## Géodésie chronométrique

Pacôme DELVA (Pacome.Delva@obspm.fr)

SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, LNE

> Journées Scientifiques de l'Action Spécifique GRAM APC, University Paris Diderot, France 02. - 03.06.2016



## Outline

#### What is chronometric geodesy?

Proof-of-principle of chronometric geodesy

#### 3 Some definitions and conventions

- Chronometric levelling
- The chronometric geoid

#### The ITOC EMRP project

- Relativistic model of the signal propagation
- A new geoid of reference for atomic clocks
- proof-of-principle of chronometric geodesy

#### Chronometric geodesy for high resolution geopotential

## Some semantics

- Chronometry is the science of the measurement of time
- Chronometric geodesy is sometimes named clock-based geodesy
- Relativistic geodesy is a wider term: it contains all geodesic observables and models (relativistic gravimetry, gradiometry, ...)



Figure : Strontium clock in SYRTE/Paris Observatory

P. DELVA (SYRTE/Obs.Paris)

## Basic principle of chronometric geodesy

The flow of time, or the rate of a clock when compared to coordinate time, depends on the velocity of the clock and on the space-time metric (which depends on the mass/energy distribution).

In the weak-field approximation:

$$\frac{\Delta \tau}{\tau} = \frac{\Delta f}{f} = \frac{U_B - U_A}{c^2} + \frac{v_B^2 - v_A^2}{2c^2} + O(c^{-4})$$
$$= \frac{W_B - W_A}{c^2} + O(c^{-4})$$
(1)



## Chronometric observables in geodesy

- Chronometric observables are a completely new type of observable in geodesy: gravity potential differences are directly observed
- Accuracy of optical clocks starts to be competitive with classical methods which have accuracies up to a few centimeters for the static potential at high spatial resolution



## A local comparison

Experimental demonstration of the dependency of clock frequency with local heigth [Chou et al., 2010] with two  $AI^+$  optical clocks.

Starting at data point 14, one of the clock is elevated by 33 cm. The net relative shift is measured to be  $(41 \pm 16) \times 10^{-18}$ .



## The shape of the Earth

As a proof-of-principle, one can determine (roughly)  $J_2$  with two clocks:

$$\frac{\Delta f}{f} = \frac{W_B - W_A}{c^2} + O(c^{-4}) , \ W = U + \frac{v^2}{2}$$
$$U = \frac{GM_E}{r} \left[ 1 + \frac{J_2 R_E^2}{2r^2} \left( 1 - 3\sin(\phi)^2 \right) \right]$$



 using INRIM CsF1 vs. SYRTE FO2 comparison we find:

$$J_2 = (1.097 \pm 0.016) \times 10^{-3}$$

- $\bullet~{\rm Error}$  of  $\sim 1.4\%$  compare to best known value
- However, ground clocks are sensitive to higher order multipoles of the grav. potential

P. DELVA (SYRTE/Obs.Paris)

## Chronometric levelling

Possibilities for technical realisation of a system for measuring potential differences over intercontinental distances using clock comparisons [Vermeer, 1983]

#### Need accurate clocks

- Hydrogen maser clocks: considered initially, but not accurate
- Cesium clock: accurate by definition but limited to  $\sim 1~m$
- $\bullet$  Optical clocks: best knowledge of frequency ratios is needed  $\rightarrow$  systematic comparison of optical clocks



The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

#### **ITOC**

International Timescales with Optical Clocks



## Main challenge: stable links for frequency comparison

- Satellite (GNSS, TWSTFT): intercontinental but limited to  $\sim 10^{-16},$  rather long integration time
- Broadband TWSTFT (ITOC), T2L2 (optical): better stability and faster integration, but still far from what is needed
- ACES Micro-Wave Link (MWL): plan is to achieve 10<sup>-17</sup> frequency comparisons
- Fibre links: best accuracy ( $\sim 10^{-19}$  over thousands of kilometers in just 100 s demonstrated), but limited to continental scales
- Free space coherent optical links through turbulent atmosphere are in their infancy, but show potential for similar performance as fibre links
- Transportable optical clocks are developed (back to the future?)

## The chronometric geoid

"The relativistic geoid is the surface where precise clocks run with the same speed and the surface is nearest to mean sea level" [Bjerhammar, 1985]

- Operational definition based on clock comparisons
- Problem of the realization of the geoid...
- ... solved by the conventions of the IAU in 2000

## Isochronometric surfaces

• An isochronometric surface S is a surface where all clocks beat at the same rate:

$$\left.\frac{\mathrm{d}\tau}{\mathrm{d}t}\right|_{S} = \mathsf{cst}$$

- They are almost equivalent to newtonian equipotential of the gravity field (differences of the order of 2 mm)
- By defining Terrestrial Time (TT) with reference to TCG, the IAU implicitly defined a reference isochronometric surface S<sub>0</sub>:

$$\frac{d\tau}{d(TCG)}\bigg|_{S_0} = cst = 1 - L_G \ , \ L_G = 6.969290134 \times 10^{-10}$$

• The corresponding (newtonian) gravity equipotential is:

$$W_0 \equiv c^2 L_G \simeq 62636856.00~{\rm m}^2.{\rm s}^{-2}$$

• The classical geoid moves away from the reference isochronometric  $S_0$  surface with  $\sim 2 \text{ mm/year speed}$ , i.e.  $2 \times 10^{-18}$  in 10 years

## Consortium of the ITOC EMRP project



National Physical Laboratory (NPL, UK)



Cesky Metrologicky Institut (CMI, Czech Republic)



Istituto Nazionale di Ricerca Metrologica (INRIM, Italy)



Mittatekniikan Keskus (MIKES, Finland)



Physikalisch-Technische Bundesanstalt (PTB, Germany)



```
SYRTE – Paris Observatory (France)
```



IfE - Leibniz Universität Hannover (Germany)

## Detailed work plan of the ITOC EMRP project



## Relativistic model of the signal propagation in a fibre



| fibre link | Length/km | Correction/ps |
|------------|-----------|---------------|
| PTB-SYRTE  | 1401      | $3976 \pm 27$ |
| NPL-SYRTE  | 813       | $1214\pm 6$   |

Sagnac delays in the REFIMEVE+ network [Geršl et al., 2015]

P. DELVA (SYRTE/Obs.Paris)

#### Parameters uncertainty in fibre time transfer

| Parameter                           | Uncertainty              |
|-------------------------------------|--------------------------|
| Fibre length (1-way only)           | 0.2 mm                   |
| Refractive index (1-way only)       | $3	imes 10^{-10}$        |
| Fibre endpoints position            | 200 m                    |
| Fibre inner points position         | 600 m                    |
| Fibre velocity in co-rotating frame | 9 cm/s                   |
| Earth angular velocity              | $\sim$ 0.01 % (relative) |
| Gravitational plus centrifugal      |                          |
| potential (1-way only)              | $\sim$ 30 % (relative)   |

Table : Input parameters and their maximal uncertainties sufficient for 1 ps uncertainty in time transfer. The values were obtained for situations where the sensitivity of a correction to a parameter is maximized and they are calculated for 1000 km long fibre [Geršl et al., 2015].

It corresponds to a variation of around 5 fs over 12 hours in the time transfer

Relativistic model of the signal propagation

Fibre propagation The PTB-SYRTE link: Earth rotation signal



The ITOC EMRP project

## Classical levelling of the clocks [Denker, 2013]

- Design of setups to determine the static gravity potential at all clock locations
- Development of a refined European geoid model including new gravity observations around all relevant clock sites (done by IfE/LUH)



SYRTE clocks leveling campaign

(IGN SGN Travaux Spéciaux)



# Differences between GNSS/geoid & geometric levelling approach [Denker, 2015]



-0.5 0 +0.5 m

## Large-scale demonstration of chronometric geodesy

Demonstrate that optical clocks can be used to measure gravity potential differences over medium-long baselines with high temporal resolution

- Height difference  $\sim 1~\text{km}$   $\Rightarrow$  Gravitational redshift  $\sim 10^{-13}$
- $\bullet~{\sf Target} \to {\sf resolution}~{\sf of}~{\sf tens}~{\sf of}~{\sf cm}~{\sf in}~{\sf a}~{\sf few}~{\sf hours}$



## Chronometric geodesy for high resolution geopotential



- Collaboration between SYRTE/Obs.Paris, LAREG/IGN and LKB, with the support of GRAM, First-TF and ERC grants
- Goals
  - evaluating the contribution of optical clocks for the determination of the geopotential at high spatial resolution
  - Find the best locations to put optical clocks to improve the determination of the geopotential
- Results obtained by Guillaume Lion (post-doc)

## The Auvergne region in France



P. DELVA (SYRTE/Obs.Paris)

## Global methodology



## STEP 1: build synthetic field model

- Global gravity model at 10 km resolution (EIGEN-6C4, Förste et al. 2014)
- Removal of low frequencies (covered by satellites)
- Correction from topography contribution (dV\_ELL\_RET2012, Claessens & Hirt 2013)



Figure : Filtre based on Poisson wavelets at order 3 (Holschneider et al. 2003)

Chronometric geodesy for high resolution geopotential

## STEP 1: build synthetic field model



Figure : Reference gravity anomaly



Figure : Reference potential anomaly

P. DELVA (SYRTE/Obs.Paris)

## STEP 2: add noise and choose observables distribution



P. DELVA (SYRTE/Obs.Paris)

## STEP 3: estimation of reference model

## Prior on field regularity: estimation of a 3D covariance

function from the simulated gravimetric measurements

- Estimation of the potential on a 10×10 km grid with least-squares collocation (Moritz, 1980):
  - from gravimetric data only
  - from gravimetric and clock data



Figure : Fit: logarithmic covariance model by Forsberg (1987); Empirical: empirical covariance. Correlation length is  $\sim 20$  km

## Estimation of potential from gravimetric data



- 4374 simulated gravimetric measurements
- Potential anomaly residuals:
  - Standard deviation  $\sigma = 0.25 \text{ m}^2 \text{.s}^{-2}$ (~ 2.5 cm on geoid heights)
  - Mean
    - $\begin{array}{l} \mu = -0.04 \ \mathrm{m^2.s^{-2}} \\ (\sim 4 \ \mathrm{mm \ on \ geoid} \\ \mathrm{heights}) \end{array}$
- Trend from West to East of the residuals

## Estimation of potential from gravimetric and clock data



- 4374 simulated gravimetric measurements
  + 32 clock comparisons
- Potential anomaly residuals:
  - Standard deviation  $\sigma = 0.07 \text{ m}^2 \text{.s}^{-2}$ (~ 0.7 cm on geoid heights)
  - Mean  $\label{eq:mean} \begin{array}{l} \mu = -0.002 \ \mathrm{m}^2.\mathrm{s}^{-2} \\ (\sim 0.2 \ \mathrm{mm \ on \ geoid} \\ \mathrm{heights}) \end{array}$
- The residual trend disappeared

## Conclusion

- Atomic clocks are rapidly improving in accuracy and stability
- Chronometric Geodesy: directly measure gravity potential differences with clock comparisons (accuracy few cm); and variations of gravity potential differences (stability ~1 cm @ 7h)
- The ITOC EMRP project:
  - New model for propagation of signal in an optical fibre [Geršl et al., 2015]
  - New geoid of reference for atomic clocks [Denker, 2015]
  - On-going large scale demonstration of chronometric geodesy
- High resolution potential determination:
  - Only a few clock comparisons can significantly improve the determination of the geopotential at high resolution
  - Improvement from  $\sim 2.5~{\rm cm}$  standard deviation on the geoid heigths to  $\sim 0.7~{\rm cm}$  with only 32 clock comparisons
- Other projects linked to chronometric geodesy: ACES, applications to geophysics

### Literature I



Bjerhammar, A. (1985).

On a relativistic geodesy. Bull. Geodesique, 59(3):207–220.



Chou, C. W., Hume, D. B., Rosenband, T., and Wineland, D. J. (2010).

Optical clocks and relativity. Science, 329(5999):1630–1633.



Denker, H. (2013).

Recommendations for setups to determine the (static) gravity potential for local and remote clock comparisons. Technical report, Institut fr Erdmessung (IfE), Leibniz Universitt Hannover (LUH). ITOC – SIB55, EMRP, Euramet.



Denker, H. (2015).

Report on the geoid update. Technical report, Institut fr Erdmessung (IfE), Leibniz Universitt Hannover (LUH). ITOC – SIB55, EMRP, Euramet.



Geršl, J., Delva, P., and Wolf, P. (2015).

Relativistic corrections for time and frequency transfer in optical fibres. *Metrologia*, 52(4):552.



Kopejkin, S. M. (1991).

Relativistic manifestations of gravitational fields in gravimetry and geodesy. Manuscripta Geod., 16:301–312.

## Literature II



#### Soffel, M., Herold, H., Ruder, H., and Schneider, M. (1988).

Relativistic theory of gravimetric measurements and definition of thegeoid. *Manuscr Geod*, 13:143–146.

Vermeer, M. (1983).

Chronometric levelling. Technical report, Finnish Geodetic Institute, Helsinki.