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The Evolution of vacuum energy

•The cosmological constant is very small today 

•Expectation is that microscopic origin of cc is 
vacuum energy of quantum field theory 
  
•Why is it so small vs.  

•If it is so small why is it not zero? 

•Is it always very small (ie. is there an adjustment 
mechanism)?

1 Introduction: A brief history of vacuum energy

The discovery of the acceleration of the Universe [1] has led to one of the deepest puzzles of
modern day physics. While within cosmology the dark energy responsible for the acceler-
ation can simply be described by adding a new parameter, the cosmological constant (cc)
to the expansion equations, within particle physics this CC is expected to correspond to
the vacuum energy of the quantum field theory, determined by the underlying microscopic
physics. It is then di⇤cult to explain why a simple estimate for the vacuum energy is many
orders of magnitude larger than the observed value ⇥ � (10�3 eV)4, which is much smaller
than any other scales appearing in the Standard Model (SM) of particle physics. Super-
symmetry (SUSY) is the only known mechanism to set the CC to zero, however SUSY
breaking does contribute to the vacuum energy resulting in the oft quoted 60 orders of
magnitude discrepancy, known as the CC problem. On the other hand, if there is a (yet
to be identified) adjustment mechanism for the cosmological constant,1 then why is it not
exactly zero? This has led many scientists to embrace Weinberg’s approach, who predicted
the expected magnitude of the CC from anthropic considerations: if the CC was much
larger than the critical density then structure could not have formed given the observed
size of density perturbations recorded in the the cosmic microwave background.

Looking at the cosmic history of the Universe, one can realize that the CC problem is
in fact not a single problem, but several problems. At every phase transition the Universe
undergoes (when the vacuum expectation values of fields are changing) the vacuum energy
is expected to jump by an amount proportional to the critical temperature Tc:

�⇥i ⇥ T 4
c,i . (1.1)

In order for the CC to not dominate after the phase transition (and thus allow ordinary
radiation dominated expansion of the Universe in accordance with successful structure
formation), the total CC after the end of the phase transition has to be quite precisely
equal to the change in the CC generated at the next phase transition. Viewed from this
angle the CC problem is even more disturbing: every time the CC is about to dominate
the energy density a new phase transition must happen, and the amount of cancellation
of the CC during the phase transition is already anticipating the future history of the
Universe. At temperatures above the electroweak scale the CC in the SM is of order M4

W .
As the Universe cools and goes through the EW phase transition the CC gets reduced to a
size of the order of the QCD scale, which then gets reduced to its current size during the
QCD phase transition. Depending on the UV completion of the SM there may be another
GUT and/or SUSY phase transition (or something else). A sketch of the evolution of the
pressure due to radiation together with that of the CC (assuming a GUT, EW and QCD
phase transition) is shown in Fig. 1 which illustrates the main features: the CC was much
larger at earlier times, nevertheless it always remained a sub-dominant component of total

1Any such adjustment mechanism is strongly contrained by the Weinberg no-go theorem [2], for recent
discussions see [3].
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The Evolution of vacuum energy

•If CC result of microphysics, in traditional picture cc 
should undergo a series of jumps at every phase 
transition 
  
• Expectation 

•Want CC to NOT dominate AFTER phase transition 
(otherwise Universe accelerates too early) 

•CC AFTER PT should be of order of        of NEXT 
phase transition 

•eg. before EWPT 
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The Evolution of vacuum energy

•                           so tuning 

•At one phase transition Universe already ``knows” 
where the next phase transition will be 

•At least QCD, EW PT, potentially also SUSY and/or 
GUT phase transition (if SUSY changes GUT 
expectations) 

•In previous history       was much larger than now, 
but never dominated previously! 

�⇤ ⇠ M4
W ⇥+�⇥ � O(⇥4

QCD)

⇤



A simple sketch of the evolution of Λ

energy density except around the times of the phase transitions. A simple toy model for
the evolution of vacuum energy is presented in App. ??. This picture again underlines the
interpretation of the CC as a quantity determined by microscopic physics, which can vary
as the theory undergoes a series of phase transitions.
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Figure 1: Sketch of the evolution of the cosmological constant (red) and the total pressure
dominated by radiation (blue) during the exapansion of the Universe. Left: standard
evolution where the vacuum energy jumps at every phase transition (the ones pictured here
correspond to the GUT, electroweak and QCD phase transitions). Right: the evolution
assuming some form of adjustment mechanism for vacuum energy.

Whether this is indeed the basic picture of the evolution of the CC would be one
of the most important fundamental questions of physics to be verified experimentally.2

Any such experiment would also yield verification of the microscopic origin of the CC, as
the gravitational e�ect of the vacuum energy of the quantum field theory. The di⇥culty
in verifying this picture experimentally is clear: until very recently, the CC was always
a sub-leading component of the energy density, and thus was never the main driver of
the expansion. Moreover the most recent known phase transition is that of QCD, at a
temperature TQCD

c � 200 MeV. While this is a relatively low particle physics scale, most of
the phenomena relevant to experimental cosmology (nucleosynthesis, structure formation,
CMBR) are sensitive only to temperatures well below the QCD scale. Thus one would need
to consider new observables that are potentially sensitive to the details of the QCD or the
electroweak (EW) phase transitions. This is further complicated by the fact that both of
these phase transitions are thought to be quite weak: the QCD phase transition is likely a
cross-over, while the EW phase transition in the SM with a 125 GeV Higgs boson is second
order, whose imprints are weaker than those of strongly first order phase transitions would
be. For example a strongly first order PT is expected to lead to production of gravitational
waves, whose spectrum could potentially be sensitive to the evolution of the CC during
the PT. Since neither of the PT’s is expected to be first order, no significant gravitational
waves would have been produced.

2A potential alternative history (corresponding to that of an adjustment mechanism) would have a CC
that is always zero, except for some spikes during the phase transitions.
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The Evolution of vacuum energy

•       goes through steps during phase transitions 

• Whenever       would start to dominate a new phase 
transition happens 

•       is always subleading even though it was much 
bigger than it currently is - challenging to find 
experimental tests of this picture 

•Size of step of order 

•Amount of tuning given by                            

⇤
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The Evolution of vacuum energy

• Expression of fact that tuning of CC  

• Final CC tuned against many different terms 

• Each of very different order of magnitude 

• Each set by very different dynamics (and sensitive 
to a different set of parameters)                                  

Looking at the cosmic history of the Universe, one can realize that the cosmological
constant problem is actually more severe than the tuning of a single parameter. At every
phase transition (PT) the Universe undergoes (when the vacuum expectation values of
fields are changing), the vacuum energy is expected to jump by an amount proportional to
the critical temperature Tc [2, 4]:

�⇥i � T 4
c,i . (1.1)

In order for vacuum energy to not dominate after the PT (and thus allow ordinary radiation
dominated expansion of the Universe in accordance with successful structure formation),
the total vacuum energy after the end of the PT has to be quite precisely equal to the
change in vacuum energy generated at the next PT. Viewed from this angle the cosmological
constant problem is even more disturbing: every time vacuum energy is about to dominate
the energy density, a new PT must happen, and the amount of cancellation of vacuum
energy during the PT already anticipates the future history of the Universe. For example
at temperatures above the electroweak (EW) scale the vacuum energy in the SM is of order
M4

W . As the Universe cools and goes through the EW PT vacuum energy gets reduced to a
size of the order of ⇥4

QCD, which then gets reduced to its current size during the QCD PT.
Depending on the UV completion of the SM there may be another GUT and/or SUSY PT
(or something else). A sketch of the evolution of the pressure due to radiation together with
that of the vacuum energy (assuming a GUT, EW and QCD PT) is shown in Fig. 1, which
illustrates the main features: vacuum energy was much larger at earlier times, nevertheless
it always remained a sub-dominant component of the total energy density except around
the times of the PTs. This picture again underlines the interpretation of the cosmological
constant as a quantity determined by microscopic physics, as the resulting final vacuum
energy that has changed during the PTs. From the point of view of the cosmological
constant problem, this issue is summarized by the equation

⇥e� = ⇥bare +
�

i

�iT
4
c,i , (1.2)

where ⇥e� is the currently observed e⇤ective cosmological constant of order (10�3 eV)4,
the Tc,i are the various critical temperatures for every PT the Universe went through, the
corresponding �i being determined by the dynamics of the individual PTs, and ⇥bare is the
bare cosmological constant that is used to tune the whole sum to its current value. We
can see that the tuning of ⇥bare involves tuning against a sum with several contributions
of widely di⇤erent magnitudes, and the final cosmological constant is extremely sensitive
to each one of them. Thus while one gets away with tuning a single parameter, this single
tuning encodes sensitivities to a large number of independent dynamical parameters. This
is what is reflected in Fig. 1 and is necessary for a viable cosmic history of vacuum energy.

Whether this is indeed the correct picture of the evolution of vacuum energy is one
of the most important fundamental questions of physics that is yet to be verified exper-
imentally.2 Any such experimental test would also verify the microscopic origin of the

2A potential alternative history (corresponding to that of an adjustment mechanism) would have a
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In different phases of SM VE is different

• Main lesson (obvious): VE is different in different 
phases of the SM  

• To truly believe the picture with CC would like to test 
the effect of VE in phases DIFFERENT from the 
usual SM phase.                                  



Example: QCD PT from lattice 

Deviation from radiation domination only during short 
period during PT...

Difficulty of finding effects

5

Figure 3: Comparison of the thermodynamics of lattice QCD
and of a theory of free quarks and gluons. In all cases, three
quark species (u, d, and s) have been included. The curve
labeled “hotQCD” is based on Ref. [11], while the curve la-
beled “Wuppertal” is from Ref. [12]; see the main text for de-
tails. The free field theory curve was obtained by setting the
masses of all the quarks and gluons artificially to 500MeV.
This counter-factual assumption is made in order to obtain
the narrowest possible peak in Θ/T 4 in the vicinity of the
QCD transition, illustrating that interactions have a signifi-
cant effect beyond introducing dynamically generated masses.

the p4, asqtad, and stout-improved staggered fermion ac-
tions, see [11, 12] and references therein.) Going forward,
we will use the p4 results of [11]; not that we endorse
them as more accurate, but instead because they are the
most different from free field results, providing us with
an upper limit of how sharp the QCD transition might
plausibly be as a result of interactions.
In order to obtain a complete account of the visible

sector degrees of freedom in the vicinity of the QCD tran-
sition, we combine the energy density and pressure ob-
tained from (6) and (7) with free field treatments of all
the leptons, and also the c and b quark, where all par-
ticles are constrained to have the same temperature. A
free field treatment is obviously not perfect (particularly
for the c quark), but improved approximations would be
complicated.

V. THE ELECTROWEAK PHASE TRANSITION

It is far from obvious that the electroweak transi-
tion can be approximated by free field thermodynam-

ics. The masses of all observed Standard Model parti-
cles owe their existence to a non-zero Higgs expectation
value, φ = σ ≡ 246GeV. But this expectation value is
eventually driven to zero at high temperatures. An elec-
troweak scale contribution to the cosmological constant
accompanies this change in the Higgs expectation value.
Meanwhile, electroweak interactions introduce thermal
corrections to particle masses. Without accounting prop-
erly for these thermal corrections and other loop effects,
the Higgs mass itself, now known to be approximately
125GeV in vacuum [13, 14], would become imaginary
once the Higgs expectation value falls below the point
where the tree-level potential is concave up. One of the
main conclusions of this section, illustrated in Fig. 4, is
that, close to the peak of Θ/T 4, free field thermodynam-
ics based on the vacuum particle spectrum nevertheless
provides a decent approximation to the ring-improved
one-loop treatment of [15], which is the simplest account
of the electroweak transition that avoids obvious inconsis-
tencies such as imaginary masses. At substantially higher
temperatures, we will show that the ring-improved one-
loop treatment predicts a negative value of Θ/T 4.

A more modern understanding of the electroweak tran-
sition [16], based in part on lattice simulations, is that the
transition is not weakly first order, as predicted by the
ring-improved one-loop treatment, but is instead a cross-
over. If anything, we expect the full non-perturbative
results for the trace Θ of the stress tensor to be closer
to the free field results than the ring-improved one-loop
results are, though it is likely that the ring-improved one-
loop treatment is still a good guide well above and well
below the cross-over.

The treatment of [15] proceeds in three steps:

1. First one produces thermally improved formulas
for all the fields using self-energy diagrams. The
schematic form of these masses is m2(φ, T ) =
m2

tree(φ) + g2T 2, where g is a gauge coupling and
φ is the Higgs field expectation value. The precise
forms of all the masses are listed in table I.

2. Next one assembles an effective potential, correct
through one-loop order, as follows:

(From Caldwell & Gubser 
2013)



•Establish experimentally that vacuum energy of 
microscopic physics is actually what show up in 
Einstein eq - or there is an adjustment mechanism 

Goal



• In cosmological context clear - contribution to 
energy density that DOES NOT dilute with a 

• For a fixed a no way to tell these apart 

• Need to follow the expansion of the Universe to be 
able to separate the three from each other  

 

What is Vacuum Energy?
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• Only care about PT’s that actually change VEVs of 
fields  

• For example recombinations at z~ 1100 is a PT 
where e+p→H, with binding energy 13.6 eV 

• Decrease of energy density of matter, but not a 
change in vacuum energy - this energy density gets 
diluted with expansion, while ve does not

What is Vacuum Energy?



•Further complication: neither EW nor QCD PT first 
order (at least in SM with 125 GeV Higgs) - no 
gravitational waves produced from bubble collisions... 

•NEED: System where vacuum energy 
                 fraction of total energy    
                  
                           Neutron star 

             Epochs where vacuum energy is comparable            
                     to radiation 

               Cosmic phase transitions & effects on  
                   primordial gravitational waves   
         

O(1)

When is VE important?
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When is VE important?

Focus of this talk



•Need a system which is in different phase of matter 

•QCD at large densities probably has those phases: 
at low T but large chemical potential CFL phase, and 
non-CFL phase, both with VEVs different from QCD 
condensates 

•Core of neutron star may have this unconventional 
QCD phase 

•If adjustment mechanism at play, expect to cancel 
effect of additional cc in the core. Will modify the 
structure and M(R) relation of ns’s 

Neutron stars for testing vacuum 
energy



The phases of QCD
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FIG. 1 (Color online) A schematic outline for the phase dia-
gram of matter at ultra-high density and temperature. The
CFL phase is a superfluid (like cold nuclear matter) and has
broken chiral symmetry (like the hadronic phase).

cross-flavor pairing, and those stresses will become more
severe as the density (and hence µ̄) decreases. This will
be a major theme of later sections.

F. Overview of the quark matter phase diagram

Fig. 1 shows a schematic phase diagram for QCD that
is consistent with what is currently known. Along the
horizontal axis the temperature is zero, and the density
is zero up to the onset transition where it jumps to nu-
clear density, and then rises with increasing µ. Neutron
stars are in this region of the phase diagram, although
it is not known whether their cores are dense enough to
reach the quark matter phase. Along the vertical axis the
temperature rises, taking us through the crossover from
a hadronic gas to the quark-gluon plasma. This is the
regime explored by high-energy heavy-ion colliders.

At the highest densities we find the color-flavor locked
color-superconducting phase,2 in which the strange quark
participates symmetrically with the up and down quarks
in Cooper pairing. This is described in more detail in
Secs. II, IV, and V. It is not yet clear what happens
at intermediate density, and in Secs. III and VI we will

2 As explained in Sec. I.A, we fix Nf = 3 at all densities, to main-
tain relevance to neutron star interiors. Pairing with arbitrary
Nf has been studied (Schäfer, 2000a). For Nf a multiple of three
one finds multiple copies of the CFL pattern; for Nf = 4, 5 the
pattern is more complicated.

discuss the factors that disfavor the CFL phase at inter-
mediate densities, and survey the color superconducting
phases that have been hypothesized to occur there.

Various aspects of color superconductivity at high tem-
peratures have been studied, including the phase struc-
ture (see Sec. VI.A), spectral functions, pair-forming
and -breaking fluctuations, possible precursors to con-
densation such as pseudogaps, and various collective
phenomena (Abuki et al., 2002; Fukushima and Iida,
2005; Hatsuda et al., 2006; Kitazawa et al., 2002, 2004,
2005a,b, 2007; Voskresensky, 2004; Yamamoto et al.,
2007). However, this review centers on quark matter at
neutron star temperatures, and throughout Secs. II and
III we restrict ourselves to the phases of quark matter
at zero temperature. This is because most of the phases
that we discuss are expected to persist up to critical tem-
peratures that are well above the core temperature of a
typical neutron star, which drops below 1 MeV within
seconds of its birth before cooling down through the keV
range over millions of years.

II. MATTER AT THE HIGHEST DENSITIES

A. Color-flavor locked (CFL) quark matter

Given that quarks form Cooper pairs, the next ques-
tion is who pairs with whom? In quark matter at suf-
ficiently high densities, where the up, down and strange
quarks can be treated on an equal footing and the disrup-
tive effects of the strange quark mass can be neglected,
the most symmetric and most attractive option is the
color-flavor locked phase, where quarks of all three colors
and all three flavors form conventional zero-momentum
spinless Cooper pairs. This pattern, anticipated in early
studies of alternative condensates for zero-density chi-
ral symmetry breaking (Srednicki and Susskind, 1981),
is encoded in the quark-quark self-energy (Alford et al.,
1999b)

⟨ψα
i Cγ5ψ

β
j ⟩ ∝ ∆CFL(κ+1)δα

i δβ
j + ∆CFL(κ−1)δα

j δβ
i

= ∆CFLϵαβAϵijA + ∆CFLκ(δα
i δβ

j + δα
j δβ

i )
(5)

The symmetry breaking pattern is

[SU(3)c] × U(1)B

× SU(3)L × SU(3)R
︸ ︷︷ ︸

⊃ [U(1)Q]

→ SU(3)c+L+R
︸ ︷︷ ︸

⊃ [U(1)Q̃]

×Z2 (6)

Color indices α, β and flavor indices i, j run from 1 to 3,
Dirac indices are suppressed, and C is the Dirac charge-
conjugation matrix. Gauge symmetries are in square
brackets. ∆CFL is the CFL gap parameter. The Dirac
structure Cγ5 is a Lorentz singlet, and corresponds to
parity-even spin-singlet pairing, so it is antisymmetric in
the Dirac indices. The two quarks in the Cooper pair are
identical fermions, so the remaining color+flavor struc-

From Alford, Schmitt, Rajagopal, Schaefer 
2008



Neutron Stars

From Coleman Miller



• Assume center of NS has new phase of QCD with a 
VE of order  

• Solve Einstein equations by patching regions with 
different equation of state (EoS) together 

• Find density profile and M(R) curve and look at 
effect of VE  

• Initially just solved for 2 regions and looked for M(R) 
with politropic EoS, and phase transition at critical 
pressure - found there can be sizable effects of VE

Probing VE from NS mergers
(C.C., Eroncel, Hubisz, Rigo, Terning)

⇤4
QCD



Probing VE from NS mergers
(C.C., Eroncel, Hubisz, Rigo, Terning)

• Rather than just resorting to M(R) curve have more 
information on internal structure of NS from LIGO/
VIRGO gravitational wave measurements for NS merger 

• Gravitational wave emitted during inspiral depends on 
entire 𝜌(r) profile  

• Wave form will contain information on tidal 
deformability of NS 





Time period of observed emission 
at inspiral - still mostly spherical



At inspiral system still axially symmetric 
Quadrupole approximation reasonable



•Will try to compare to actual LIGO/VIRGO results - 
need more precise description of NS  

•EoS a complicated function 

•Parametrized as piece-wise polytropic  

•Usually 7 layers used in state-of-the art NS 
simulations 

•Simply a way of parametrizing a complicated nuclear 
EoS 

Modeling QCD matter in the NS interior
(C.C., Eroncel, Hubisz, Rigo, Terning)



•It is customary to use MASS density as input 
parameter for EoS 

•Usual parametrization (DIFFERENT model) 

•For the 7 layers i=1,2,…,7, pi’s are the critical 
pressures where transition to next layer happens 

•Need to convert to EoS for energy density 𝜀(r) 

Modeling QCD matter in the NS interior
(C.C., Eroncel, Hubisz, Rigo, Terning)

density nuclear physics region outside the exotic phase core is to separate the neutron star
into multiple layers with each layer satisfying a non-relativistic polytropic equation of state.
Free parameters of the polytrope are fixed by matching conditions, and by fitting remaining
free parameters to results from more detailed studies.

We follow this established methodology and model the fluid and its corresponding
EoS as a piecewise polytrope where the boundaries between each layer are determined by
a critical pressure. Following previous work [20, 22] we will parametrize the EoS’s with a
total of 7 layers. The Israel junction conditions [47] require that the pressure must always
be continuous between layers, even if each side of the boundary is separated by a first order
phase transition. It is traditional to parameterize the EoS by assuming that the pressure
is given by a power of the mass density ⇢(r) = mn(r) rather than a power of the energy
density (as would be natural for a high-density, relativistic fluid). Since we will want to
most e�ciently compare our results with the existing state of the art simulations (some
of which have been used as benchmarks for the LIGO/Virgo analysis) we will follow this
tradition and parametrize the EoS as

p = Ki⇢
�i , pi�1  p  pi . (2.1)

where i = 1, . . . , 7 for Ki, �i and i = 1, . . . , 6 for pi. The critical pressures pi dividing the
various layers have a one to one correspondence with the critical mass densities ⇢i. However
the Einstein equations contain the energy density, which is related to the mass density via
the first law of thermodynamics: d(✏/⇢) = �p d(1/⇢). Integrating the first law together
with (2.1) yields the Ansatz for the relativistic EoS for the energy density:

✏ = (1 + ai)⇢+
Ki

�i � 1
⇢
�i (2.2)

where the ai are parameters assumed to be constant in each region. Note that the ap-
pearance of the ai parameters is a consequence of using a polytropic ansatz for the mass
density. Had we used a polytopic ansatz for the energy density instead we would have a
relation with one less free parameter. They simply correspond to di↵erent parametrizations
of the EoS, and we adopt the one with more parameters in order to follow the traditional
approach.

By introducing the 7 layers we have also introduced a large number of parameters
(�i, Ki and ai). However most of those can actually be determined by continuity of various
quantities at the layer boundaries. For the outer 6 layers we assume the continuity of the
mass density at the boundaries, which allows us to determine the ai’s:

ai =
✏(⇢i�1)

⇢i�1
� 1�

Ki

�i � 1
⇢
�i�1
i�1 (2.3)

If the K constant for the outermost layer is known, then the other K values (except for
the innermost layer) can be determined by the continuity of the pressure:

Ki = Ki�1⇢
�i�1��i
i�1 , i 2 {2, . . . 6}. (2.4)
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Figure 1: Mass versus radius curves corresponding to the sti↵ parametrization of Hebeler
et al. [22]. Each curve is obtained by varying the pressure at the center of the star but
keeping all of the other parameters fixed. When the central pressure is greater than p6, the
value of ⇤ becomes relevant and the other curves depart from the behavior of the ⇤ = 0
case. The shaded region on the left plot represents the most massive neutron star ever
measured, with a mass of (2.01± 0.04)M� [58].

For the outermost layer, the “crust”, we have p0 = 0. Requiring that lim⇢!0
✏
⇢ = 1 (which

physically means that the edge of the star is ordinary non-relativistic matter) implies that
a1 = 0. Thus the parameterization of the EoS of the NS for the outer layers will require us
to specify the critical pressures pi, all the polytropic exponents �i as well as the outermost
polytropic constant K, while all others will be determined by the continuity conditions.

CC I think we should provide a table of the parameters used in the various
models so that our results are most easily reproduced.

2.2 Modeling the core and the e↵ect of vacuum energy

While baryon number is conserved by QCD, the actual baryon mass scale can change during
the phase transition at the boundary of the innermost layer. Hence for this layer it is best
to use the baryon number density n as the main variable parametrizing the EoS for the
central core (p > p6)

p = K̃7n
�7 � ⇤ , (2.5)

✏ = (1 + ã7)n+
K̃7

�7 � 1
n
�7 + ⇤ , (2.6)

Our goal is to see how sensitive neutron star observables are to the energy shift ⇤, and
hence examine whether the additional vacuum energy obeys the equivalence principle and
gravitates like any normal energy density sourced by ordinary matter.
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To keep the form of the EoS’s unchanged in the various layers we can introduce the
density ⇢ = mnn where mn is the ordinary neutron mass, and use this mass density even
for the innermost layer (note that for this layer the true mass density is mb

mn
⇢, where mb is

the baryon mass scale in the novel phase). We can easily see that in terms of this mass
density the EoS will have the same form as for the outer layers:

p = K7⇢
�7 � ⇤ , (2.7)

✏ = (1 + a7)⇢+
K7

�7 � 1
⇢
�7 + ⇤ , (2.8)

where K7 = K̃7/m
�7
n , (1+a7) = (1+ ã7)/mn are just redefinitions of the unknown constants

parametrizing the EoS for the inner layer. We will be adopting this notation to stay closest
to the usual formalism used for describing NS’s in the literature.

Let us now examine in detail the continuity (or jump) of the various quantities at the
phase boundary between the sixth and the seventh innermost layer. The Israel junction
conditions [47] still require that the pressure be continuous:

K7⇢
�7
+ � ⇤ = K6⇢

�6
� = p6 , (2.9)

but due to the appearance of the ⇤ term this now requires a jump in ⇢(r) from ⇢+ to ⇢�
(where ⇢� = ⇢6) and consequently also in ✏(r) from ✏+ to ✏�. Since QCD conserves baryon
number, another quantity that we need to require to be continuous is the chemical potential
µ (that is we are assuming chemical equilibrium at the phase boundaries with conserved
baryon number). The chemical potential at zero temperature is given by

µ =
✏+ p

n
, (2.10)

where n is again the baryon number density. This relation holds even if the vacuum energy
is nonzero. Therefore the jumps from ✏+ to ✏� and from ⇢+ and ⇢� (in our convention
⇢+ = mnn+ and ⇢� = mnn�) are related to each other by

✏+ + p6

⇢+
=

✏� + p6

⇢�
. (2.11)

The convexity of the free energy
⇣

@2F
@V 2

⌘

T,N
> 0 can be translated to

�
@p
@n

�
T,N

> 0. This

latter form implies that the number density (and hence hence the mass density in our
definition) increases with the pressure, yielding ⇢+ � ⇢�. This condition together with the
continuity of the chemical potential tell us that the jump in energy density should also be
positive, i.e. ✏+ � ✏�.

In order to model the core region, we choose to parametrize the jump in energy density
such that it is proportional to the absolute value of the shift in vacuum energy:

✏+ � ✏� = ↵|⇤|. (2.12)
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phase boundary between the sixth and the seventh innermost layer. The Israel junction
conditions [47] still require that the pressure be continuous:
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but due to the appearance of the ⇤ term this now requires a jump in ⇢(r) from ⇢+ to ⇢�
(where ⇢� = ⇢6) and consequently also in ✏(r) from ✏+ to ✏�. Since QCD conserves baryon
number, another quantity that we need to require to be continuous is the chemical potential
µ (that is we are assuming chemical equilibrium at the phase boundaries with conserved
baryon number). The chemical potential at zero temperature is given by
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where n is again the baryon number density. This relation holds even if the vacuum energy
is nonzero. Therefore the jumps from ✏+ to ✏� and from ⇢+ and ⇢� (in our convention
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latter form implies that the number density (and hence hence the mass density in our
definition) increases with the pressure, yielding ⇢+ � ⇢�. This condition together with the
continuity of the chemical potential tell us that the jump in energy density should also be
positive, i.e. ✏+ � ✏�.

In order to model the core region, we choose to parametrize the jump in energy density
such that it is proportional to the absolute value of the shift in vacuum energy:

✏+ � ✏� = ↵|⇤|. (2.12)

5For each value of �7, ↵ and ⇤, this condition, together with the continuity of the chemical
potential, allows us to fix the values of K7 and a7. This parametrization of the phase
transition also has the advantage that the ⇤ = 0 limit reproduces the results obtained in
the literature since both the mass density and the energy density become continuous.

2.3 Stability conditions for the NS

CC We would need a little more description here - what underlying physical
conditions are violated for the unstable cases? One can show that the neutron star
becomes unstable if [32, 41–44]
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In some cases, even with this instability for p > p6, for even higher energy densities a
disconnected class of solutions with possibly degenerate masses is produced [32, 36–38, 42,
44, 48, 49]. We also must require the both the pressure and the fluid pressure, K7⇢

�7 , are
positive, so ⇤ must satisfy

�p6 < ⇤ . (2.14)

3 Modeling Neutron Stars

After presenting the relevant physics of the QCD matter forming the interior of the NS we
are now ready to review the usual method for simulating the structure of the interior of the
NS. GW emission observed by LIGO/VIRGO originates from the inspiral phase, when the
stars are far apart relative to their radii. In this stage of the merger, the NS’s are still well
approximated by nearly spherically symmetric static objects, with deviations described by
an expansion in spherical harmonics. In this paper we will ignore the e↵ects of NS angular
momentum but plan to further investigate that in a future publication. First we briefly
review the equations relevant for the spherically symmetric solution also used in [] and then
present an overview of the perturbations due to the quadrupole moment of the other star.

3.1 Spherically Symmetric Solutions

At lowest order, the stars are exactly spherically symmetric, and their mass distribution
is predicted from the solution to the Tolman-Oppenheimer Volko↵ (TOV) equations [46].
These equations are easily derived by starting with a spherically symmetric metric ansatz
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• Equation of state:  

• Just like for expanding Universe, at fixed 𝞀 no way 
to tell different contributions apart.  

• But inside NS the density changes, so will probe 
entire EOS (like when we follow expansion of 
Universe) 

• Formal definition of VE: the 𝞀→0 limits of the 
pressure/energy density (even though different 
phase - really analytic continuation of EOS to 𝞀=0) 

Aside: what is VE for NS’s
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• Need pressure and partial fluid pressure positive: 

• Additional condition: stability of NS: 

• At reaching the critical pressure this translates  

• Interestingly, possible that this condition violated 
for p>p6 but satisfied again for even larger pressures 
opening up a disconnected branch (see later)            

Stability conditions

For each value of �7, ↵ and ⇤, this condition, together with the continuity of the chemical
potential, allows us to fix the values of K7 and a7. This parametrization of the phase
transition also has the advantage that the ⇤ = 0 limit reproduces the results obtained in
the literature since both the mass density and the energy density become continuous.

2.3 Stability conditions for the NS

CC We would need a little more description here - what underlying physical
conditions are violated for the unstable cases? One can show that the neutron star
becomes unstable if [32, 41–44]
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In some cases, even with this instability for p > p6, for even higher energy densities a
disconnected class of solutions with possibly degenerate masses is produced [32, 36–38, 42,
44, 48, 49]. We also must require the both the pressure and the fluid pressure, K7⇢

�7 , are
positive, so ⇤ must satisfy

�p6 < ⇤ . (2.14)

3 Modeling Neutron Stars

After presenting the relevant physics of the QCD matter forming the interior of the NS we
are now ready to review the usual method for simulating the structure of the interior of the
NS. GW emission observed by LIGO/VIRGO originates from the inspiral phase, when the
stars are far apart relative to their radii. In this stage of the merger, the NS’s are still well
approximated by nearly spherically symmetric static objects, with deviations described by
an expansion in spherical harmonics. In this paper we will ignore the e↵ects of NS angular
momentum but plan to further investigate that in a future publication. First we briefly
review the equations relevant for the spherically symmetric solution also used in [] and then
present an overview of the perturbations due to the quadrupole moment of the other star.

3.1 Spherically Symmetric Solutions

At lowest order, the stars are exactly spherically symmetric, and their mass distribution
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• Again use TOV equations for the model with 7 
layers    

• Spherically symmetric metric  

• Einstein equations for spherically symmetric fluid 
TOV equations           

Neutron star observables 
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6and deriving the associated Einstein equations assuming a spherically symmetric fluid dis-
tribution with pressure p(r) and energy density ✏(r). The resulting TOV equations are:

m
0(r) = 4⇡r2✏(r) , (3.2)

p
0(r) = �

p(r) + ✏(r)

r (r � 2Gm(r))
G
⇥
m(r) + 4⇡r3p(r)

⇤
, (3.3)

⌫
0(r) = �

2p0(r)

p(r) + ✏(r)
, (3.4)

where 0 denotes di↵erentiation with respect to the radial coordinate r. This TOV metric
will provide the unperturbed solution around which the gravitational field of the second
star will introduce perturbations which is usually dealt with using a multipole expansion.

3.2 Tidal Distortion and Love Numbers

In a neutron star binary, each neutron star experiences gravitational tidal forces due to the
other. This force squeezes the stars along the axis passing through both of their centers,
and deforms the stars, inducing a quadrupole moment. The size of this induced quadrupole
moment is determined by the structure of the two neutron stars, which are characterized
by their compactness and sti↵ness. These in turn will depend on the physical properties
of the QCD matter determined by its EoS described in the previous section. The e↵ect of
the induced quadrupole on gravitational wave data is to change the power emission as a
function of time and frequency, and thus LIGO data on NS inspirals contains information
about this tidal-deformability, which depends on the equation of state of the matter making
up the stars.

A common way to describe the deformability of a star is through the Love number.
Love numbers were originally introduced in the study of Newtonian tides [54]. The applica-
tion of Love numbers to gravitational waves produced in neutron star inspirals was initiated
in refs. [7, 8], and further generalized in [55–57]. Detailed studies of the the prospects for
gravitational wave detection were provided in [9–11].

In the local rest frame of one star a small tidal field can be described in terms of a
Taylor expansion of the Newtonian gravitational potential, or the time-time component of
the metric tensor. There are two contributions, one from the e↵ect of the distant star,
and the other from the induced quadrupole moment. At large distances (using Cartesian
coordinates, xi) gtt takes the form [9]

1 + gtt

2
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3GQij

2r5
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i
x
j
�
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2
Eijx

i
x
j
. . . (3.5)

Here Eij parametrizes the external quadruple field, and Qij is an additional contribution
to the quadrupole field due to the response of the star to the external field. Both matrices
are traceless and symmetric. To linear order in the response, the external and response
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• The presence of the second neutron star will act 
as an external perturbation 

• Since we are in inspiral phase still relatively far - 
will use multipole expansion. Due to spherical 
symmetry of perturbing source no dipole - leading 
term will be quadrupole  

•       is the external quadrupole field, and          is 
the induced term due to the response of the NS.               

Tidal deformability and Love number 
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• For a linear response 

• Characteristic dimensionless quantity (R radius): 

• This is l=2 (quadrupole) Love number or tidal 
deformability. Characterizes the internal structure of 
the NS beyond just the M(R) relation   

• Main additional physical observable                 

Tidal deformability and Love number quadrupole coe�cients are proportional to each other, with the constant of proportionality
(the tidal deformability), �, defined by

Qij = �� Eij . (3.6)

One can then define a dimensionless quantity k2 by

k2 =
3

2

G�

R5
, (3.7)

where R is the radius of the neutron star. k2 is referred to as the ` = 2 tidal Love number,
and will be the main physical observable. The advantages of this parametrization is that
the Love number does not vary much with the size of the star, with typical love numbers
ranging from k2 = .001� 1 as masses and equations of state are varied.

In order to determine k2 we will have to perform the perturbative expansion of the
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• Need to do PT theory around spherically symmetric 
solution               with quadrupole deformations  

• Two functions H(r) and K(r) related 

• Final equation for H(r) 
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• Solution should have no singularity at r=0 

• Need to numerically solve H(r) given the fixed 
backgrounds and k2 will be  

• C is compactness               and 

• Often different version used:     
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The linear term drops out since the solution must be regular at r = 0. The size of the
coe�cient a is linearly proportional to the size of the external perturbation, Eij, and is not
an intrinsic property of the star, as is clear from the fact that it is simply a normalization
coe�cient for the solution to the linear ODE for H. One can thus pick this coe�cient
arbitrarily in numerically solving for H. The tidal l = 2 love number, on the other hand is
an intrinsic property, and the value for a drops out in calculating it. The value for k2 can
be calculated once H is solved, and matched at large r onto the metric ansatz in Eq. (3.5).
It is given by

k2 =
8C5

5
(1� 2C)2[2 + 2C(y � 1)� y]

⇥
�
2C[6� 3y + 3C(5y � 8)] + 4C3[13� 11y + C(3y � 2) + 2C2(1 + y)]

+ 3(1� 2C)2[2� y + 2C(y � 1)] log(1� 2C)
 �1

, (3.13)

where C is the compactness parameter GM/R, and y is obtained from the solution to H

evaluated on the surface of the star:

y =
RH

0(R)

H(R)
. (3.14)

Sometimes it is also useful to consider another dimensionless quantity, essentially obtained
from the definition of k2 by factoring out the C

5 in front:

�̄ =
2k2
3C5

=
�

G4M5
. (3.15)

4 Results and Fits

4.1 M(R) results

We will present results for the AP4 [50], MS2 [51], and SLy [18] EoS models1, as well as for
three benchmark models provided by ref. [22] that cover a realistic range of possible EoS’s.
In all five cases we will use the piecewise polytropic parameterization for the out four layers
provided by Read et al. [20]. Hebeler et al. [21,22] have shown that this parameterization is
consistent with the � equilibrium [52,53] of the outer crust and the results from low-energy
chiral Lagrangians up to densities around 0.18 baryons/fm3. Read et al. [20] have also
tabulated parameters for piecewise polytropic fits for the AP4, MS2, and SLy models. CC
Again, somewhere we should have a table with all the actual numerical values
for the various models that we are using so that one can readily repeat our
calculations if anyone wants.

One of the parametrizations we are considering is obtained starting from the sti↵
parametrization of Hebeler et al. [22], which allows to obtain the highest masses consistent

1
AP4 and SLy were used as benchmarks by LIGO/Virgo [5].
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•  Chirp mass 

• For GW170817   

• Combination of Love numbers: 

• For GW170817 constraint  
(depending on spin of NS’s)   

LIGO/VIRGO observables 

Figure 2: GR We were using the wrong parametrization here, so this figure is only a
placeholder for the moment. Dependence of the tidal deformability parameters on the
vacuum energy ⇤ for various equations of state. Each curve corresponds to a fixed value
for the mass of the neutron star. For each EoS, the curve with the biggest tidal deformability
is flat, i.e. the mass is too small for the region with nonzero ⇤ to be accessible.

with the causality limit. In their parametrization, the outer crust is modeled by the BPS
EoS [52,53], followed by a band predicted by chiral EFT interactions. Finally, the inner core
is described by a piecewise polytropic EoS with three regions. In our case, in order to make
sure that all values of ⇤ are compatible with a neutron star mass of (2.01 ± 0.04)M�, we
stop the second polytropic region as soon as the mass reaches 2.00M�, which corresponds
to p6 = (149.5MeV)4. After that, we introduce the e↵ects of a nonzero vacuum energy in
the third polytropic region and we allow for the central pressure to be as high as possible
without violating the causality bound.

4.2 Tidal Deformabilities and LIGO/VIRGO

JH: I think this is the point Cem and Gabriele should give a description of
what is going on in the plots, and any details of the procedure we use that is
not given above

One of the key parameters that determine the time evolution of the frequency is a
particular combination of the masses of the stars, called the chirp mass:

M = (M1M2)
3/5(M1 +M2)

�1/5
. (4.1)

The properties of the sources are obtained by comparing the data with the predicted wave-
forms, which depend on the model chosen for the internal structure of the stars. For
instance, it is possible to constrain the gravitational wave phase
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Figure 2: GR We were using the wrong parametrization here, so this figure is only a
placeholder for the moment. Dependence of the tidal deformability parameters on the
vacuum energy ⇤ for various equations of state. Each curve corresponds to a fixed value
for the mass of the neutron star. For each EoS, the curve with the biggest tidal deformability
is flat, i.e. the mass is too small for the region with nonzero ⇤ to be accessible.
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Figure 3: GR We were using the wrong parametrization here, so this figure is only a
placeholder for the moment. Tidal deformability curves of GW170817 (chirp mass M =
1.188M�) for various equation of states. The mass range for the heavy star is M1 =
1.36 � 2.20M�. The right side of the black line is excluded by the LIGO measurement at
90% confidence level assuming high spin neutron stars.

(a) M = 1.39M� , M1 = 1.60� 2.22M� (b) M = 1.57M� , M1 = 1.80� 2.22M�

Figure 4: GR We were using the wrong parametrization here, so this figure is only a place-
holder for the moment. Tidal deformability curves of hypothetical neutron star mergers
with higher chirp masses M.
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•  Use 3 different NS models 

• Hebeler et al: most ``aggressive”, allows up to 

• AP4 

• SLy 

• Prepared plots for all, here  
I only show Hebeler 

• Results still significant for  
AP4 and SLy but less dramatic         

The NS models  

3 M�

SLy AP4 Hebeler

K1 9.27637⇥ 10�6 See [22]

p1 (0.348867)4

p2 (7.78544)4 See [22]

p3 (10.5248)4

p4 (40.6446)4 (41.0810)4 (72.2274)4

p5 (103.804)4 (97.1544)4 (102.430)4

p6 (176.497)4 (179.161)4 (149.531)4

�1 1.58425

�2 1.28733

�3 0.62223

�4 1.35692

See [22]

�5 3.005 2.830 4.5

�6 2.988 3.445 5.5

�7 2.851 3.348 3

Table 1: The parameters used for each EoS. The exponents �i are dimensionless, the
various pressures have units of MeV4, and K1 is in units of MeV4�4�1 . The Hebeler et al.
parametrization [22] uses a semi-analytic expression which is not piecewise polytropic in
the outer region of the star, and thus cannot be displayed in the table.

Table 1. While the model of Hebeler et al. also uses a piecewise polytropic EoS for the
innermost three layers, for the outer four layers corresponding to the crust they use a
semi-analytic expression. In their parametrization, the outer crust is modeled by the BPS
EoS [37] assuming � equilibrium1, followed by a layer for which chiral EFT (valid up to
the nuclear saturation density around 0.18 baryons/fm3) is used to obtain the EoS. This
semi-analytic expression is consistent with the piecewise polytropic approach of AP4 and
SLy.

Varying the EoS leads to more or less compact NS’s, whose deformability will also
change. The compactness of the NS can be characterized by the radius of a NS with a
fixed mass. The deformability describes how much the NS reacts to the presence of the
gravitational field of the second NS in the binary merger event and is characterized by
the tidal deformability. In the first subsection, we present our results for the mass versus
radius, M(R), curves of neutron stars with di↵erent nuclear EoS’s including the e↵ect of
VE, while in the second, we study the tidal deformability and comment on the potential
for LIGO/Virgo to discern between models with di↵erent assumptions about the change in
VE in exotic phases of QCD.

1�-equilibrium corresponds to equal rates of neutron decay and proton capture of electrons.

10
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Results I. Effects of VE on M(R) curves 

12.0 12.5 13.0 13.5 14.0 14.51.82.02.22.42.62.83.0

12.5 13.0 13.5 14.0 14.51.82.02.22.42.62.83.0

Figure 1: Mass versus radius curves corresponding to the sti↵ parametrization of Hebeler
et al. [22]. Each curve is obtained by varying the pressure at the center of the star but
keeping all of the other parameters fixed. When the central pressure is greater than p6, the
value of ⇤ becomes relevant and the other curves depart from the behavior of the ⇤ = 0
case. The shaded region on the left plot represents the most massive neutron star ever
measured, with a mass of (2.01± 0.04)M� [58].

For the outermost layer, the “crust”, we have p0 = 0. Requiring that lim⇢!0
✏
⇢ = 1 (which

physically means that the edge of the star is ordinary non-relativistic matter) implies that
a1 = 0. Thus the parameterization of the EoS of the NS for the outer layers will require us
to specify the critical pressures pi, all the polytropic exponents �i as well as the outermost
polytropic constant K, while all others will be determined by the continuity conditions.

CC I think we should provide a table of the parameters used in the various
models so that our results are most easily reproduced.

2.2 Modeling the core and the e↵ect of vacuum energy

While baryon number is conserved by QCD, the actual baryon mass scale can change during
the phase transition at the boundary of the innermost layer. Hence for this layer it is best
to use the baryon number density n as the main variable parametrizing the EoS for the
central core (p > p6)

p = K̃7n
�7 � ⇤ , (2.5)

✏ = (1 + ã7)n+
K̃7

�7 � 1
n
�7 + ⇤ , (2.6)

Our goal is to see how sensitive neutron star observables are to the energy shift ⇤, and
hence examine whether the additional vacuum energy obeys the equivalence principle and
gravitates like any normal energy density sourced by ordinary matter.

4

•  The currently observed maximal NS mass is 
around 

• Picked one set of parameters (Hebeler, Lattimer et 
al) and kept everything fixed except central 
pressure. When pressure large enough VE will 
influence structure 

2M�



Results II. Effects of VE on tidal deformability 

• Chirp mass fixed    

• Picked an aggressive set of parameters (Hebeler, 
Lattimer et al) that allows large NS masses 

0 50 100 150300040005000600070008000900010 000

M = 2�
1
5 1.4M� ⇠ 1.2M�



Results II. Effects of VE on tidal deformability 

• Chirp mass fixed    

• Percent deviation of deformability of heavier star 
(lighter star is in normal phase) 

M = 2�
1
5 1.4M� ⇠ 1.2M�

1.8 1.9 2.0 2.1 2.2 2.3-0.15
-0.10
-0.05
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Results II. Effects of VE on tidal deformability 

• Chirp mass fixed    

• Picked an aggressive set of parameters (Hebeler, 
Lattimer et al.) that allows large NS masses 
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Results II. Effects of VE on tidal deformability 

• Chirp mass fixed    

• Percent deviation of deformability of heavier star 
(lighter star is in normal phase) 

M = 2�
1
5 1.7M� ⇠ 1.48M�

1.8 1.9 2.0 2.1 2.2 2.3-0.25-0.20-0.15-0.10-0.050.00



Results II. Effects of VE on tidal deformability 

• Chirp mass fixed    

• Picked an aggressive set of parameters (Hebeler, 
Lattimer et al.) that allows large NS masses. Note 
two branches for large CC

20 40 60 80 100 1200100200300400500

M = 2�
1
5 2M� ⇠ 1.75M�



Results II. Effects of VE on tidal deformability 

• Chirp mass fixed    

• Percent deviation of deformability of heavier star 
(lighter star is in normal phase). On second branch 
of 𝛬=(165 MeV)4 both stars in new phase of QCD 

M = 2�
1
5 2M� ⇠ 1.75M�

2.00 2.05 2.10 2.15 2.20 2.25 2.30-0.7-0.6-0.5-0.4-0.3-0.2-0.10.0



Dependence on the chirp mass 

• Heavier star’s mass fixed  

• VE fixed 𝛬=(150 MeV)4 

1.2 1.4 1.6 1.8-0.8-0.6-0.4-0.20.0

Figure 8: Dependence on the chirp mass in the Hebeler et al. parametrization, keeping the
heaviest star mass fixed at M1 = 2.27M� (the maximum value for the ⇤ = (150MeV)4 curve).
The left plot shows the corresponding value of the combined tidal deformability for the ⇤ = 0
curve. The right plot represents the relative deviation of the combined tidal deformability by
turning on ⇤ = (150MeV)4 and is a measure of how the e↵ect of VE potentially increases with
the chirp mass.

Figure 9: Dependence on the chirp mass in the AP4 and SLy parametrizations, keeping the
heaviest star mass fixed at M1 = 1.98M� (the maximum value for the ⇤ = (120MeV)4 curve).
The chirp mass range is from M = 1.188M� to M ⇡ 1.72M�, where the latter corresponds to
the case when both stars have masses M1,2 = 1.98M�. The left plot shows the corresponding
value of the combined tidal deformability for the ⇤ = 0 curves. The right plot represents the
relative deviation of the combined tidal deformability and is a measure of how the e↵ect of VE
potentially increases with the chirp mass. The vertical gray line denotes the chirp mass at which
the light star mass reaches the critical mass for the phase transition.

5 Conclusions

In this paper, we have argued that neutron star mergers can be a valuable tool for testing
new phases of QCD at large densities, in particular for finding the contribution of a VE
term in exotic high density phases. To study the e↵ects of such a new phase on neutron star
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new phases of QCD at large densities, in particular for finding the contribution of a VE
term in exotic high density phases. To study the e↵ects of such a new phase on neutron star
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Effect of 𝞚 on GW170817

• The LIGO bound (for a fixed EoS) on tidal 
deformability can be evaded by turning on 𝞚  

• Here chirp mass fixed to that of GW170817

1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5550600650700750800850900



• An important part of our standard picture of 
cosmology & particle physics: VE should change  

• Experimental check important 

• Look for systems where vacuum energy is sizable 
fraction Neutron stars  

• Should cause measurable deviation in maximal 
mass of NS’s 

• Can affect LIGO observables - tidal deformation 
  
• Other observables?  

Summary



Backup slides



•Can we possibly say something about the actual 
vacuum energy of the Universe? 

•Need to look for periods around phase transitions 

•That is only time when vacuum energy might be 
sizable 

• Especially QCD PT might be interesting 

•Case study: look at effect of PT’s on primordial 
gravitational waves, assuming no GW’s produced 
during PT itself

2. Effect of PT’s on Primordial GW’s



•Numerical evaluation 

•Lattice simulations: 

•       is vacuum energy that is changing from 
to almost zero 

•Valid between 100 MeV 
 and 1 GeV 
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•Unfortunately here effect very small. A typical result: 

•Size of step given by change in DOF 60→20 under 
QCD, HUGE step 

QCD Phase transition

2⇤10�9 5⇤10�9 1⇤10�8 2⇤10�8 5⇤10�8 1⇤10�7 2⇤10�7

1.

1.05

1.1
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1.35
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⇥
�k⇥

Figure 5: The e�ect of the QCD PT on a flat primordial GW spectrum from a numerical
simulation. The solid curve uses the results of the lattice simulations Eq. (3.18), which
includes the e�ect of vacuum energy. The dashed curve corresponds to a modified equation
of state describing the QCD PT, where the coe⇥cient d4 describing vacuum energy has
been increased (while d2 set to zero) such that the number of degrees of freedom remains
the same after the end of the PT. We can see that neither curve contains a sharp peak, but
rather the expected step in the spectrum due to the change in the number of degrees of
freedom. There is only a small change in the detailed shape of the spectrum, while another
curve with no vacuum energy and only d2 turned on would lie right on top of the solid
curve.

resulting in �t � 0.004, a tiny peak compared to the expected step of order 7% due to the
change in the number of degrees of freedom from 106.75 to 86.25.

3.4 Conditions for a peak in the spectrum

We have seen above that the e�ect of vacuum energy on the GW spectrum is quite small
during the QCD and EW PTs. The reasons for this can be summarized as follows. There
are a large number of degrees of freedom, which will make the relative contribution of
vacuum energy small, if the couplings are perturbative. For non-perturbative couplings
like for the case of QCD, one still needs to make sure that the change in the number of
degrees of freedom does not overwhelm the e�ect of vacuum energy.

We can look for conditions on the details of a PT such that a peak actually remains
visible in the GW spectrum. Since the total entropy is proportional to ⇥ + p, and the first
law of thermodynamics tells us that this is equal to T dp/dT , we require dp/dT > 0. This
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•Simplified discussion: assume VE jumps at some 
time      , very small before and after transition 

•Important quantity: 

•In the presence of VE power spectrum 

•Since     is very small before & after PT, but sizeable 
during PT - a peak could appear, set by maximal 

•Need to compare      to size of step   

Condition for strong effect of VE

⌧t

while the number of degrees of freedom determine ⇤ + p ⇥ g⇥(T )T 4. Thus the expansion
rate is set by

a ⇥ T�1g
� 1

3
⇥ . (3.9)

This will set the GW spectrum to be

�h(k > keq) ⇥ k2a2(⌅hc) ⇥ a4(⌅hc)H
2
hc ⇥ g

� 1
3

⇥ (3.10)

dependent only on the number of degrees of freedom g⇥. Therefore one expects to see a
step in the GW energy spectrum during a PT, of size of approximately (gb

⇥/g
a
⇥)

1
3 [19], where

a and b denote after or before the PT.

This analysis of PTs so far ignores the potential e⇥ects of vacuum energy. Next we
will discuss qualitatively what those could look like, while later on we will present the full
numerical results for the case of the QCD PT.

Let us define �(⌅) as the relative size of the vacuum energy ⇤� compared to radiation
⇤R = ⇤̄Ra�4:

� =
⇤�

⇤R
=

⇤�

⇤̄R
a4(⌅) . (3.11)

⇤̄R carries the dependence on the degrees of freedom g⇥. Both radiation and vacuum energy
set the comoving horizon, which determines the re-entry of the mode k,

k2 = a2H2 = (1 + �)a2⇤R = (1 + �)a�2⇤̄R , (3.12)

in units where 8⇥G/3 = 1. The resulting power spectrum is thus

�(k > keq) ⇥ a2(⌅hc)k
2 = (1 + �)⇤̄R = (1 + �)g⇥T

4a4 ⇥ (1 + �)g
� 1

3
⇥ , (3.13)

where in the last step we used entropy conservation, Eq. (3.9). This is the equation that
controls the non-trivial features of the GWs spectrum generated by adiabatic PTs where
generically both � and g⇥ change, a⇥ecting the otherwise flat (or standard) spectrum. Since
well before the PT starts � is very small and after the PT � has to be small again, while dur-
ing the PT � will become sizeable, one expects that the e⇥ect of the vacuum energy on its
own is to produce a peak in the spectrum. Whether this peak will remain as an observable
feature will depend on the relative magnitude of the peak (controlled by �) versus the size of
the step (controlled by the change in the number of degrees of freedom). Below we present
a discussion of the approximate shape of the expected peak. Those only interested in the
actual shape of the spectrum for the QCD PT or for a hypothetical SU(N)/SU(N � 1)
PT, may skip ahead to Sec. 3.3 or Sec. 3.4 respectively.

The general expression of the energy spectrum based on Eq. (3.13) is given by

�(ka > keq)

�(kb > keq)
=

1 + �a

1 + �b

�
ga
⇥

gb
⇥

⇥� 1
3

. (3.14)
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•QCD: 

•vs ~ 40 percent step - peak washed out 

•EW:  

•vs ~ 7 percent step - again not visible                                

� = (171 MeV)4

�QCD = 0.04

� = (105 GeV)4

�EW = 0.004

Condition for strong effect of VE

Tc = 193 MeV

Tc = 175 GeV



•An example with peak for hypothetical PT  

SU(N)/SU(N-1)  Tc=        GeV, DOF changes by 10 
(dashes) or almost none (solid). Need large quartic 
coupling on limit of perturbativity!

A peak in the GW spectrum

1011
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Figure 6: The e�ect of a hypothetical SU(N)/SU(N � 1) PT on a flat primordial GW
spectrum from a numerical simulation. We set the critical temperature at Tc = 1011 GeV,
a small change in the number of degrees of freedom, giving rise to a 3% step (dashed), or
absent altogether (solid), and a large ratio of vacuum energy to critical temperature, due
to a sizeable quartic � ⇤ 18 in Eq. (3.29). The peak due to the vacuum energy is clearly
observable, both with and without a step.

other high temperature vacuum re-arrangements. In particular, the time scale of vacuum
energy adjustment may be significant in comparison with the elapsed cosmological time
over which these PTs usually take place. In such cases, after the PT, the vacuum energy
associated with the high temperature phase would be temporarily stored in the sector
associated with the relaxation of the vacuum energy. A short period of inflation is then
possible after each PT, during which the vacuum energy is slowly released. A reheating
mechanism would also be necessary, with the temperature of reheating being lower than
the critical temperature for the PT.

Such inflationary epochs would strongly suppress the amplitude of the GW modes
which had already entered the cosmological horizon prior to the PT. The factor by which
they are suppressed is approximately r ⇥ (a0/af )4, where a0 is the scale factor at the
beginning of the inflationary regime, and af is the scale factor when it ends. Modes which
are outside the horizon during this short inflationary era are simply frozen, and remain
immune to the rapidly growing scale factor [21].

In order to study the possible e�ects of an adjustment mechanism, we model a PT
(such as that associated with QCD) by assuming a high temperature phase during which
the pressure of the fluid is given by pure radiation

phigh(T ) =
⇥2

90
ghigh
� T 4. (3.30)
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•Depends on the time scale for the adjustment 

•If very quick - might just set VE to zero always. In 
this case hard to make any distinction in QCD & EW   

•Other possibility: adjustment time scale somewhat 
larger than that of PT 

•In this case expect a period where VE dominates 
after the PT 

•Could have a short inflation-like period after PT

Effect of adjustment mechanism



•All modes that enter before inflation will be strongly 
suppressed 

•Can get a step much larger than from change of 
degrees of freedom

trelax = 5tQCD

trelax = 10tQCD

Effect of short inflation
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Figure 7: The e⇤ect of an adjustment mechanism on the spectrum of GWs that are entering
the cosmological horizon near the time of the QCD PT. Curves are normalized to 1 at low
wave number. The three curves correspond to epochs of inflation that last for di⇤erent
amounts of co-moving time given by trelax = tQCD (long dash), 5 tQCD (short dash), and
10 tQCD (solid), where tQCD is the age of the Universe in co-moving time at the QCD PT.
The reheat temperature is taken to be Treheat = Tc/10.

The assumption of equilibrium in the previous cases related the size of the step to the
change in the number of degrees of freedom: �⇥h/⇥h ⇥ (ga

�/g
b
�)

1/3�1, which for QCD is ap-
proximately 0.43. For the case of out-of-equilibrium dynamics associated with a dynamical
adjustment of the vacuum energy, we find that much larger steps are possible. Observation
of anomalously large steps in the GW spectrum at wave numbers associated with cosmo-
logical PTs is a possible indicator of a dynamics that may play a role in stabilizing a small
value for the vacuum energy.

There might be other interesting types of PTs that are each worthwhile to study in
the context of signals of vacuum energy or e⇤ects of adjustment mechanisms. One often
discussed PT is that of the breaking of the conformal symmetry in RS1 models. The PT
itself is expected to be first order, and should produce GWs on its own [7]. In addition,
the details of this PT might significantly influence the dynamics of the other PTs, such as
EW and QCD. The nature of the EW PT might also change significantly if embedded into
a larger theory like supersymmetry. All of these are interesting directions that should be
explored in connection with possible signals of vacuum energy.
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Sensitivity of future experiments



energy density except around the times of the phase transitions. A simple toy model for
the evolution of vacuum energy is presented in App. ??. This picture again underlines the
interpretation of the CC as a quantity determined by microscopic physics, which can vary
as the theory undergoes a series of phase transitions.
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Figure 1: Sketch of the evolution of the cosmological constant (red) and the total pressure
dominated by radiation (blue) during the exapansion of the Universe. Left: standard
evolution where the vacuum energy jumps at every phase transition (the ones pictured here
correspond to the GUT, electroweak and QCD phase transitions). Right: the evolution
assuming some form of adjustment mechanism for vacuum energy.

Whether this is indeed the basic picture of the evolution of the CC would be one
of the most important fundamental questions of physics to be verified experimentally.2

Any such experiment would also yield verification of the microscopic origin of the CC, as
the gravitational e�ect of the vacuum energy of the quantum field theory. The di⇥culty
in verifying this picture experimentally is clear: until very recently, the CC was always
a sub-leading component of the energy density, and thus was never the main driver of
the expansion. Moreover the most recent known phase transition is that of QCD, at a
temperature TQCD

c � 200 MeV. While this is a relatively low particle physics scale, most of
the phenomena relevant to experimental cosmology (nucleosynthesis, structure formation,
CMBR) are sensitive only to temperatures well below the QCD scale. Thus one would need
to consider new observables that are potentially sensitive to the details of the QCD or the
electroweak (EW) phase transitions. This is further complicated by the fact that both of
these phase transitions are thought to be quite weak: the QCD phase transition is likely a
cross-over, while the EW phase transition in the SM with a 125 GeV Higgs boson is second
order, whose imprints are weaker than those of strongly first order phase transitions would
be. For example a strongly first order PT is expected to lead to production of gravitational
waves, whose spectrum could potentially be sensitive to the evolution of the CC during
the PT. Since neither of the PT’s is expected to be first order, no significant gravitational
waves would have been produced.

2A potential alternative history (corresponding to that of an adjustment mechanism) would have a CC
that is always zero, except for some spikes during the phase transitions.

2

Alternative evolution of Λ: with adjustment

Radiation

Vacuum energy



•       is always small except around PT’s 

• When PT starts      starts growing  

• Adjustment mechanism kicks in and drives  
small again 

•Will have its own timescale 

•Heights will depend on details of adjustment, PT                            

⇤

⇤

⇤

Alternative evolution of Λ: with adjustment

�tadj



⇤QCD

•Important goal: to determine experimentally which of 
these pictures is right one  
  
•If steps: lends more credence to anthropic 
arguments  

• If adjustment need to find mechanism 

•Difficulty:      always sub-dominant  

•Last of these transitions occurred at               :                             
Above CMB, BBN, etc. Not much precision results 
from that period

Steps or adjustment?

⇤



•Tensor perturbations         transverse traceless 

•Perturbation of metric in expanding Universe 

•Usually conformal time τ is used 
where expansion equation    
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Figure 3: Left: Radius-Mass relation for a polytropic fluids in the inner core with (� =
4/3, K = k�1/3) and Fermi Fluid in the outer core, matched at pcr = 2k/3 ⇥ (200 MeV)4,
for � = 0 (solid black), (150 MeV)4 (dashed blue), (200 MeV)4 (dot-dashed orange),
(223 MeV)4 (dotted red). The turn-over in the low-mass and low-radius region corresponds
to stars with central pressure barely above the critical pressure. They are almost fully
Fermi fluids. Right: the same except it shows also a gray curve corresponding to �cr

3 E�ects of vacuum energy on primordial gravitational
waves

In the previous section we presented a potential experimental approach toward measuring
the gravitational e⇥ects of vacuum energy by identifying a system where it constitutes
a sizeable fraction of the total energy. The downside of this approach is that does not
directly test the picture on the evolution of the CC sketched in Fig. 1 and elaborated on in
Appendix A. In this section we investigate the e⇥ects of the changing CC on the propagation
of primordial gravitational waves. The reason why this might present some hope is that (as
we will see shortly) the e⇥ect of the leading radiation term is strongly suppressed, opening
the door for CC to be dominant in periods around the phase transitions.

Gravitational waves correspond to transverse traceless tensor perturbations hij (with
hi

i = 0, and ⇧khk
i = 0) of the metric in an expanding Universe

ds2 = a(⌅)2
�
d⌅ 2 � (⇥ij + hij)dxidxj

⇥
, (3.1)

where we have used conformal time ⌅ related to ordinary time t via a(⌅)d⌅ = dt. The
expansion equation in conformal time is given by

a⇥ = aȧ = a2H ,
a⇥⇥

a
= a2

⇤
ä

a
+

ȧ2

a2

⌅
=

4⇤G

3
a2T µ

µ . (3.2)

where H = ȧ/a is the Hubble scale wrt to time t, and ⇥ means derivative wrt to ⌅ . The
linearized Einstein equation for the tensor perturbations hij (assuming no anisotropic stress
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the gravitational e⇥ects of vacuum energy by identifying a system where it constitutes
a sizeable fraction of the total energy. The downside of this approach is that does not
directly test the picture on the evolution of the CC sketched in Fig. 1 and elaborated on in
Appendix A. In this section we investigate the e⇥ects of the changing CC on the propagation
of primordial gravitational waves. The reason why this might present some hope is that (as
we will see shortly) the e⇥ect of the leading radiation term is strongly suppressed, opening
the door for CC to be dominant in periods around the phase transitions.

Gravitational waves correspond to transverse traceless tensor perturbations hij (with
hi

i = 0, and ⇧khk
i = 0) of the metric in an expanding Universe

ds2 = a(⌅)2
�
d⌅ 2 � (⇥ij + hij)dxidxj

⇥
, (3.1)

where we have used conformal time ⌅ related to ordinary time t via a(⌅)d⌅ = dt. The
expansion equation in conformal time is given by
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3 E�ects of vacuum energy on primordial gravitational
waves

In the previous section we presented a potential experimental approach toward measuring
the gravitational e⇥ects of vacuum energy by identifying a system where it constitutes
a sizeable fraction of the total energy. The downside of this approach is that does not
directly test the picture on the evolution of the CC sketched in Fig. 1 and elaborated on in
Appendix A. In this section we investigate the e⇥ects of the changing CC on the propagation
of primordial gravitational waves. The reason why this might present some hope is that (as
we will see shortly) the e⇥ect of the leading radiation term is strongly suppressed, opening
the door for CC to be dominant in periods around the phase transitions.
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waves
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a sizeable fraction of the total energy. The downside of this approach is that does not
directly test the picture on the evolution of the CC sketched in Fig. 1 and elaborated on in
Appendix A. In this section we investigate the e⇥ects of the changing CC on the propagation
of primordial gravitational waves. The reason why this might present some hope is that (as
we will see shortly) the e⇥ect of the leading radiation term is strongly suppressed, opening
the door for CC to be dominant in periods around the phase transitions.
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waves

In the previous section we presented a potential experimental approach toward measuring
the gravitational e⇥ects of vacuum energy by identifying a system where it constitutes
a sizeable fraction of the total energy. The downside of this approach is that does not
directly test the picture on the evolution of the CC sketched in Fig. 1 and elaborated on in
Appendix A. In this section we investigate the e⇥ects of the changing CC on the propagation
of primordial gravitational waves. The reason why this might present some hope is that (as
we will see shortly) the e⇥ect of the leading radiation term is strongly suppressed, opening
the door for CC to be dominant in periods around the phase transitions.
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Propagation of primordial gw’s



•Einstein equation: 

•Expand in modes: 

•Rescaled modes: 

•Satisfy very simple equation: 

•Exciting: equation depends on trace of EM tensor! 

•Might think (we did for a while) that VE will have big 
effect before PT - NOT true 

Propagation of primordial gw’s
in the perturbed Tµ�) is

h⇥⇥
ij + 2Hh⇥

ij �⇧2hij = 0 (3.3)

where H = a⇥/a is the Hubble parameter wrt conformal time ⌃ . The spatial Fourier
transform reads

hij =
⇤

⇤=+,�

⌅
d3k

(2⇤)3
⇥(⇤)
ij h(⇤)

k (⌃)eikx (3.4)

and the evolution equation for the rescaled modes (omitting the polarization index ⇧)

⌥k ⇥ ahk (3.5)

becomes

⌥⇥⇥
k + (k2 � a⇥⇥

a
)⌥k = ⌥⇥⇥

k +

�
k2 � 4⇤G

3
a2T µ

µ

⇥
⌥k = 0 . (3.6)

where in the second equality we used Eq. (3.2).

This basic evolution equation for the tensor modes is quite interesting since it shows
that during radiation domination the leading contribution to Tµ� cancels out in the trace.
For truly conformal radiation Tµ� = 0, since the equation of state parameter is w = 1

3 .
However, for radiation in the standard model the trace anomaly will generate a sub-leading
contribution from radiation, which has been calculated in great detail in [5]. A simplified
expression for SU(Nc) gauge theories with Nf flavors was provided in [6]:

⇥ ⇥ 1� 3w =
5

6⇤2

g4

16⇤2

(Nc + 5
4Nf )(

11
3 Nc � 2

3Nf )

2 + 7
2

NcNf

N2
c �1

(3.7)

For example the value for QCD around the TeV scale with �s ⇤ 0.1, Nc = 3, Nf = 6
corresponds to ⇥ ⇤ 6·10�3. Thus the total contribution is approximated by T µ

µ = ⇥⌅rad+4�,
where � can be as large as the energy density of the phase transitions happening in this era
(e.g. the EW phase transition). The full power spectrum for the tensor perturbation hk is
the same as the one for ⌥k except for the scale factor 1/a2 and an overall normalization (to
achieve canonical normalization):

Ph = 16⇤G
|⌥k|2

a2
(3.8)

The additional scale factor 1/a2 is actually crucial for understanding the qualitative features
of the spectrum. Due to this suppression ⌥ modes that do not grow with a will be strongly
suppressed. For wavelength k2 ⌅ 4⇥G

3 a2T µ
µ we just have a free wave equation for ⌥, and the

modes will be strongly suppressed. However when the T µ
µ term dominates, we have ⌅00

⌅ = a00

a
and thus we do find modes growing with a. Therefore the physical picture of the spectrum
is the following. The T µ

µ term sets an e⇥ective damping horizon for the gravitational waves

2⇤

D2
gw

=
4⇤G

3
a2T µ

µ ⇤
4⇤G

3
a2(⇥⌅rad + 4� + ⌅mat) (3.9)
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contribution from radiation, which has been calculated in great detail in [5]. A simplified
expression for SU(Nc) gauge theories with Nf flavors was provided in [6]:
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For example the value for QCD around the TeV scale with �s ⇤ 0.1, Nc = 3, Nf = 6
corresponds to ⇥ ⇤ 6·10�3. Thus the total contribution is approximated by T µ

µ = ⇥⌅rad+4�,
where � can be as large as the energy density of the phase transitions happening in this era
(e.g. the EW phase transition). The full power spectrum for the tensor perturbation hk is
the same as the one for ⌥k except for the scale factor 1/a2 and an overall normalization (to
achieve canonical normalization):

Ph = 16⇤G
|⌥k|2

a2
(3.8)

The additional scale factor 1/a2 is actually crucial for understanding the qualitative features
of the spectrum. Due to this suppression ⌥ modes that do not grow with a will be strongly
suppressed. For wavelength k2 ⌅ 4⇥G

3 a2T µ
µ we just have a free wave equation for ⌥, and the

modes will be strongly suppressed. However when the T µ
µ term dominates, we have ⌅00

⌅ = a00

a
and thus we do find modes growing with a. Therefore the physical picture of the spectrum
is the following. The T µ

µ term sets an e⇥ective damping horizon for the gravitational waves
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•Interpretation: if                 just free plane wave for χ 

•But actual mode is χ/a getting damped by 1/a  

•Interpretation: if                   then equation 

has solution                 and actual mode χ/a is frozen 

•If mode outside horizon it is frozen. Once it enters 
horizon it is damped by  1/a

Propagation of primordial gw’s
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•What sets the horizon? 

•Naively: 

•This horizon is larger than Hubble horizon - 
suggests can not have any physical effect 

•Indeed when entering this ``naive horizon” velocity 
of solution still very large - will keep expanding until 
reaches actual Hubble horizon 

•Real condition: rate of entering actual horizon                  

Propagation of primordial gw’s

a00

a
=

4�G

3
a2Tµ

µ



•The physical quantity:  

•The power spectrum: 

•Transfer function      : 

•         is the primordial amplitude, usually assumed to 
have constant power 

Energy density in GW’s
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1 Basics

The energy density contained in gravitational waves at a given conformal time ⌃ is given by,

⌅h(⌃) =
1
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where the integral runs over comoving wave numbers k, � ⇤ ⌥/⌥⌃ , summation over polarizations

⇧ = +,⇥ is understood, and h�,k is the spatial average of the Fourier transform of the tensor

perturbation of the metric hij,
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The associated power spectrum is given by
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When considering primordial perturbations created during inflation, it is convenient to define the

transfer function T (⇤, k) such that

hk(⇤) � hP
k T (⇤, k) (11)

where the primordial amplitude from inflation hP
k has a (approximately) constant power,
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which remains constant once the modes exit the horizon during inflation. H� is the Hubble constant

at horizon exit. We then have
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Furthermore, we can write
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It is then customary to work with the energy density per logarithmic scale, normalized to the critical

density,
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It will be convenient for the arguments below to approximate T � above assuming that the wave

modes are deep inside the horizon k⇤ ⇤ 1 (or k ⇤ aH), in which case

T �2(⇤, k) ⌅ k2 T 2(⇤, k) (17)

As it is to be expected from the energy density carried by radiation.

There are two key points in order to understand the behavior of ⇥h. First, all the modes of

interest became super horizon, k ⇥ aH, during inflation, and once outside the horizon their power

spectrum �2
h froze to the value set by inflation, independent of k, Eq. (12). This means that once

a mode reenters the horizon (for the first time) at ⇤ = ⇤hc, it does it asymptotically with the same

power, irrespective of when it enters. Thus we will approximate [T (⇤hc, k)]2 ⌅ 1. Second, gravitons

are already decoupled from the thermal bath from the very start of the expansion. This is why,

once they are inside the horizon, and in the absence of sources, the evolution of the energy density
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•The energy density can then be written in terms of 
the transfer function 

•The most commonly used quantity: energy density 
per log scale normalized to critical density 

•Most useful expression: 

Energy density in GW’s
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•Assuming mode deep inside horizon: 

•Given our previous discussion, after inflation modes 
start out outside the horizon and are frozen 

•Mode enters at                   after which energy 
density gets diluted as radiation 

•Approximate expression:  

Energy density in GW’s

When considering primordial perturbations created during inflation, it is convenient to define the

transfer function T (⇤, k) such that

hk(⇤) � hP
k T (⇤, k) (11)

where the primordial amplitude from inflation hP
k has a (approximately) constant power,

(�P
h )2 =

4k3

2�2
|hP

k |2 ⌅ 2

�2

H2
�

M2
P

(12)

which remains constant once the modes exit the horizon during inflation. H� is the Hubble constant

at horizon exit. We then have

(�h)
2 = (�P

h )2T 2(⇤, k) (13)

Furthermore, we can write

⇥h(⇤) =
1

32�Ga2(⇤)

�
d ln k(�P

h )2T �2(⇤, k) (14)

It is then customary to work with the energy density per logarithmic scale, normalized to the critical

density,

⇥h(⇤, k) � ⇥̃h(⇤, k)

⇥c(⇤)
, ⇥̃h(⇤, k) =

d⇥h(⇤, k)

d ln k
(15)

where ⇥̃h(⇤, k) = d⇥h(⇤, k)/d ln k and ⇥c = 3H2(⇤)/8�G. Therefore one has

⇥h(⇤, k) =
(�P

h )2

12

1

H2(⇤)

1

a2(⇤)
T �2(⇤, k) (16)

It will be convenient for the arguments below to approximate T � above assuming that the wave

modes are deep inside the horizon k⇤ ⇤ 1 (or k ⇤ aH), in which case

T �2(⇤, k) ⌅ k2 T 2(⇤, k) (17)

As it is to be expected from the energy density carried by radiation.

There are two key points in order to understand the behavior of ⇥h. First, all the modes of

interest became super horizon, k ⇥ aH, during inflation, and once outside the horizon their power

spectrum �2
h froze to the value set by inflation, independent of k, Eq. (12). This means that once

a mode reenters the horizon (for the first time) at ⇤ = ⇤hc, it does it asymptotically with the same

power, irrespective of when it enters. Thus we will approximate [T (⇤hc, k)]2 ⌅ 1. Second, gravitons

are already decoupled from the thermal bath from the very start of the expansion. This is why,

once they are inside the horizon, and in the absence of sources, the evolution of the energy density

2

⌧ = ⌧hc
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value of the transfer function at horizon crossing, we have1

T 2(⇥ < ⇥hc, k) ⇥ a2(⇥hc)

a2(⇥)
(18)

With this approximation,

⇥h(⇥, k) ⇥ (�P
h )2

12

k2

H2(⇥)

a2(⇥hc)

a4(⇥)
(19)

which we will use to understand several important behaviors below.

2 Interesting examples
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given that H2a4 ⇤ 1 and a2(⇥hc) ⇤ (aH)�2(⇥hc) ⇥ 1/k2. Consider now the same mode at a time

⇥ > ⇥eq, that is during matter domination, where a ⇤ ⇥ 2 and H ⇤ a�3/2

⇥h(⇥ > ⇥eq, k > keq) ⇤
k2a2(⇥hc)

a(⇥)
⇤

⇥ 2
eq

⇥ 2
(21)

given that H2a4 ⇤ a and we matched the scale factors from radiation to matter domination at

⇥ = ⇥eq. Notice that the proportionality factor is the same for any mode k that entered during

radiation domination, thus ⇥h(⇥ > ⇥eq, k > keq)/⇥h(⇥ > ⇥eq, k⇥ > keq) ⇥ 1.

2.2 Case 2
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during that same era

⇥h(⇥ > ⇥eq, k < keq) ⇤
k2a2(⇥hc)

a(⇥)
⇤ 1

(k⇥)2
(22)

1We are neglecting the oscillation here.
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•This is the most relevant case for studying PT’s, 
both QCD and EW happen in that epoch 

•Condition for entering:  

•During RD 

•Thus 

•Spectrum for modes entering during RD constant!   

Modes entering during RD
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•Depart from pure RD during PT   

•Traditional description: changing number of rel. 
degrees of freedom in equilibrium 

•Assuming PT is second order adiabatic (entropy 
conserved): 

•For radiation

S =
�+ p

T
a3 = const.

�+ p / g⇤T
4

Effect of Phase transition

given that H2a4 ⇧ a and a2(⇤hc) ⇧ (aH)�4(⇤hc) ⌅ 1/k4. Again, the proportionality factor is the

same for any mode k that entered during matter domination, thus �h(⇤ > ⇤eq, k < keq)/�h(⇤ >

⇤eq, k⇥ < keq) ⌅ (k⇥/k)2. Actually, the proportionality factor is the same as for the modes that

entered during radiation domination, thus

�h(⇤ > ⇤eq, k < keq)

�h(⇤ > ⇤eq, k > keq)
⌅ 1

(⇤eqk)2
(23)

Notice that, as expected, for modes that enter at matter-radiation equality, k⇤eq = 1, the ratio is

one.

2.3 Case 3

Let us consider a departure from pure radiation, due to quantum interactions, that is the trace

anomaly. In such a case p = ⌅⇥ with ⌅ = (1 � �)/3, � parametrizing the departure from pure

radiation. Then it follows H2 ⇧ ⇥ ⇧ a�(4��) and a ⇧ ⇤ 1/(1��/2). For a mode entering the horizon

during this epoch

�h(⇤ < ⇤eq, k > keq) ⇧
k2a2(⇤hc)

a�
⇧ 1

(k⇤)�
(24)

given that H2a4 ⇧ a� ⇧ ⇤ � and a2(⇤hc) ⇧ (aH)�2/(1��/2)(⇤hc) ⌅ 1/k2+�, for �⇤ 1. This also implies

that, after matter-radiation equality, two di⇥erent modes that entered during radiation domination

will have a relative spectral density

�h(⇤ > ⇤eq, k > keq)

�h(⇤ > ⇤eq, k⇥ > keq)
⌅

�
k⇥

k

⇥�

(25)

for � ⇤ 1. Given � > 0, modes that entered the horizon before will be more damped than those

that entered after.

2.4 Case 4

Let us now consider a localized departure from pure radiation, at a given time ⇤t, due to a reduction

of the relativistic degrees of freedom in thermal equilibrium,

g⇥,a ⇥ g⇥(⇤ > ⇤t) ⌃= g⇥(⇤ < ⇤t) ⇥ g⇥,b (26)

Assuming that entropy per unit comoving volume is conserved, s(T )a3(T ) = ct., and given that

s(T ) = (⇥ + p)/T , it follows a ⇧ T�1g�1/3
⇥ . Therefore H2 ⇧ ⇥ ⇧ g�1/3

⇥ a�4 (and a ⇧ ⇤), before or

after the phase transition (but not during), the only di⇥erence being in g⇥. Then, even though the
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•Expansion rate: 

•Hubble: 

•Energy density:  

•Depends only on # of DOF’s  

•Expect to see a step in GW density 

�h / k2a2(�hc) / a4(�hc)H
2
hc / g�1/3

⇤

Effect of Phase transition

a / T�1g�1/3
⇤

H2 / � / 1

a4
g�1/3
⇤



•If all VE (ie. change EOS for Θ) 

•Almost no difference. Effect of VE (vs. changing 
DOF’s) not measurable in QCD PT

QCD Phase transition
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Figure 5: The e�ect of the QCD PT on a flat primordial GW spectrum from a numerical
simulation. The solid curve uses the results of the lattice simulations Eq. (3.18), which
includes the e�ect of vacuum energy. The dashed curve corresponds to a modified equation
of state describing the QCD PT, where the coe⇥cient d4 describing vacuum energy has
been increased (while d2 set to zero) such that the number of degrees of freedom remains
the same after the end of the PT. We can see that neither curve contains a sharp peak, but
rather the expected step in the spectrum due to the change in the number of degrees of
freedom. There is only a small change in the detailed shape of the spectrum, while another
curve with no vacuum energy and only d2 turned on would lie right on top of the solid
curve.

resulting in �t � 0.004, a tiny peak compared to the expected step of order 7% due to the
change in the number of degrees of freedom from 106.75 to 86.25.

3.4 Conditions for a peak in the spectrum

We have seen above that the e�ect of vacuum energy on the GW spectrum is quite small
during the QCD and EW PTs. The reasons for this can be summarized as follows. There
are a large number of degrees of freedom, which will make the relative contribution of
vacuum energy small, if the couplings are perturbative. For non-perturbative couplings
like for the case of QCD, one still needs to make sure that the change in the number of
degrees of freedom does not overwhelm the e�ect of vacuum energy.

We can look for conditions on the details of a PT such that a peak actually remains
visible in the GW spectrum. Since the total entropy is proportional to ⇥ + p, and the first
law of thermodynamics tells us that this is equal to T dp/dT , we require dp/dT > 0. This
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•At zero temperature, gravitational pressure balanced 
by pressure of fluid. Metric: 

•Einstein eq’s (aka Tolman-Oppenheimer-Volkoff eq): 

Toy model for neutron stars

the center of neutron stars can actually be significant. This is the reason that we will focus
our attention to the dynamics of neutron stars.

Next we present our analysis of the potential e⇥ects of an adjustment mechanism of the
vacuum energy on the structure of neutron stars. We will present a toy model for a neutron
star, with just two regions: the inner core region corresponding to the QCD condensate
phase, where the vacuum is di⇥erent from that of low-temperature and low-density QCD,
and an outer core region in a more conventional phase with the same condensates that
appear all through space since the temperature of the Universe fell bellow about 150 MeV.
This ordinary condensate presumably contributes to the observed CC, and we are looking
for a di⇥erence in vacuum energies. This outer layer is usually treated as a perfect Fermi
fluid phase with no extra vacuum energy. Realistic neutron star simulations are of course
much more involved, with many more layers matched onto each other. We are essentially
neglecting the crust, the envelope and the atmosphere of the neutron star, and taking
oversimplified equations of state (EoS) in the inner and outer cores that contain nearly all
the mass. We are not attempting to present a precise description of the neutron stars, rather
to establish that the presence of the QCD-scale vacuum energy at the core of the neutron
star has a significant e⇥ect on the structure of the star, which would change significantly
if the vacuum energy in the core was not present. See ref. [4] for a review of the physics of
neutron stars.

We are assuming a static neutron star in equilibrium at close to zero temperature.
Gravitational pressure is balanced by the pressure of a perfect fluid, which undergoes a
phase transition at a critical pressure pcr. The general form of the metric of a static and
spherically symmetric spacetime is given by

ds2 = e�(r)dt2 � (1� 2GM(r)/r)�1 dr2 � r2d�2 . (2.1)

Einstein’s equations for a static and spherically symmetric configuration of a fluid with
pressure p(r) and energy density ⇤(r) are given by the Tolman-Oppenheimer-Volko⇥ equa-
tions:

M ⇥(r) = 4⇥r2⇤(r) , (2.2)

p⇥(r) = � p(r) + ⇤(r)

r2 (1� 2GM(r)/r)

�
GM(r) + 4⇥r3p(r)

⇥
, (2.3)

� ⇥(r) = � 2p⇥(r)

p(r) + ⇤(r)
, (2.4)

where ⇥ denotes di⇥erentiation with respect to the radial coordinate r. These are three
equations for four unknown functions: p(r), ⇤(r), M(r) and �(r). The extra equation
needed to solve the system is the EoS p = p(⇤) which is the only model dependent input
sensitive to the actual phase of the fluid in the various layers of the neutron star. The radius
of the neutron star, R, is determined by the condition of vanishing pressure p(R) = 0.
Outside the radius of the neutron star r > R the solution is matched to the Schwarzschild
solution in radial coordinates with total mass M(R).
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•Radius determined by position of vanishing pressure 
p(R)=0 

•Assume phase transition happens at  

•Two different EOS’s 

•Junction condition:                    continuous, thus 
also cont.  
   

Toy model for neutron stars

pcrit
We model the fluid and its corresponding EoS in the following way: as the pressure

increases toward the center of the neutron star, it eventually reaches a critical value pcr

at some critical surface r = rcr where the nucleons “freeze” into a new phase with a non-
vanishing vacuum energy �. There are therefore two EoS’s for the two di⇥erent regions:

p =p(�)(⇧) , ⇧ = ⇧(�) , p ⇤ pcr , r ⇥ rcr (2.5)

p =p(+)(⇧) , ⇧ = ⇧(+) , p < pcr , r ⇤ rcr . (2.6)

The usual Israel junction conditions of continuity of the induced metric and extrinsic cur-
vature at the critical surface require ⇤ ⇥(r) and M(r) to be continuous across the phase
transition. These in turn imply the continuity of the pressure4 p(r). The energy density
⇧ is in general discontinuous at rcr as is generically the case for phases separated by a
spacelike surface, such as the vapor-liquid phases of water.

In the inner core region r < rcr we take a polytropic fluid supplemented by a non-
vanishing vacuum energy �

p(�)(⇧) =pf (⇧)� � = K⇧�
f � � (2.7)

⇧(�) =⇧f + � (2.8)

where ⇧f and pf = K⇧�
f represent the ordinary matter partial density and pressure that

include e.g. the e⇥ect of binding energy but not the vacuum energy. Notice that K = 1/3
and � = 1 may be interpreted as the EoS of the bag model. In the outer core region,
r > rcr, we take a perfect Fermi fluid of nucleons described by a parametric EoS

⇧(+) = k [sinh t(r)� t(r)] , p(+) =
k

3

⇤
sinh t(r) + 3t(r)� 8 sinh

�
t(r)

2

⇥⌅
(2.9)

where k = m4
N/32⌅2 and mN is the nucleon mass. Notice that at small pressure and

density the Fermi fluid behaves as polytropic fluid with � = 5/3, whereas at high density
and pressure it becomes a relativistic perfect fluid with p = ⇧/3.

The phase transition only occurs when the Gibbs free energy (density) g = ⇧ + p� Ts
decreases across the critical surface, ⇥g = g(+) � g(�) > 0. Assuming zero temperature and
using the continuity of pressure, this condition is equivalent to the requirement that the
energy density decreases as we move from the outer to the inner core

⇥⇧ = ⇧(+)(pcr)� ⇧(�)(pcr) = ⇧(+)(pcr)�
⇧�

pcr + �

K

⇥ 1
�

+ �

⌃
⇤ 0 . (2.10)

Therefore, there exists a critical value of the vacuum energy �cr (which depends on pcr and
the EoS’s parameters) such that ⇥⇧(�cr) = 0. The phase transition is thermodynamically

4We are neglecting a possible localized surface tension on the layer separating the two phases, which
would allow for a small discontinuity in the pressure at the critical surface.
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•For inner core use polytropic with cc: 

•For outer core just polytropic  

• The value                   reproduces the small 
pressure limit of a Fermi fluid 

•The cc can not be too large negative: 
Otherwise partial pressure of QCD fluid negative

Toy model for neutron stars

We model the fluid and its corresponding EoS in the following way: as the pressure
increases toward the center of the neutron star, it eventually reaches a critical value pcr
at some critical surface r = rcr where the nucleons “freeze” into a new phase with a non-
vanishing vacuum energy �. There are therefore two EoS’s for the two di⇥erent regions:

p =p(�)(⇤) , ⇤ = ⇤(�) , p ⇤ pcr , r ⇥ rcr (2.5)

p =p(+)(⇤) , ⇤ = ⇤(+) , p < pcr , r ⇤ rcr . (2.6)
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vature at the critical surface require ⇥ ⇥(r) and M(r) to be continuous across the phase
transition. These in turn imply the continuity of the pressure4 p(r). The energy density
⇤ is in general discontinuous at rcr as is generically the case for phases separated by a
spacelike surface, such as the vapor-liquid phases of water.

In the inner core region r < rcr we take a polytropic fluid supplemented by a non-
vanishing vacuum energy �

p(�)(⇤) =pf (⇤)� � = K�⇤
��
f � � (2.7)

⇤(�) =⇤f + � (2.8)

where ⇤f and pf = K�⇤
��
f represent the ordinary matter partial density and pressure that

include e.g. the e⇥ect of binding energy but not the vacuum energy. Notice that K = 1/3
and � = 1 may be interpreted as the EoS of the bag model. In the outer core region,
r > rcr, we take another polytropic fluid described by K+ and �+ but no vacuum energy,
�+ = 0

p(+)(⇤) =pf (⇤) = K+⇤
�+
f (2.9)

⇤(+) =⇤f . (2.10)

The value �+ = 5/3 reproduces the small pressure and density limit of a perfect Fermi
fluid.

Notice that the vacuum energy can’t be too negative. Indeed, should � be smaller
than �pcrit, the matter partial pressure pf would become negative triggering an instability
of the fluid that would separate in more than two phases of matter. Thus one has the
condition

� > �pcr . (2.11)

One may expect also an upper bound on � by thermodynamical considerations. The
equilibrium between the phases requires dg = 0 where g is the Gibbs free energy density
g = (⇤ + p)/n � Ts and n is the total number density. It may be possible that such
equilibrium condition can not be satisfied by taking � at arbitrarily large values. This
upper bound is di⇤cult to be derived since dg = dp/n�sdT +µidYi and one would need to

4We are neglecting a possible localized surface tension on the layer separating the two phases, which
would allow for a small discontinuity in the pressure at the critical surface.
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Figure 4: R-M trajectories for a two-polytropic fluid with �� = 1 and �+ = 5/3, for various
values of the vacuum energy in the inner core, sign(�)|�|1/4 = �90MeV (red dotdashed),
�75MeV (brown dotted), 0MeV (black solid), 50MeV (blue dashed), and 100MeV (orange
dotdashed).

figures, in particular the reduction of the maximal mass with � for a given critical pressure,
can be understood by noticing that a larger value of � implies a higher matter pressure for
the same total pressure at the center. This makes the star end faster, and with a lower mass.

At this point it is important to take into consideration the fact that there is strong
observational evidence of neutron stars with masses above 2M⇥. Such large masses have
been taken as an indication in favor of pure hadronic neutron stars, given the di⇥culties
for EoS’s such as the MIT bag model to reproduce them.6 We are showing here that if the
vacuum energy, which is presumably included in the MIT bag model as part of the bag
constant, was to be relaxed towards negligible values, larger values of Mmax could easily be
obtained, improving consistency with observations. Nevertheless, it is certainly crucial that
a reliable EoS for the matter component is obtained, most likely from lattice simulations,
before extracting any conclusions in this regard.

With the expected improvement in quantity and quality of experimental data on neu-
tron stars, one might hope to obtain better lower bounds on the maximum mass of a
neutron star, along with crucial information on the associated radius. Up to date, radii
measurements have poor accuracy, and they have only been achieved for a handful of neu-
tron stars in binary systems, and inferred from X-ray measurements. A promising avenue

6See however Ref. [11] for a more refined EoS for quark matter including interactions, and from which
higher maximal masses can be obtained.
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vacuum energy, which is presumably included in the MIT bag model as part of the bag
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obtained, improving consistency with observations. Nevertheless, it is certainly crucial that
a reliable EoS for the matter component is obtained, most likely from lattice simulations,
before extracting any conclusions in this regard.

With the expected improvement in quantity and quality of experimental data on neu-
tron stars, one might hope to obtain better lower bounds on the maximum mass of a
neutron star, along with crucial information on the associated radius. Up to date, radii
measurements have poor accuracy, and they have only been achieved for a handful of neu-
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Figure 4: Pressure profiles of three stars with the same properties except the value of the
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a reliable EoS for the matter component is obtained, most likely from lattice simulations,
before making any definitive conclusions.

With the expected improvement in quantity and quality of experimental data on neu-
tron stars, one might hope to obtain better lower bounds on the maximum mass of a
neutron star, along with crucial information on the associated radius. To date, radius mea-
surements have low accuracy, and they have only been achieved for a handful of neutron
stars in binary systems, and inferred from X-ray measurements. A promising avenue that
is expected to provide new data is the detection of gravitational waves from inspiraling
binary neutron stars [15]. From the properties of the gravitational wave signatures during
coalescence, di⇥erent competing models for the equation of state of the neutron star can be
distinguished from one another. Properties such as the mass-radius relationship, and the
response of the star to tidal forces are imprinted on the “chirp” gravitational wave signature
given o⇥ by the collapsing binary pair. Given input from theoretical studies of QCD at
high densities where the non-CFL phase is expected to occur, and of the nuclear superfluid
equation of state that describes the physics of the outer core, Advanced LIGO could test
whether or not there are beyond the Standard Model contributions to the equation of state
that may be related to dynamics responsible for the small observed value of the vacuum
energy density. The most challenging aspect of this program, however, is to obtain this
theoretical input. Progress on first-principles determination of the finite chemical potential
portion of the QCD phase diagram has been slow, as the typical tools for non-perturbative
studies, i.e. the lattice, are ill-suited for large baryon densities. Further development of
experimental techniques to determine properties of exotic phases of QCD, along with the
aforementioned advances in theoretical predictions are key to determining the gravitational
properties of vacuum energy in neutron stars.
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Figure 5: Right: Maximum mass with varying � for various values of pcr. Left: Maximum
mass contour lines in the vacuum energy and critical pressure plane.

that is expected to provide new data is the detection of gravitational waves from inspiralling
binary neutron stars [12]. From the properties of the gravitational wave signatures during
coalescence, di⇥erent competing models for the equation of state of the neutron star can be
distinguished from one another. Properties such as the mass-radius relationship, and the
response of the star to tidal forces are imprinted on the “chirp” gravitational wave signature
given o⇥ by the collapsing binary pair. Given input from theoretical studies of QCD at
high densities where the non-CFL phase is expected to occur, and of the nuclear superfluid
equation of state that describes the physics of the outer core, Advanced LIGO can thus test
whether or not there are BSM contributions to the equation of state that may be related to
dynamics responsible for the small observed value of the vacuum energy density. The most
challenging aspect of this program, however, is to obtain this theoretical input. Progress
on first-principles determination of the finite chemical potential portion of the QCD phase
diagram has been slow, as the typical tools for non-perturbative studies, i.e. the lattice,
are ill-suited for large baryon densities. Further development of experimental techniques to
determine properties of exotic phases of QCD, along with the aforementioned advances in
theoretical predictions are key to determine the gravitational properties of vacuum energy.

4 Conclusions

A major goal for the gravitational wave detector program should be to measure the e⇥ect of
vacuum energy at the electroweak phase transition, this will require a new experiment that
fills in the gap between eLISA and NANOgrav Since eLISA’s peak sensitivity is around
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•Status: maximal mass appears to be bigger than 

•For now radius measurements difficult, only few 
known from X-ray measurements.
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