La gravimétrie spatiale réalisations et perspectives

Richard Biancale CNES/GRGS

Journées scientifiques GRAM 2016, APC Paris, 2-3 juin 2016

Satellite missions for gravity field determination

GRACE decay

Gravity Recovery And Climate Experiment

GOCE

Gravity field and steady-state Ocean Circulation Explorer

17 March 2009 - 11 November 2013

Modelling in spherical harmonic functions

Error spectra of global gravity field models

EIGEN6-C4 (2014)

Modelling the Earth gravity field

Potential of gravitation

$$
\begin{aligned}
& U=\frac{G M}{a_{e}} \sum_{l=0}^{L}\left(\left(\frac{a_{e}}{r}\right)^{l+1} \sum_{m=0}^{l} \bar{P}_{l, m}(\sin \varphi)\left(\bar{C}_{l, m} \cos m \lambda+\bar{S}_{l, m} \sin m \lambda\right)\right. \\
& U_{0}=62494812.4 \mathrm{~m}^{2} \mathrm{~s}^{-2}
\end{aligned}
$$

$\begin{aligned} & \text { Orbital perturbationts } \\ & \pm 1000 \mathrm{~m}\end{aligned} \ddot{\bar{x}}=\frac{\partial U}{\partial \bar{x}}$ numerical or analytical integration (Lagrange's equation)

$$
\frac{\partial U}{\partial r}=-\frac{G M}{a_{e}^{2}} \sum_{l=0}^{L}(l+1)\left(\frac{a_{e}}{r}\right)^{l+2} \sum_{m=0}^{l} \bar{P}_{l, m}(\sin \varphi)\left(\bar{C}_{l, m} \cos m \lambda+\bar{S}_{l, m} \sin m \lambda\right)
$$

$$
\begin{array}{r}
N=\frac{T}{\gamma} \quad, \quad T=U-V, \quad V: \text { ellipsoid potential } \\
\quad N=a_{e} \sum_{l=0}^{L} \sum_{m=0}^{n} \bar{P}_{l, m}(\sin \varphi)\left(\bar{C}_{l, m}^{*} \cos m \lambda+\bar{S}_{l, m}^{*} \sin m \lambda\right)
\end{array}
$$

Gravity anomaly:

$\pm 500 \mathrm{mGal}$

(m Gal $=10^{-5} \mathrm{~m} \mathrm{~s}^{-2}$)
Vertical deflection

± 50 "

$$
\Delta g=\frac{\partial T}{\partial r}+2 \frac{T}{r} \quad \Delta g=\frac{G M}{a_{e}{ }^{2}} \sum_{l=0}^{L}(l-1) \sum_{m=0}^{n} \bar{P}_{l, m}(\sin \varphi)\left(\bar{C}_{l, m}^{*} \cos m \lambda+\bar{S}_{l, m}^{*} \sin m \lambda\right)
$$

$$
\xi=-\frac{1}{r \gamma} \frac{\partial T}{\partial \theta} ; \quad \eta=-\frac{1}{r \gamma \cos \varphi} \frac{\partial T}{\partial \lambda}
$$

Gravity gradient:

± 50 Eötvös

(Eötvös $=10^{-9} s^{-2}$)

$$
\frac{\partial^{2} U}{\partial r^{2}}=\frac{G M}{a_{e}^{3}} \sum_{l=0}^{L}(l+1)(l+2)\left(\frac{a_{e}}{r}\right)^{l+3} \sum_{m=0}^{l} \bar{P}_{l, m}(\sin \varphi)\left(\bar{C}_{l, m} \cos m \lambda+\bar{S}_{l, m} \sin m \lambda\right)
$$

The GRACE signal and its transformation

GRACE inversion technique

* Inversion technique used for RL03 : truncated Singular Value Decomposition (SVD)
$>$ It is more efficient to solve well chosen linear combinations of coefficients (by truncated SVD) than to solve indistinctly the coefficients (by Cholesky decomposition).
$>$ Demonstration with a normal matrix up to d/o 80:

1) Solving for the first 2601 components of the canonical basis (i.e. spherical harmonic coefficients up to degree/order 50)
2) Solving for the first 2601 components of the basis made by the eigenvectors of the normal matrix

* The 2 step approach
> Since SVD does not solve sectorial coefficients due to a lack of information, we need to introduce decent a-priori sectorial coefficients before using SVD
> So we tried to establish a 2-step inversion in RLO3-v2
$>$ First step: Cholesky inversion with constraints to obtain good sectorial coefficients
> Second step: Truncated SVD inversion starting with the first step solution

1) Cholesky decomposition

Equivalent Water Heights comparison

Cholesky inversion up to degree and order 50: 2601 parameters
Reference: Mean field

$$
\text { Degree } 2 \text { to } 80
$$

$\min -184.81 \mathrm{~cm} / \max 168.34 \mathrm{~cm} /$ weighted rms $34.56 \mathrm{~cm} /$ oceans 37.61 cm

2) Truncated SVD

Equivalent Water Heights comparison

SVD solution: minimisation in the direction of the 2601 most significant eigenvectors Reference: Mean field

$$
\text { Degree } 2 \text { to } 80
$$

$\min -206.01 \mathrm{~cm} / \max 58.90 \mathrm{~cm} /$ weighted rms 10.72 cm / oceans 6.60 cm

3) 2-step approach: RLO3-v2

Reference: CHAMP_MOYEN_RL03.par_cumul_EQN.v2

$$
\text { Degree } 2 \text { to } 80
$$

$\min -206.60 \mathrm{~cm} / \max 55.46 \mathrm{~cm} /$ weighted rms $10.18 \mathrm{~cm} /$ oceans 5.66 cm

70 帚
80
80 $\begin{array}{lllllllll}0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80\end{array}$ Amplitude by degree and order (qsum $=10.31 \mathrm{~cm})$

Error spectra of global time variable gravity field models

When converting volume potential into surface potential \rightarrow surface mass displacement in EWH

Signal and error per spherical harmonic degree in equivalent water height (EWH)

The problem of a posteriori filtering

GRACE satellite gravity data Replot Back to form Options
Equivalent Water Heights Iceland $\left(64.96^{\circ} \mathrm{N}, 19.02^{\circ} \mathrm{W}\right)$

[^0] - CNES2, RLO3-v3-unconstrained, DDK2 -- Trend - $1.79 \mathrm{~cm} /$ year

GRACE mean model

* Mean Models generated from time series
$>$ Fitting each series of monthly coefficients by a set of 6 parameters
> Used for operational computation (i.e. altimetric orbit processing) or TRF processing (i.e. ITRF2014)
$>$ In order to better match with GRACE observations, gravity field models have become more complex. They contain now :
> Yearly bias and slope : piecewise linear function except in case of ...
> Jumps caused by big earthquakes (3 so far : Sumatra, Concepcion and Tohoku)
> Annual and semi-annual sine/cosine functions (with continuity constraints at hinge epochs)
... it means 600000 coefficients for a 80×80 s. h. model

Mean model

"bias and slope" vs. "piece-wise-linear" modelling

"bias and slope"
 EIGEN-GRGS.RLO2bis.MEAN-FIELD

Normalized S $(10,01)$ coefficient

"piece-wise-linear"
EIGEN-GRGS.RLO3.MEAN-FIELD

Example of format

G_BIAS $20-.484165479521 \mathrm{E}-030.00000000000 \mathrm{E}+000.1392 \mathrm{E}-100.0000 \mathrm{E}+0019500101.000019850109 .1751$ GDRIFT $200.104634158251 \mathrm{E}-110.000000000000 \mathrm{E}+000.5603 \mathrm{E}-120.0000 \mathrm{E}+0019500101.000019850109 .1751$
G_BIAS $20-1484165356094 \mathrm{E}-030.000000000000 \mathrm{E}+0000.7295 \mathrm{E}-11 \quad 0.0000 \mathrm{E}+0019900101.000019910101 .0000$
GDRIFT $200.162048658823 \mathrm{E}-100.000000000000 \mathrm{E}+000.1449 \mathrm{E}-100.0000 \mathrm{E}+0019900101.000019910101 .0000$
GCOS1A $200.386222759789 \mathrm{E}-100.000000000000 \mathrm{E}+000.3748 \mathrm{E}-110.0000 \mathrm{E}+0019500101.000020500101 .0000$
GSIN1A $200.542428904167 \mathrm{E}-100.000000000000 \mathrm{E}+000.3404 \mathrm{E}-110.0000 \mathrm{E}+0019500101.000020500101 .0000$
$\operatorname{GCOS} 2 A \quad 2 \quad 0 \quad 0.379017840266 \mathrm{E}-100.000000000000 \mathrm{E}+000.3617 \mathrm{E}-11 \quad 0.0000 \mathrm{E}+0019500101.000020500101 .0000$
GSIN2A $20-.163073508081 \mathrm{E}-100.000000000000 \mathrm{E}+000.3494 \mathrm{E}-110.0000 \mathrm{E}+0019500101.000020500101 .0000$

GOCE

Surface data completion

Mean sea surface

Source: CLS

space altimetry - ocean circulation model
=> geoid height

Terrestrial gravimetry

absolute, terrain, sea gravimeters
=> gravity anomaly data

GRACE/GOCE/surface combined model: EIGEN6-C4

Perspective... for mapping gravity and monitoring mass transport from space

\square Satellite to satellite tracking (SST)

- K/Ka band measurement limited in accuracy ($\sim \mu \mathrm{m}$, GRACE, GRACE-FO)
- laser interferometer to go beyond ($\sim n m, ~ G R A C E-F O$)
- with several satellite pairs to increase isotropy as well as spatial and temporal resolution

\square Space gradiometry

- electrostatic gradiometry ($\sim 10^{-12} \mathrm{~m} \mathrm{~s}^{-2} \mathrm{~Hz}^{-1 / 2} \rightarrow 3 \mathrm{mE} \mathrm{Hz}{ }^{-1 / 2}$, GOCE)
- atomic gravimetry/gradiometry
- coupled SST-atomic gradiometry systems would allow to extend the spatial spectrum from 20000 km to a few tens of km
\square Clock
- clock frequency comparison along orbits (through red shift - $\Delta \mathrm{v} / \mathrm{v}: 10^{-17} \Leftrightarrow \Delta \mathrm{U}: 1 \mathrm{~m}^{2} \mathrm{~s}^{-2} \Leftrightarrow \Delta \mathrm{~h}: 10 \mathrm{~cm}$)
- precision in orbit not yet competitive (10^{-17} on ground over a week, ACES)

GRACE Follow-on (2017)

The GRACE-FO satellites are planned to be very similar to the original GRACE satellites with some improvements and a technology demonstrator for further gravity missions. The instrument consists of a frequency stabilized laser, a triple mirror assembly (retroreflector), an optical bench and an electronics board. Challenging key instrument requirements are:

- Ranging measurement accuracy of $50 \mathrm{~nm} / \mathrm{vHz}$ (for $10-100 \mathrm{mHz}$)
- Laser beam co-alignment of less than $50 \mu \mathrm{rad}(\Leftrightarrow 10 \mathrm{~m}$ at 200 km$)$

Image © Springer, from: Sheard et al. "Intersatellite laser ranging instrument for the GRACE follow-on mission", Journal of Geodesy, 2012 (DOI: 10.1007/s00190-012-0566-3).

e-motion, EE-8 ESA call (2010)

River drainage basins with a size between $40000 \mathrm{~km}^{2}$ and $200000 \mathrm{~km}^{2}$ (in red) which will be resolved by e.motion, as well as basins larger than $200000 \mathrm{~km}^{2}$ which corresponds to the present day resolution. e.motion will also recover sub-basin variability which plays an important role for climatic processes.

Degree 1: geocenter

60-day estimates of geocenter from LAGEOS-1/2
SLRF2005/LPOD2005 station coordinates

Geocenter motion from SLR

\mathbf{X} (amp)	\mathbf{X} (phase)	\mathbf{Y} (amp)	\mathbf{Y} (phase)	\mathbf{Z} (amp)	Z (phase)	Reference (comments) (phase is in degrees)
2.8	47	2.6	324	5.8	34	Ries, 2013 (60-day estimates; 1993-2012)

Degree 2: Earth rotation and angular momentum budget

Mass excitation from C21/S21

$$
\chi^{\text {mass }}=\chi_{1}^{\text {mass }}+i \chi_{2}^{\text {mass }}=-\sqrt{\frac{5}{3}} \frac{M R^{2}}{(C-A)}\left(\Delta \bar{C}_{2 I}+i \Delta \bar{S}_{2 I}\right)
$$

Pole rms from GPS/CO4: ~0.03 mas

$$
\Leftrightarrow ~ 1 \mathrm{~mm}
$$

G-WC: geodetic excitation - motion excitation $\quad \chi^{\text {geodetic }}-\chi^{\text {motion }} \Leftrightarrow$?
$\left(1+k_{2}^{\prime}\right) \chi^{\text {mass }}$
RL01/02: mass excitation from GRACE/Lageos + models (ECMWF + MOG2D)
PAOH: mass excitation from models (NCEP + ECCO + GLDAS)

Length of day (LOD) excitation

LOD-WC: geodetic excitation - motion excitation $\chi_{3}^{\text {geodetic }}-\chi_{3}^{\text {motion }} \Leftrightarrow$? mass excitation from RL01/01: GRACE/LAGEOS + atmosphere and ocean (ECMWF+MOG2D) $\left(1+k_{2}^{\prime}\right) \chi_{3}^{\text {mass }}$ or from PAOH: NCEP"+ ECCO + GLDAS models

Prospective study (e-motion, 2010)

System level enhancements to improve sensitivity and isotropy :
\square reducing the orbit altitude ($\sim 373 \mathrm{~km}$) increases the gravity sensitivitytuning the inter-satellite distance impacts on wavelength of observed phenomena

Orbit configurations
\square differentiating the orbit plan (normal pendulum)
\square increasing the number of co-orbiting satellite pairs with different inclinations (multi-tandem: GRACE II)
\square setting up relative motion formations (cartwheel)

Prospective study (e-motion, 2016)

A Sharp Turn to the East

Prior to 2000

Before about 2000, Earth's spin axis was drifting toward Canada (green arrow, left globe). JPL scientists calculated the effect of changes in water mass in different regions (center globe) in pulling the direction of drift eastward and speeding the rate (right globe).

Credits: NASA/JPL-Caltech
Around the year 2000, Earth's spin axis took an abrupt turn toward the east and is now drifting almost twice as fast as before, at a rate of almost 17 centimeters a year. Scientists have suggested that the loss of mass from Greenland and Antarctica's rapidly melting ice sheet could be causing the eastward shift of the spin axis.

Ice mass loss from GRACE

Monthly gravity field from GRACE 1503

Altitude of the oceans from altimetry and GOCE

In geostrophic conditions:
Eastward velocity: $\quad \dot{x}(\varphi, \lambda)=-\frac{g}{2 \Omega \sin \varphi R} \frac{\partial h(\varphi, \lambda)}{\partial \varphi}$
Northward velocity: $\dot{y}(\varphi, \lambda)=-\frac{g}{2 \Omega \sin \varphi R \cos \varphi} \frac{\partial h(\varphi, \lambda)}{\partial \lambda}$
h : mean dynamic topography = mean sea surface - geoid

Geostrophic currents derived from altimetry and GOCE

The relative accuracy of the geoid models was assessed through the comparison of the mean geostrophic currents: Mean Dynamic Topographies (MDT; mean sea surface minus geoid) are computed and filtered at spatial scales ranging from 80-200 km with a Gaussian filter, then associated mean geostrophic currents are compared to mean geostrophic currents derived from independent drifting buoy data, available in all oceans, and similarly filtered. The standard deviation of the difference is then calculated. The surface velocities are inferred with an uncertainty of $3 \mathbf{c m} / \mathrm{s}$ from drifter trajectories, after the ageostrophic components and the time variability measured by altimeters have been removed.

Differences with drifter current intensities for DIR-R5 (top) and DIR-R4 (bottom) for the Gulf Stream. The MDT contour lines are superposed.

Altimetric validation

* The new RL03-v2 model reduces the geographically correlated radial orbit drift rate, from more than $1 \mathrm{~mm} / \mathrm{yr}$ (for the RLO2bis mean model) to less than $0.6 \mathrm{~mm} / \mathrm{yr}$ over ~7 years, with respect to Jason-2 GDR-E reduceddynamic orbits (from GPS+DORIS).
* Jason-2 SLR residuals :
> RLO2: 1.36 cm rms

$>$ RL03-v2: 1.29 cm rms
> RLO3-v2 + C31 adjusted: 1.27 cm rms

More information

[^0]: - CNES/GRGS, RL03-v3-090 -- Trend $-7.59 \mathrm{~cm} /$ year - CNES2, RL03-v3-unconstrained, DDK5 -- Trend $-3.61 \mathrm{~cm} /$ year

