵6 = 4(D � 3)


4
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3D � 7
q

2 � (3D � 5)mx+ 2(D � 2)x2

�

↵7 = 8
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3D � 7
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2
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2
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+
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As in           , split entropy shift into contributions from interactions in Wald

formula and from the shift in the horizon location: 

                                           


Direct calculation yields:                                                          


Calculation of entropy

�S = S � eS = �SI +�SH

�SI = �2⇡ eA ��L
�Rµ⌫⇢�

✏µ⌫✏⇢�

����
egµ⌫ , e⇢

D = 4

�SI = eS ⇥ 2(D � 3)

m
2

D�3 (1 + ⇠)
D�1
D�3

n

4(D � 2)d3

� 2(1� ⇠)



(D � 4)d1 + (D � 3)d2 + 2(2D � 5)d3 + (D � 2)

✓

d4 +
1

2
d5 + d6

◆�

o



As in           , split entropy shift into contributions from interactions in Wald

formula and from the shift in the horizon location: 

                                           


where                                                          


Calculation of entropy

�S = S � eS = �SI +�SH

D = 4

�SH = �2⇡�A
� eL

�Rµ⌫⇢�
✏µ⌫✏⇢�

����
egµ⌫ , e⇢

=
2⇡

2
�A

�A = A� eA = (D � 2)⌦D�2e⇢D�3�⇢ = � (D � 2)⌦D�2e��g(e⇢)
@eg(e⇢)/@e⇢



As in           , split entropy shift into contributions from interactions in Wald

formula and from the shift in the horizon location: 

                                           


Direct calculation yields:


Calculation of entropy

�S = S � eS = �SI +�SH

D = 4

�SH = eS ⇥ 1

(3D � 7)m
2

D�3 ⇠(1 + ⇠)
D�1
D�3

⇥

⇥
�
d1(1� ⇠)(D � 3)(D � 4)[(11D � 24)⇠ +D � 4]

+ d2(1� ⇠)(D � 3)[(10D2 � 53D + 68)⇠ + 2D2 � 11D + 16]

+ 2d3[�(16D3 � 128D2 + 337D � 292)(1� ⇠)2

+ 2(3D � 7)(4D2 � 23D + 32)(1� ⇠)

� 2(D � 2)(D � 4)(3D � 7)]

+ 2d4(1� ⇠)(D � 2)(D � 3)[5(D � 2)⇠ +D � 4]

+ 2(d5 + d6)(D � 2)(D � 3)(1� ⇠)[2(D � 2)⇠ +D � 3]

+ 2(2d7 + d8)(D � 2)2(D � 3)(1� ⇠)2
 



Note that          diverges in the strict            limit


Physical origin: inner and outer horizons degenerate, so


How small can we consistently take    ?


• Demanding


• Can make this bound arbitrarily small by making BH arbitrarily large


• But recall that for wave function renormalization to be subdominant, we

      required:


 

• Since              , the bound on    becomes


which can be made parametrically small for weakly coupled theories (                 ) 

                                                          


Near-extremal limit

�SH ⇠ ! 0

@eg(e⇢)/@e⇢ = 0

⇠

�S ⌧ eS =)

⇠di ⇠
1

m2
�

m� ⌧ mPl

⇠ � |di|
m

2
D�3

⇢ ⌧ 1

mD/2
�

⇠ � 2mD�2
�



Note that          diverges in the strict            limit


Physical origin: inner and outer horizons degenerate, so


Further test: What about the temperature?


• We’ve checked that                 for the perturbed black hole agrees with the

      surface gravity computed from the metric.


• Background inverse temperature:           


• Inverse temperature shift for near-extremal BH:


• Demanding


• Again imposing                     implies


which we can still take parametrically small, since  


Near-extremal limit

�SH ⇠ ! 0

@eg(e⇢)/@e⇢ = 0

� = @MS

m� ⌧ mPl

e� =
2⇡m

1
D�3 (1 + ⇠)

D�2
D�3

(D � 3)⇠

�� ⇠ di/⇠
3m1/(D�3)

�� ⌧ e� =) ⇠ � |di|1/2

m
1

D�3

⇢ ⌧ 1

mD/2
�

⇠ � m(D�2)/2
�



New positivity bounds

Total black hole entropy shift:


     


�S = eS ⇥ 1

(3D � 7)m
2

D�3 ⇠(1 + ⇠)
D�1
D�3

⇥

⇥
�
d1(D � 3)(D � 4)2(1� ⇠)2

+ d2(D � 3)(2D2 � 11D + 16)(1� ⇠)2

+ 2d3[(8D
3 � 60D2 + 151D � 128)(1� ⇠)2

� 2(D � 2)(2D � 5)(3D � 7)(1� ⇠)

+ 2(D � 2)2(3D � 7)]

+ 2d4(D � 2)(D � 3)(D � 4)(1� ⇠)2

+ 2d5(D � 2)(D � 3)2(1� ⇠)2

+ 2d6(D � 2)(D � 3)(1� ⇠)[�2(2D � 5)⇠ +D � 3]

+ 4d7(D � 2)2(D � 3)(1� ⇠)2

+ 2d8(D � 2)2(D � 3)(1� ⇠)2
 



Entropy bound               implies


where


Coefficients are required to satisfy this bound for all values of 


Each value of     gives a linearly independent bound      


General bounds

⇠

�S > 0
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As before, taking the near-extremal (          ) limit implies


The shift in extremality condition of the black hole in     dimensions is


                                       same combination of coefficients

Again, we find:


      Consistency of black hole entropy proves the Weak Gravity Conjecture.

New positivity bounds
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Examples and 
consistency checks



Field redefinition invariance

Any physical observable should be invariant under a reparameterization of 
the field variables, e.g., 


This has the effect of shifting the action,


which has the net effect of shifting the higher-dimension operator 
coefficients:  
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There are four combinations of higher-dimension operator coefficients that 
are invariant under this transformation:


The total entropy shift      , and hence our bounds, are built out of               , 
and hence are field redefinition invariant.

Field redefinition invariance
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1. Only photon self-interactions (      ). Our bound becomes simply                     .

When we compute the four-photon scattering amplitude and apply the 
analyticity arguments of                                  , we find that different choices of 
photon polarizations give                      and           , so this is consistent.


2. Scalar completion:


generates


so 


3. Low-energy description of the heterotic string:


Our bound then becomes                                                                           ,

which is satisfied for all                 and           .


Concrete examples
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Discussion and 
conclusions



Discussion

• In this work, we relied on a universal notion of thermodynamic entropy: 

                 when more microstates are added to a system of a given macrostate,


 which we proved for tree-level completions in QFT 

 

• Applying this logic to the system of charged black holes, we can compare the


 Wald and Bekenstein-Hawking entropy in the Einstein-Maxwell EFT


• Imposing the entropy bound requires positivity of various combinations of higher-

 dimension operator couplings     ,        , and      , producing a family of bounds

 labeled by  


• For a near-extremal BH, these bounds imply positivity of the same combination

 of coefficients that also guarantees a positive correction to the extremality bound

 for BHs in the EFT


• Thus, consistency of BH entropy proves the WGC


• Generalizes to multiple gauge fields and arbitrary dimension
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Future directions

• Can other swampland program bounds be derived using black hole entropy?


• Broader class of theories, e.g., Einstein-dilaton gravity


• Other metrics: (A)dS-black hole, non-spherical metrics, etc.


• More broadly, understand the relationship between entropy bounds and bounds

 from analyticity, unitarity, and causality 


• Positivity of entropy shifts comes from UV state-counting, reminiscent of

 bounds from dispersion relations and spectral representations 


• Extended versions of the WGC?


• Much work remains in separating the swampland from the landscape

 and new tools continue to be discovered 



